Decadal Urban Land Use/Land Cover Changes and Its Impact on Surface Runoff Potential for the Dhaka City and Surroundings Using Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use/Land Cover (LULC)
2.3. Hydrologic Soil Group
2.4. Antecedent Moisture Condition (AMC)
2.5. Overview of NRCS-CN
3. Results and Discussion
3.1. Rainfall Data Analysis
3.2. Decadal LULC Change Analysis
Decadal LULC Change Scenario of Dhaka City
3.3. Decadal Runoff Assessment
Decadal Runoff Scenario of Dhaka City
3.4. Validation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Weng, Q. A remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int. J. Remote Sens. 2001, 22, 1999–2014. [Google Scholar]
- Stow, D.A.; Chen, D.M. Sensitivity of multitemporal NOAA AVHRR data of an urbanizing region to land-use/land-cover changes and misregistration. Remote Sens. Environ. 2002, 80, 297–307. [Google Scholar] [CrossRef]
- Mahmood, R.; Pielke Sr, R.A.; Hubbard, K.G.; Niyogi, D.; Bonan, G.; Lawrence, P.; McNider, R.; McAlpine, C.; Etter, A.; Gameda, S. Impacts of land use/land cover change on climate and future research priorities. Bull. Am. Meteorol. Soc. 2010, 91, 37–46. [Google Scholar] [CrossRef]
- Mitsuda, Y.; Ito, S. A review of spatial-explicit factors determining spatial distribution of land use/land-use change. Landsc. Ecol. Eng. 2011, 7, 117–125. [Google Scholar] [CrossRef]
- Yu, W.; Zang, S.; Wu, C.; Liu, W.; Na, X. Analyzing and modeling land use land cover change (LUCC) in the Daqing City, China. Appl. Geogr. 2011, 31, 600–608. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Roy, A.; Bhatt, C.; Gupta, A.; An, N.; Hassan, M. Impact Analysis of Urbanization on Land Use Land Cover Change for Khulna City, Bangladesh Using Temporal Landsat Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 5. [Google Scholar]
- Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using Landsat data: A case study of Metropolitan City Tehran (1988–2018). Sustainability 2018, 10, 4433. [Google Scholar] [CrossRef] [Green Version]
- Rousta, I.; Olafsson, H.; Moniruzzaman, M.; Zhang, H.; Liou, Y.-A.; Mushore, T.D.; Gupta, A. Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan. Remote Sens. 2020, 12, 2433. [Google Scholar] [CrossRef]
- Alphan, H. Land-use change and urbanization of Adana, Turkey. Land Degrad. Dev. 2003, 14, 575–586. [Google Scholar] [CrossRef]
- Sanders, B.F.; Schubert, J.E.; Gallegos, H.A. Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling. J. Hydrol. 2008, 362, 19–38. [Google Scholar] [CrossRef]
- Garg, V.; Khwanchanok, A.; Gupta, P.; Aggarwal, S.; Kiriwongwattana, K.; Thakur, P.; Nikam, B. Urbanisation effect on hydrological response: A case study of Asan River watershed, India. J. Environ. Earth Sci. 2012, 2, 39–50. [Google Scholar]
- Chen, Y.; Zhou, H.; Zhang, H.; Du, G.; Zhou, J. Urban flood risk warning under rapid urbanization. Environ. Res. 2015, 139, 3–10. [Google Scholar] [CrossRef] [PubMed]
- López, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Lands Urban Plan. 2001, 55, 271–285. [Google Scholar] [CrossRef]
- Paudel, B.; Zhang, Y.-L.; Li, S.-C.; Liu, L.-S.; Wu, X.; Khanal, N.R. Review of studies on land use and land cover change in Nepal. J. Mt. Sci. 2016, 13, 643–660. [Google Scholar] [CrossRef]
- Holdgate, M.W. The sustainable use of tropical coastal resources-a key conservation issue. Ambio 1993, 22, 481–482. [Google Scholar]
- Liu, X.; Lathrop, R., Jr. Urban change detection based on an artificial neural network. Int. J. Remote Sens. 2002, 23, 2513–2518. [Google Scholar] [CrossRef]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Unated Nation. Report of the meeting-urbanization: A global perspective. In Proceedings of the Expert Group Meeting on Population Distribution, Urbanization, Internal Migration and Development, New York, NY, USA, 21–23 January 2008. [Google Scholar]
- D’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Lindquist, E.J.; D’Annunzio, R.; Gerrand, A.; MacDicken, K.; Achard, F.; Beuchle, R.; Brink, A.; Eva, H.D.; Mayaux, P.; San-Miguel-Ayanz, J. Global Forest Land-Use Change 1990–2005; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2012. [Google Scholar]
- Konuma, H.; Genarri, P. FAO Statistical Yearbook; Asia and the Pasific Food and Agriculture; Food and agriculture organization of the United Nations regional office for Asia and the Pacific: Bangkok, Thailand, 2014. [Google Scholar]
- Bank, W. Improving Living Conditions for the Urban Poor; The World Bank Office: Dhaka, Bangladesh, 2007. [Google Scholar]
- Bhatta, B. Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata, India. Int. J.Remote Sens. 2009, 30, 4733–4746. [Google Scholar] [CrossRef]
- Bhatta, B.; Saraswati, S.; Bandyopadhyay, D. Urban sprawl measurement from remote sensing data. Appl. Geogr. 2010, 30, 731–740. [Google Scholar] [CrossRef]
- Das, P.; Behera, M.D.; Patidar, N.; Sahoo, B.; Tripathi, P.; Behera, P.R.; Srivastava, S.; Roy, P.S.; Thakur, P.; Agrawal, S. Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985–2005 using variable infiltration capacity approach. J. Earth Syst. Sci. 2018, 127, 19. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Garg, V.; Nikam, B.R.; Thakur, P.K.; Aggarwal, S.P.; Gupta, P.K.; Srivastav, S.K. Human-induced land use land cover change and its impact on hydrology. HydroResearch 2019, 1, 48–56. [Google Scholar] [CrossRef]
- Jat, M.K.; Garg, P.K.; Khare, D. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 26–43. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Gould, W.A.; Gonzalez, O.M.R. Land development, land use, and urban sprawl in Puerto Rico integrating remote sensing and population census data. Landsc. Urban Plan. 2007, 79, 288–297. [Google Scholar] [CrossRef]
- Mundia, C.N.; Aniya, M. Dynamics of landuse/cover changes and degradation of Nairobi City, Kenya. Land Degrad. Dev. 2006, 17, 97–108. [Google Scholar] [CrossRef]
- Roshan, G.; Rousta, I.; Ramesh, M. Studying the effects of urban sprawl of metropolis on tourism-climate index oscillation: A case study of Tehran city. J. Geogr. Reg. Plan. 2009, 2, 310–321. [Google Scholar]
- Sudhira, H.; Ramachandra, T.; Jagadish, K. Urban sprawl: Metrics, dynamics and modelling using GIS. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 29–39. [Google Scholar] [CrossRef]
- Taubenböck, H.; Wegmann, M.; Roth, A.; Mehl, H.; Dech, S. Urbanization in India–Spatiotemporal analysis using remote sensing data. Comput. Environ. Urban Syst. 2009, 33, 179–188. [Google Scholar] [CrossRef]
- Wu, K.-Y.; Zhang, H. Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing Hangzhou metropolitan area, eastern China (1978–2008). Appl. Geogr. 2012, 34, 137–145. [Google Scholar] [CrossRef]
- Yu, X.J.; Ng, C.N. Spatial and temporal dynamics of urban sprawl along two urban-rural transects: A case study of Guangzhou, China. Landsc. Urban Plan. 2007, 79, 96–109. [Google Scholar] [CrossRef]
- Yuan, F. Urban growth monitoring and projection using remote sensing and geographic information systems: A case study in the twin cities metropolitan area, Minnesota. Geocarto Int. 2010, 25, 213–230. [Google Scholar] [CrossRef]
- Rahman, A.; Aggarwal, S.P.; Netzband, M.; Fazal, S. Monitoring urban sprawl using remote sensing and GIS techniques of a fast growing urban centre, India. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 56–64. [Google Scholar] [CrossRef]
- De Koning, G.; Benítez, P.; Munoz, F.; Olschewski, R. Modelling the impacts of payments for biodiversity conservation on regional land-use patterns. Lands Urban Plan. 2007, 83, 255–267. [Google Scholar] [CrossRef]
- Yamaura, Y.; Amano, T.; Koizumi, T.; Mitsuda, Y.; Taki, H.; Okabe, K. Does land-use change affect biodiversity dynamics at a macroecological scale? A case study of birds over the past 20 years in Japan. Anim. Conserv. 2009, 12, 110–119. [Google Scholar] [CrossRef]
- Shalaby, A.; Tateishi, R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [Google Scholar] [CrossRef]
- Meyer, W.B.; Meyer, W.B.; BL Turner, I. Changes in Land Use and Land Cover: A Global Perspective; Cambridge University Press: Cambridge, UK, 1994; Volume 4. [Google Scholar]
- Ojima, D.; Galvin, K.; Turner, B. The global impact of land-use change. BioScience 1994, 44, 300–304. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Quétier, F.; Lavorel, S.; Thuiller, W.; Davies, I. Plant-trait-based modeling assessment of ecosystem-service sensitivity to land-use change. Ecol. Appl. 2007, 17, 2377–2386. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.K.; Solomon, A.; Brown, S.; Houghton, R.; Trexier, M.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Alves, D.S.; Skole, D.L. Characterizing land cover dynamics using multi-temporal imagery. Int. J. Remote Sens. 1996, 17, 835–839. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, S.A.; Nakagoshi, N. Changes in landscape spatial pattern in the highly developing state of Selangor, peninsular Malaysia. Landsc. Urban Plan. 2006, 77, 263–275. [Google Scholar] [CrossRef]
- Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Garg, V.; Aggarwal, S.; Nikam, B.; Thakur, P. Hypothetical scenario-based impact assessment of climate change on runoff potential of a basin. ISH J. Hydraul. Eng. 2013, 19, 244–249. [Google Scholar] [CrossRef]
- Shi, Z.-H.; Chen, L.-D.; Fang, N.-F.; Qin, D.-F.; Cai, C.-F. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena 2009, 77, 1–7. [Google Scholar] [CrossRef]
- Aggarwal, S.; Garg, V.; Gupta, P.K.; Nikam, B.R.; Thakur, P.K.; Roy, P. Run-off potential assessment over Indian landmass: A macro-scale hydrological modelling approach. Curr. Sci. 2013, 950–959. [Google Scholar]
- Aggarwal, S.; Thakur, P.K.; Nikam, B.R.; Garg, V. Integrated approach for snowmelt run-off estimation using temperature index model, remote sensing and GIS. Curr. Sci. 2014, 106, 397–407. [Google Scholar]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Thakur, P.K.; Nikam, B.R.; Garg, V.; Aggarwal, S.P.; Chouksey, A.; Dhote, P.R.; Ghosh, S. Hydrological parameters estimation using remote sensing and GIS for Indian region: A review. Proc. Nat. Acad. Sci. India Sect. Phys. Sci. 2017, 87, 641–659. [Google Scholar] [CrossRef]
- Nayak, T.; Jaiswal, R. Rainfall-runoff modelling using satellite data and GIS for Bebas river in Madhya Pradesh. J. Inst. Eng. India. Civ. Eng. Div. 2003, 84, 47–50. [Google Scholar]
- Grayson, R.B.; Moore, I.D.; McMahon, T.A. Physically based hydrologic modeling: 2. Is the concept realistic? Water Res. Res. 1992, 28, 2659–2666. [Google Scholar] [CrossRef]
- Tiwari, K.; Kumar, P.; Sebastian, M.; Pal, D. Hydrologic modelling for runoff determination: Remote sensing techniques. Int. J. Water Res. Dev. 1991, 7, 178–184. [Google Scholar] [CrossRef]
- Kumar, P.; Tiwart, K.; Pal, D. Establishing SCS runoff curve number from IRS digital data base. J. Indian Soc. Remote Sens. 1991, 19, 245–252. [Google Scholar] [CrossRef]
- Psomiadis, E.; Soulis, K.X.; Efthimiou, N. Using SCS-CN and Earth observation for the comparative assessment of the hydrological effect of gradual and abrupt spatiotemporal land cover changes. Water 2020, 12, 1386. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Williams, J.R. I: Model documentation. II: User manual. In EPIC-Erosion/Productivity Impact Calculator; Technical Bulletin Number 1768; United States Department of Agriculture: Washington, DC, USA, 1990. [Google Scholar]
- Garg, V.; Nikam, B.R.; Thakur, P.K.; Aggarwal, S. Assessment of the effect of slope on runoff potential of a watershed using NRCS-CN method. Int. J. Hydrol. Sci. Technol. 2013, 3, 141–159. [Google Scholar] [CrossRef]
- Haggard, B.; Moore, P.; Delaune, P.; Smith, D.; Formica, S.; Kleinman, P.; Daniel, T. Effect of slope, grazing and aeration on pasture hydrology. In Proceedings of the ASAE Annual International Meeting/CIGR XVth World Congress, Hyatt Regency. Chicago, IL, USA, 28–31 July 2002. [Google Scholar]
- Chaplot, V.A.; Le Bissonnais, Y. Runoff features for interrill erosion at different rainfall intensities, slope lengths, and gradients in an agricultural loessial hillslope. Soil Sci. Soc. Am. J. 2003, 67, 844–851. [Google Scholar] [CrossRef]
- Akbarimehr, M.; Naghdi, R. Assessing the relationship of slope and runoff volume on skid trails (Case study: Nav 3 district). J. For. Sci. 2012, 58, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Garg, V.; Gupta, P.K.; Nikam, B.R.; Thakur, P.K. Climate and LULC change scenarios to study its impact on hydrological regime. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, B8. [Google Scholar] [CrossRef] [Green Version]
- Van Ty, T.; Sunada, K.; Ichikawa, Y.; Oishi, S. Scenario-based impact assessment of land use/cover and climate changes on water resources and demand: A case study in the Srepok River Basin, Vietnam—Cambodia. Water Res. Manag. 2012, 26, 1387–1407. [Google Scholar]
- Wu, F.; Zhan, J.; Su, H.; Yan, H.; Ma, E. Scenario-based impact assessment of land use/cover and climate changes on watershed hydrology in Heihe River Basin of northwest China. Adv. Meteorol. 2015, 2015, 12. [Google Scholar] [CrossRef] [Green Version]
- Nikam, B.R.; Garg, V.; Jeyaprakash, K.; Gupta, P.K.; Srivastav, S.K.; Thakur, P.K.; Aggarwal, S.P. Analyzing future water availability and hydrological extremes in the Krishna basin under changing climatic conditions. Arab. J. Geosci. 2018, 11, 581. [Google Scholar] [CrossRef]
- Gupta, K.; Kumar, P.; Pathan, S.K.; Sharma, K.P. Urban neighborhood green index–A measure of green spaces in urban areas. Landsc. Urban Plan. 2012, 105, 325–335. [Google Scholar] [CrossRef]
- Siddiqui, A.; Siddiqui, A.; Maithani, S.; Jha, A.; Kumar, P.; Srivastav, S. Urban growth dynamics of an Indian metropolitan using CA Markov and Logistic Regression. Egypt. J. Remote Sens. Space Sci. 2018, 21, 229–236. [Google Scholar] [CrossRef]
- Kumar, P.; Siddiqui, A.; Gupta, K.; Jain, S.; Bharath, B.; Maithani, S. Understanding urban environment in Northwest Himalaya: Role of geospatial technology. In Remote Sensing of Northwest Himalayan Ecosystems; Springer: Singapore, 2019; pp. 403–431. [Google Scholar]
- Rousta, I.; Olafsson, H.; Moniruzzaman, M.; Ardö, J.; Zhang, H.; Mushore, T.D.; Shahin, S.; Azim, S. The 2000–2017 drought risk assessment of the western and southwestern basins in Iran. Model. Earth Syst. Environ. Res. 2020, 6, 1201–1221. [Google Scholar] [CrossRef]
- Thakur, P.K.; Aggarwal, S.; Aggarwal, S.; Jain, S. One-dimensional hydrodynamic modeling of GLOF and impact on hydropower projects in Dhauliganga River using remote sensing and GIS applications. Nat. Hazards 2016, 83, 1057–1075. [Google Scholar] [CrossRef]
- Kaushik, S.; Dhote, P.R.; Thakur, P.K.; Nikam, B.R.; Aggarwal, S.P. An integrated approach for identification of waterlogged areas using RS and GIS technique and groundwater modelling. Sustain. Water Resour. Manag. 2019, 5, 1887–1901. [Google Scholar] [CrossRef]
- Mamun, A.A.; Mahmood, A.; Rahman, M. Identification and monitoring the change of land use pattern using remote sensing and GIS: A case study of Dhaka City. IOSR J. Mech. Civ. Eng. 2013, 6, 20–28. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- World Population Review. Available online: https://worldpopulationreview.com/world-cities/dhaka-population/ (accessed on 4 May 2020).
- Kabir, A.; Parolin, B. Planning and development of Dhaka—A story of 400 years. In Proceedings of the 15th International Planning History Society Conference, São Paulo, Brasil, 15–18 July 2012; pp. 1–20. [Google Scholar]
- Bronstert, A.; Bürger, G.; Heidenreich, M.; Katzenmaier, D.; Köhler, B. Effects of climate change influencing storm runoff generation: Basic considerations and a pilot study in Germany. In Impact of Climate Change on Flooding and Sustainable River Management. Proceedings of the 2. International RIBAMOD Workshop, Wallingford, UK, 26–27 Februar 1998; Casale, R., Bronstert, A., Samuels, P., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1999. [Google Scholar]
- Dunjó, G.; Pardini, G.; Gispert, M. The role of land use-land cover on runoff generation and sediment yield at a microplot scale, in a small Mediterranean catchment. J. Arid Environ. 2004, 57, 239–256. [Google Scholar] [CrossRef]
- United States Geological Survey. Available online: http://earthexplorer.usgs.gov/ (accessed on 13 June 2018).
- Ahmed, B.; Ahmed, R. Modeling urban land cover growth dynamics using multitemporal satellite images: A case study of Dhaka, Bangladesh. ISPRS Int. J. Geo Inf. 2012, 1, 3–31. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Alak, P.; Azmz, I. Spatio-temporal analysis of land use and land cover changes in Chittagong city corporation, Bangladesh. Int. J. Adv. Remote Sens. GIS Geogr 2016, 4, 56–72. [Google Scholar]
- Musgrave, G. How much of the rain enters the soil. In Yearbook od Agriculture; United States Department of Agriculture: Washington, DC, USA, 1955; pp. 151–159. [Google Scholar]
- Cronshey, R. Urban Hydrology for Small Watersheds; United States Department of Agriculture: Washington, DC, USA, 1986.
- U.S. Department of Agriculture (USDA). Natural Resources Conservation Service (USDA-NRCS) National Engineering Handbook; US Deptartment of Agriculture, Soil Conservation Service, Engineering Division: Washington, DC, USA, 2009; Chapter 7: Hydrologic Soil Groups; p. 13.
- Subramanya, K. Engineering Hydrology, 4th ed.; Tata McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
- Hjelmfelt Jr, A.T. Investigation of curve number procedure. J. Hydraul. Eng. 1991, 117, 725–737. [Google Scholar] [CrossRef]
- Kumar, S.; Ranta, M.; Praveen, T. Analysis of the run off for watershed using SCS-CN method and geographic information systems. Int. J. Eng. Sci. Technol. 2010, 2, 3947–3954. [Google Scholar]
- Soulis, K.; Valiantzas, J. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds-the two-CN system approach. Hydrol. Earth Syst. Sci. 2012, 16, 1001. [Google Scholar] [CrossRef] [Green Version]
- Askar, M.K. Rainfall-runoff model using the SCS-CN method and geographic information systems: A case study of Gomal River watershed. WIT Trans. Ecol. Environ. 2013, 178, 159–170. [Google Scholar]
- Hernández-Guzmán, R.; Ruiz-Luna, A. SARA—An enhanced curve number-based tool for estimating direct runoff. J. Hydroinf. 2013, 15, 881–887. [Google Scholar] [CrossRef]
- Satheeshkumar, S.; Venkateswaran, S.; Kannan, R. Rainfall–runoff estimation using SCS-CN and GIS approach in the Pappiredipatti watershed of the Vaniyar sub basin, South India. Model. Earth Syst. Environ. Res. 2017, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, K.; Saiful Islam, A.; Tarekul Islam, G.; Alfieri, L.; Bala, S.K.; Uddin Khan, M.J. Impact of high-end climate change on floods and low flows of the Brahmaputra River. J. Hydrol. Eng. 2017, 22, 04017041. [Google Scholar] [CrossRef]
- Kirby, J.; Mainuddin, M.; Mpelasoka, F.; Ahmad, M.; Palash, W.; Quadir, M.; Shah-Newaz, S.; Hossain, M. The impact of climate change on regional water balances in Bangladesh. Clim. Chang. 2016, 135, 481–491. [Google Scholar] [CrossRef]
- Barua, S.; van Ast, J.A. Towards interactive flood management in Dhaka, Bangladesh. Water Policy 2011, 13, 693–716. [Google Scholar] [CrossRef]
- Sayed, M.B.; Haruyama, S. Evaluation of flooding risk in greater Dhaka District using satellite data and geomorphological land classification map. J. Geosci. Environ. 2016, 4, 110. [Google Scholar] [CrossRef] [Green Version]
- The Independent, 1 June 2018. Available online: http://www.theindependentbd.com/post/152309 (accessed on 15 April 2020).
- Zaman, M.U. The Guardian, 21 March 2018. Available online: https://www.theguardian.com/cities/2018/mar/21/people-pouring-dhaka-bursting-sewers-overpopulation-bangladesh (accessed on 15 April 2020).
- Tarafdar, M.R. The Daily Star, 14 September 2007. Available online: https://www.thedailystar.net/news-detail-3883 (accessed on 15 April 2020).
- Hossain, M.M. The Flood Problem and Mitigation Methods in Bangladesh. Available online: http://www.ifi-home.info/isfd4/docs/May7/Session_11am/Room_A_11am/Flood-Monowar.pdf (accessed on 15 April 2020).
- Haq, S.K.; Hossain, L.; Shumon, R.; Khan, P.; Das, P. The Daily Star, 2 September 2015. Available online: https://www.thedailystar.net/frontpage/dhaka-deluged-136426 (accessed on 15 April 2020).
Satellite | Sensor | Date of Acquisition | Spatial Resolution | Spectral Resolution | Bands Used |
---|---|---|---|---|---|
Landsat 8 | OLI | 20.01.2018 | 30 m | 11 Bands | B3, B4, B5, B6 & B7 |
Landsat 5 | MSS TM | 23.02.2007 14.02.1998 19.02.1988 | 30 m | 7 Bands | B2, B3, B4 & B5 |
Landsat 2 | MSS | 03.02.1978 | 60 m | 4 Bands | B4, B5 & B6 |
SRTM | SAR | 11.02.2000 | 30 m | - | - |
Type of Data | Source |
---|---|
Demographic data | World Population Review |
Rainfall data | Bangladesh Meteorological Department |
Soil map | Soil Resources Development Institute, Bangladesh |
Class Name | Description | CN Value According to HSG | |||
---|---|---|---|---|---|
A | B | C | D | ||
Agriculture | Land used for agriculture, crop fields, paddy field, fallow lands, and vegetable lands, fruits, and other cultivated lands | 67 | 77 | 83 | 87 |
Built-Up | All residential, commercial, and industrial areas, isolated and clustered settlements, transportation, roads, services, mixed urban, and other urban areas considered impervious in the present study | 98 | 98 | 98 | 98 |
Wetland | Permanent and seasonal wetlands, low-lying areas, marshy land, rills, gully, and swamps | 97 | 97 | 98 | 99 |
Open Land | Barren land, bare and exposed soils, abandoned land, open space, landfill sites, earth and sand in-fillings, brickfields, areas of active excavation, uncultivated land, and construction sites | 77 | 86 | 91 | 93 |
Green Spaces | Deciduous forest, mixed forest land, palms, orchard, herbs, climbers, gardens, inner-city recreational areas, parks and playgrounds, grassland and vegetable, conifer, scrub, and others | 55 | 72 | 81 | 86 |
Water Bodies | River, permanent open water, lakes, ponds, and reservoirs | 100 | 100 | 100 | 100 |
Year | 1978 | 1988 | 1998 | 2007 | 2018 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Class Name | UA % | PA % | UA % | PA % | UA % | PA % | UA % | PA % | UA % | PA % |
Agriculture | 85.35 | 92.41 | 92.23 | 95.19 | 91.79 | 96.09 | 87.42 | 89.10 | 90.83 | 94.29 |
Built-up | 85.71 | 78.26 | 86.79 | 83.64 | 87.14 | 87.14 | 91.46 | 81.52 | 95.45 | 94.23 |
Wetland | 66.67 | 83.33 | 72.73 | 88.89 | 91.89 | 97.14 | 84.21 | 88.89 | 89.47 | 87.18 |
Open land | 84.62 | 64.71 | 94.74 | 81.82 | 100.00 | 80.00 | 81.82 | 84.38 | 100.00 | 100.00 |
Green spaces | 90.65 | 86.61 | 85.00 | 80.95 | 90.74 | 89.91 | 81.48 | 86.27 | 88.52 | 90.00 |
Water bodies | 95.00 | 90.48 | 89.29 | 83.33 | 100.00 | 75.00 | 88.89 | 100.00 | 100.00 | 84.62 |
OA % | 87.17 | 89.07 | 91.20 | 86.67 | 92.53 | |||||
Kappa | 0.82 | 0.84 | 0.88 | 0.82 | 0.89 |
HSG | Characteristics |
---|---|
A | Low runoff potential. Soils having high infiltration rates even when thoroughly wetted and consisting chiefly of deep, well to excessively drained sands or gravels. |
B | Soils having moderate infiltration rates. e.g., shallow loess, sandy loam. |
C | Soils having slow infiltration rates. e.g., clay loams, shallow sandy loam. |
D | High runoff potential. Soils having slow infiltration rates, soils with a permanent high water table, soils with a clay-pan or clay layer at or near the surface, and shallow soils over nearly impervious material. |
AMC Type | Condition |
---|---|
AMC-I | Soils are dry but not to wilting point. Satisfactory cultivation has taken place |
AMC-II | Average conditions |
AMC-III | Sufficient rainfall has occurred within the immediate past five days. Saturated soil conditions prevail. |
Year | 1978 | 1988 | 1998 | 2007 | 2018 | 1978–2018 | 1978–1988 | 1988–1998 | 1998–2007 | 2007–2018 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LULC | ha | % | ha | % | ha | % | ha | % | ha | % | ha | % | ha | % | ha | % | ha | % | ha | % |
1 | 41,961.6 | 49.59 | 36,358.7 | 42.97 | 40,117.9 | 47.41 | 36,461.3 | 43.09 | 30,890.8 | 36.51 | −11,070.8 | −13.1 | −5602.9 | −6.6 | 3759.2 | 4.4 | −3656.6 | −4.3 | −5570.5 | −6.6 |
2 | 1458.36 | 1.72 | 2923.65 | 3.46 | 6238.8 | 7.37 | 10,419.9 | 12.31 | 20,142.5 | 23.81 | 18,684.1 | 22.1 | 1465.3 | 1.7 | 3315.2 | 3.9 | 4181.1 | 4.9 | 9722.6 | 11.5 |
3 | 2686.68 | 3.17 | 3558.6 | 4.21 | 3492.27 | 4.13 | 5657.94 | 6.69 | 5093.01 | 6.02 | 2406.3 | 2.8 | 871.9 | 1.0 | −66.3 | −0.1 | 2165.7 | 2.6 | −564.9 | −0.7 |
4 | 2767.68 | 3.27 | 3270.69 | 3.87 | 3068.55 | 3.63 | 4432.95 | 5.24 | 3439.62 | 4.07 | 671.9 | 0.8 | 503.0 | 0.6 | −202.1 | −0.2 | 1364.4 | 1.6 | −993.3 | −1.2 |
5 | 24,023.9 | 28.39 | 28,548.5 | 33.74 | 28,271 | 33.41 | 25,563.7 | 30.21 | 19,947.9 | 23.58 | −4076.0 | −4.8 | 4524.6 | 5.4 | −277.5 | −0.3 | −2707.3 | −3.2 | −5615.8 | −6.6 |
6 | 11,727 | 13.86 | 9952.65 | 11.76 | 3424.14 | 4.05 | 2076.84 | 2.45 | 5098.95 | 6.03 | −6628.1 | −7.8 | −1774.4 | −2.1 | −6528.5 | −7.7 | −1347.3 | −1.6 | 3022.1 | 3.6 |
Year | 1978 | 1988 | 1998 | 2007 | 2018 | 1978–2018 | 1978–1988 | 1988–1998 | 1998–2007 | 2007–2018 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LULC | ha | % | ha | % | ha | % | ha | % | ha | % | ha | % | ha | % | ha | % | ha | % | ha | % |
1 | 11,058.5 | 37.6 | 11,100.4 | 37.7 | 11,197.4 | 38.0 | 9574.6 | 32.5 | 6758.0 | 23.0 | −4300.5 | −14.6 | 41.9 | 0.1 | 97.0 | 0.3 | −1622.9 | −5.5 | −2816.55 | −9.6 |
2 | 1307.5 | 4.4 | 2320.0 | 7.9 | 4953.2 | 16.8 | 8224.6 | 27.9 | 13,653.0 | 46.4 | 12,345.5 | 41.9 | 1012.5 | 3.4 | 2633.2 | 8.9 | 3271.3 | 11.1 | 5428.44 | 18.4 |
3 | 630.0 | 2.1 | 670.3 | 2.3 | 674.6 | 2.3 | 453.3 | 1.5 | 1036.4 | 3.5 | 406.4 | 1.4 | 40.3 | 0.1 | 4.2 | 0.0 | −221.2 | −0.8 | 583.11 | 2.0 |
4 | 1529.3 | 5.2 | 1431.0 | 4.9 | 1486.6 | 5.1 | 2048.8 | 7.0 | 1433.6 | 4.9 | −95.7 | −0.3 | −98.3 | −0.3 | 55.6 | 0.2 | 562.1 | 1.9 | −615.15 | −2.1 |
5 | 9520.6 | 32.3 | 10481.1 | 35.6 | 10,098.5 | 34.3 | 7608.1 | 25.8 | 4796.8 | 16.3 | −4723.7 | −16.0 | 960.6 | 3.3 | −382.7 | −1.3 | −2490.4 | −8.5 | −2811.24 | −9.6 |
6 | 5393.5 | 18.3 | 3432.8 | 11.7 | 1025.4 | 3.5 | 1526.4 | 5.2 | 1757.8 | 6.0 | −3635.7 | −12.3 | −1960.7 | −6.7 | −2407.4 | −8.2 | 501.0 | 1.7 | 231.39 | 0.8 |
2018 | 2007 | 1998 | 1988 | 1978 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Runoff | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % |
VL | 3.4 | 0.4 | 1.7 | 0.2 | 8.5 | 1.0 | 7.9 | 0.9 | 6.6 | 0.8 |
L | 3.9 | 0.4 | 9.6 | 1.1 | 37.6 | 4.3 | 40.0 | 4.6 | 32.1 | 3.7 |
M | 106.8 | 12.3 | 115.7 | 13.3 | 564.3 | 64.7 | 510.1 | 58.5 | 527.5 | 60.6 |
H | 439.1 | 50.4 | 516.0 | 59.2 | 125.3 | 14.4 | 152.5 | 17.5 | 144.2 | 16.6 |
VH | 318.3 | 36.5 | 228.6 | 26.2 | 135.9 | 15.6 | 161.1 | 18.5 | 159.5 | 18.3 |
2018 | 2007 | 1998 | 1988 | 1978 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Runoff | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % |
VL | 0.56 | 0.18 | 0.08 | 0.03 | 2.43 | 0.80 | 2.31 | 0.76 | 2.35 | 0.77 |
L | 1.24 | 0.41 | 2.84 | 0.94 | 1.66 | 0.55 | 1.48 | 0.49 | 1.41 | 0.47 |
M | 1.39 | 0.46 | 2.00 | 0.66 | 138.34 | 45.54 | 120.60 | 39.70 | 111.81 | 36.81 |
H | 126.35 | 41.59 | 172.79 | 56.88 | 91.93 | 30.27 | 115.08 | 37.88 | 113.96 | 37.52 |
VH | 174.23 | 57.36 | 126.05 | 41.50 | 69.40 | 22.85 | 64.29 | 21.16 | 74.24 | 24.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moniruzzaman, M.; Thakur, P.K.; Kumar, P.; Ashraful Alam, M.; Garg, V.; Rousta, I.; Olafsson, H. Decadal Urban Land Use/Land Cover Changes and Its Impact on Surface Runoff Potential for the Dhaka City and Surroundings Using Remote Sensing. Remote Sens. 2021, 13, 83. https://doi.org/10.3390/rs13010083
Moniruzzaman M, Thakur PK, Kumar P, Ashraful Alam M, Garg V, Rousta I, Olafsson H. Decadal Urban Land Use/Land Cover Changes and Its Impact on Surface Runoff Potential for the Dhaka City and Surroundings Using Remote Sensing. Remote Sensing. 2021; 13(1):83. https://doi.org/10.3390/rs13010083
Chicago/Turabian StyleMoniruzzaman, Md, Praveen K. Thakur, Pramod Kumar, Md. Ashraful Alam, Vaibhav Garg, Iman Rousta, and Haraldur Olafsson. 2021. "Decadal Urban Land Use/Land Cover Changes and Its Impact on Surface Runoff Potential for the Dhaka City and Surroundings Using Remote Sensing" Remote Sensing 13, no. 1: 83. https://doi.org/10.3390/rs13010083
APA StyleMoniruzzaman, M., Thakur, P. K., Kumar, P., Ashraful Alam, M., Garg, V., Rousta, I., & Olafsson, H. (2021). Decadal Urban Land Use/Land Cover Changes and Its Impact on Surface Runoff Potential for the Dhaka City and Surroundings Using Remote Sensing. Remote Sensing, 13(1), 83. https://doi.org/10.3390/rs13010083