Multispectral Remote Sensing as a Tool to Support Organic Crop Certification: Assessment of the Discrimination Level between Organic and Conventional Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Studied Fields
2.2. In Situ Indices
2.2.1. Field Survey and Field Sampling
2.2.2. Soil Chemical Composition
2.2.3. Leaves Total Nitrogen and Dry Matter
2.2.4. Plant Wet and Dry Biomass Weight, Dry Matter
2.2.5. Leaf Chlorophyll Content
2.2.6. Plant Height
2.2.7. Canopy Cover (PAI, FAPAR)
2.2.8. Hyperspectral Leaf Reflectance
2.3. Satellite Indices
2.3.1. Satellite Imagery Description
2.3.2. Satellite Images Preprocessing
2.3.3. Extraction of Satellite Images Pixel Values by Field
2.3.4. Satellite Indices Computation
Spectral Indices
Spatial Heterogeneity Indices
2.4. Statistical Assessment of the Discriminating Power of Indices
3. Results
3.1. In Situ Results
3.1.1. Soil Chemical Composition
3.1.2. Visual Appearance of Maize Fields
3.1.3. Leaf Total Nitrogen Content and Leaf Dry Matter Percentage
3.1.4. Plants Wet and Dry Biomass Weight, Dry Matter Percentage
3.1.5. Leaves Chlorophyll Content
3.1.6. Plants Height
3.1.7. Canopy Cover (PAI, FAPAR)
3.1.8. Leaves Hyperspectral Reflectance
3.2. Satellite Results
3.2.1. Spectral Indices
3.2.2. Chlorophyll Content Related Indices
3.2.3. Spatial Heterogeneity Indices
4. Discussion
4.1. Discussion on the In Situ Results
4.2. Discussion on the Satellite Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Research Institute of Organic Agriculture FiBL; IFOAM—Organics International. The World of Organic Agriculture. Statistics & Emerging Trends 2016. Available online: https://orgprints.org/31151/1/willer-lernoud-2016-world-of-organic.pdf (accessed on 24 November 2020).
- Hudson, R.J. Management of Agricultural, Forestry, Fisheries and Rural Enterprise—Volume, I. Encyclopedia of Life Support Systems (EOLSS); EOLSS Publications: Oxford, UK, 2009; ISBN 978-1-84826-199-0. [Google Scholar]
- Mikkelsen, R.; Hartz, T.K. Nitrogen Sources for Organic Crop Production. Better Crop. 2008, 92, 16–18. [Google Scholar]
- Winston, E.; Op de Laak, J.; Marsh, T.; Lempke, H.; Chapman, K.; FAO Regional Office for Asia and the Pacific. Arabica Coffee Manual for Lao-PDR. Chapter 4—Plant Nutrition & Fertiliser Management; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2005; ISBN 974-7946-78-5. [Google Scholar]
- Dalgaard, T.; Halberg, N.; Kristensen, I.S. Can organic farming help to reduce N-losses? Experiences from Denmark. Nutr. Cycl. Agroecosyst. 1998, 52, 277–287. [Google Scholar] [CrossRef]
- Wolfe, M.S.; Baresel, J.P.; Desclaux, D.; Goldringer, I.; Hoad, S.; Kovacs, G.; Löschenberger, F.; Miedaner, T.; Østergård, H.; Van Bueren, E.T.L. Developments in breeding cereals for organic agriculture. Euphytica 2008, 163, 323–346. [Google Scholar] [CrossRef] [Green Version]
- European Commission (EC). Commission Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Off. J. Eur. Union 2008, 250, 84. [Google Scholar]
- European Commission (EC). Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. Off. J. Eur. Union 2007, 189, 1–23. [Google Scholar]
- Commission Permanente du Comité National de l’Agriculture Biologique de l’Institut National de l’Origine et de la Qualité. Guide de lecture du RCE n° 834/2007 et du RCE n° 889/2008—Version du 1er décembre 2009. Guide de lecture pour l’application des règlements bio. 2009. Available online: https://www.sud-et-bio.com/sites/default/files/guide-lecture-bio_decembre090.pdf (accessed on 24 November 2020).
- Jones, H.; Clarke, S.; Haigh, Z.; Pearce, H.; Wolfe, M. The effect of the year of wheat variety release on productivity and stability of performance on two organic and two non-organic farms. J. Agric. Sci. 2010, 148, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Benoit, M.; Garnier, J.; Billen, G.; Mercier, B.; Martinez, A.; Azougui, A. Observatoire de la lixiviation du nitrate en agriculture biologique. Réseau ABAC (bassin de la Seine). In Proceedings of the 4ème Séminaire du DIM Astréa sur la Recherche en Agriculture Biologique, Ile-de-France, France, 29 March 2016. [Google Scholar]
- Xie, B.; Wang, X.R.; Ding, Z.H.; Yang, Y.P. Critical impact assessment of organic agriculture. J. Agric. Environ. Ethics 2003, 16, 297–311. [Google Scholar]
- Pang, X.; Letey, J. Organic Farming Challenge of Timing Nitrogen Availability to Crop Nitrogen Requirements. Soil Sci. Soc. Am. J. 2000, 64, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Denis, A. Can Satellites Help Organic Crop Certification? Ph.D. Thesis, University of Liege, Liege, Belgium, 2018. [Google Scholar]
- Denis, A.; Tychon, B. Remote sensing enables high discrimination between organic and non-organic cotton for organic cotton certification in West Africa. Agron. Sustain. Dev. 2015, 35, 1499–1510. [Google Scholar] [CrossRef] [Green Version]
- Denis, A.; Tychon, B. Remote sensing and GIS techniques for supporting organic cotton certification process in West Africa. In Proceedings of the Global Geospatial Conference 2013—AFRICAGIS 2013—GSDI 14, Addis Ababa, Ethiopia, 4–8 November 2013; p. 51. [Google Scholar]
- Balashova, N. Remote Sensing for Organic and Conventional Corn Assessment. Master’s Thesis, Bowling Green State University, Bowling Green, OH, USA, 2015; 91p. [Google Scholar] [CrossRef]
- Ducati, J.R.; Sarate, R.E.; Fachel, J.M.G. Application of remote sensing techniques to discriminate between conventional and organic vineyards in the Loire Valley, France. J. Int. Sci. Vigne Vin 2014, 48, 135–144. [Google Scholar] [CrossRef]
- Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Casasnovas, J.A.M. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sens. 2016, 8, 973. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-C.; Prasher, S.O.; Whalen, J.; Goel, P.K. Use of Hyperspectral Imagery for Identification of Different Fertilisation Methods with Decision-tree Technology. Biosyst. Eng. 2002, 83, 291–298. [Google Scholar] [CrossRef] [Green Version]
- De Ponti, T.; Rijk, B.; Van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Ponisio, L.C.; M’Gonigle, L.K.; Mace, K.C.; Palomino, J.; De Valpine, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B Biol. Sci. 2015, 282, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hossard, L.; Archer, D.W.; Bertrand, M.; Colnenne-David, C.; Debaeke, P.; Ernfors, M.; Jeuffroy, M.-H.; Munier-Jolain, N.; Nilsson, C.; Sanford, G.R.; et al. A Meta-Analysis of Maize and Wheat Yields in Low-Input vs. Conventional and Organic Systems. Agron. J. 2016, 108, 1155–1167. [Google Scholar] [CrossRef]
- Lockeretz, W.; Shearer, G.; Sweeney, S.; Kuepper, G.; Wanner, D.; Kohl, D.H. Maize Yields and Soil Nutrient Levels with and without Pesticides and Standard Commercial Fertilizers. Agron. J. 1980, 72, 65–72. [Google Scholar] [CrossRef]
- Burger, H.; Schloen, M.; Schmidt, W.; Geiger, H.H. Quantitative genetic studies on breeding maize for adaptation to organic farming. Euphytica 2008, 163, 501–510. [Google Scholar] [CrossRef]
- Mäder, P.; DOK-Trial. The World’s Most Significant Long-Term Field Trial Comparing Organic and Conventional Cropping Systems. Available online: http://www.fibl.org/en/switzerland/research/soil-sciences/bw-projekte/dok-trial.html#c29082 (accessed on 3 June 2016).
- Mäder, P.; Fliessbach, A.; Niggli, U.; Gunst, L.; Mayer, J. Ertrag von Mais und Sojabohnen im biologischen und konventionellen Anbausystem des DOK-Versuchs. In Ideal und Wirklichkeit: Perspektiven ökologischer Landbewirtschaftung, Proceedings of the Beiträge zur 12. Wissenschaftstagung Ökologischer Landbau, Bonn, Germany, 5–8 March 2013; Neuhoff, D., Stumm, C., Ziegler, S., Rahmann, G., Hamm, U., Köpke, U., Eds.; Verlag Dr. Köster: Berlin, Germany, 2013; p. 2. [Google Scholar]
- European Commission. Organic versus Conventional Farming, Which Performs Better Financially? An Overview of Organic Field Crop and Milk Production in Selected Member States. 2013. Available online: https://ec.europa.eu/agriculture/rica/pdf/FEB4_Organic_farming_final_web.pdf (accessed on 24 November 2020).
- Lotter, D.; Seidel, R.; Liebhardt, W. The performance of organic and conventional cropping systems in an extreme climate year. Am. J. Altern. Agric. 2003, 18, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Wortman, S.E.; Lindquist, J.L.; Haar, M.J.; Francis, C.A. Increased weed diversity, density and above-ground biomass in long-term organic crop rotations. Renew. Agric. Food Syst. 2010, 25, 281–295. [Google Scholar] [CrossRef] [Green Version]
- Poudel, D.D.; Horwath, W.; Lanini, W.; Temple, S.; Van Bruggen, A. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California. Agric. Ecosyst. Environ. 2002, 90, 125–137. [Google Scholar] [CrossRef]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Seidel, R.; Douds, D. Organic and Conventional Farming Systems: Environmental and Economic Issues. 2005. Available online: https://ecommons.cornell.edu/handle/1813/2101 (accessed on 24 November 2020).
- Gabriel, D.; Sait, S.M.; Kunin, W.E.; Benton, T.G. Food production vs. biodiversity: Comparing organic and conventional agriculture. J. Appl. Ecol. 2013, 50, 355–364. [Google Scholar] [CrossRef]
- Bilsborrow, P.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Barański, M.; Eyre, M.; Schmidt, C.; Shotton, P.; Volakakis, N.; Cakmak, I.; et al. The effect of organic and conventional management on the yield and quality of wheat grown in a long-term field trial. Eur. J. Agron. 2013, 51, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Micskei, G. Comparative Studies on the Effect of Farmyard Manure and Mineral Fertilisers on the Growth of Maize in Long-Term Experiments. Ph.D. Thesis, Szent István University, Gödöllő, Hungary, 2012. [Google Scholar]
- Bagheri, N.; Ahmadi, H.; Alavipanah, S.K.; Omid, M. Multispectral remote sensing for site-specific nitrogen fertilizer management. Pesqui. Agropecuária Bras. 2013, 48, 1394–1401. [Google Scholar] [CrossRef] [Green Version]
- Cilia, C.; Panigada, C.; RossiniiD, M.; Meroni, M.; Busetto, L.; Amaducci, S.; Boschetti, M.; Picchi, V.; Colombo, R. Nitrogen Status Assessment for Variable Rate Fertilization in Maize through Hyperspectral Imagery. Remote Sens. 2014, 6, 6549–6565. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Wang, L.; Niu, Z.; Gao, S.; Wu, M. Nondestructive estimation of canopy chlorophyll content using Hyperion and Landsat/TM images. Int. J. Remote Sens. 2010, 31, 2159–2167. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Liu, J.; Pattey, E.; Jégo, G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sens. Environ. 2012, 123, 347–358. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Liu, J.; Huffman, T.; Qian, B.; Pattey, E.; Wang, J.; Zhao, T.; Geng, X.; Kroetsch, D.; Dong, T.; et al. Estimating plant area index for monitoring crop growth dynamics using Landsat-8 and RapidEye images. J. Appl. Remote Sens. 2014, 8, 85196. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Pattey, E.; Miller, J.R.; McNairn, H.; Smith, A.; Hu, B. Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sens. Environ. 2010, 114, 1167–1177. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.W.; Tringe, J.M.; Schlemmer, M.R.; Major, D.J. Use of Remote-Sensing Imagery to Estimate Corn Grain Yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Moquet, A.; De Longueville, F.; Tychon, B.; Hoffmann, L. Towards an Operational Hyperspectral Indicator to Detect Over-Fertilization of Maize Crop; Politique scientifique fédérale: Brussels, Belgium, 2005. [Google Scholar]
- De Longueville, F.; Tychon, B.; Touré, S.; Moquet, A.; Hoffmann, L.; Ledent, J.-F.; Foucart, G. Hyperspectral Derived Nitrogen Indicators for Maize Crop (HYNIM). Rapport Final; Politique scientifique fédérale: Brussels, Belgium, 2005. [Google Scholar]
- Goel, P.; Prasher, S.O.; Landry, J.; Patel, R.; Bonnell, R.; Viau, A.; Miller, J. Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn. Comput. Electron. Agric. 2003, 38, 99–124. [Google Scholar] [CrossRef]
- Pattey, E.; Strachan, I.B.; Boisvert, J.; Desjardins, R.; McLaughlin, N. Detecting effects of nitrogen rate and weather on corn growth using micrometeorological and hyperspectral reflectance measurements. Agric. For. Meteorol. 2001, 108, 85–99. [Google Scholar] [CrossRef]
- Strachan, I.B.; Pattey, E.; Boisvert, J.B. Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance. Remote Sens. Environ. 2002, 80, 213–224. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO); German Weather Service (DWD); Grieser, J. New LocClim 1.10—Local Climate Estimator; Chief, Publishing Management Service, Information Division: Rome, Italy, 2006. [Google Scholar]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- apogee Chlorophyll Content Meter, CCM-200 plus. CCM-200 plus user manual. None published.
- CAN-EYE. CAN-EYE Software Documentation, Output Variables. Definitions and Theoretical Background. October 2006, Updated July 2014. 2006. Available online: http://jecam.org/wp-content/uploads/2018/07/Variables_Meaning_CAN_EYE.pdf (accessed on 24 November 2020).
- Watson, D.J. Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years. Ann. Bot. 1947, 11, 41–76. [Google Scholar] [CrossRef]
- ASD Inc. FieldSpec® 3 User Manual. ASD Document 600540 Rev. J.; ASD Inc.: Boulder, CO, USA, 2010. [Google Scholar]
- ASD Inc. ViewSpec ProTM User Manual. ASD Document 600555 Rev. A.; ASD Inc.: Boulder, CO, USA, 2008. [Google Scholar]
- Opti-Sciences Inc. CCM-200 Chlorophyll Content Meter; Instruction Booklet; Opti-Sciences Inc.: Hudson, NH, USA, 2002. [Google Scholar]
- Zarco-Tejada, P.J.; Berjón, A.; Miller, J.R. Stress detection in crops with hyperspectral remote sensing and physical simulation models. In Proceedings of the Airborne Imaging Spectroscopy Workshop, Bruges, Belgium, 8 October 2004. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Conners, R.W.; Harlow, C.A. A Theoretical Comparison of Texture Algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 204–222. [Google Scholar] [CrossRef]
- Trimble Germany GmbH. Trimble eCognition® Developer 9.2, Reference Book; Trimble Germany GmbH: Munich, Germany, 2016. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Flach, P.; Hernández-Orallo, J.; Ferri, C. A coherent interpretation of AUC as a measure of aggregated classification performance. In Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA, 28 June–2 July 2011. [Google Scholar]
- Seshan, V.E.; Gonen, M.; Begg, C.B. Comparing ROC curves derived from regression models. Stat. Med. 2013, 32, 1483–1493. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef] [Green Version]
- Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. Package ‘ROCR’ Visualizing the Performance of Scoring Classifiers. 2015. Available online: https://ipa-tys.github.io/ROCR/ (accessed on 24 November 2020).
- Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. ROCR: Visualizing classifier performance in R. Bioinformatics 2005, 21, 3940–3941. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Kirk, R.E. Statistics. An Introduction, 5th ed.; Thomson Wadsworth: Belmont, CA, USA, 2008; ISBN 978-0-534-56478-0. [Google Scholar]
- Moore, D.S.; Notz, W.I.; Fligner, M.A. The Basic Practice of Statistics, 6th ed.; W. H. Freeman: New York, NY, USA, 2013; ISBN 13: 978-1-4641-0254-7. [Google Scholar]
- Bamber, D. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. J. Math. Psychol. 1975, 12, 387–415. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, S.J.; Graham, N.E. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Q. J. R. Meteorol. Soc. 2002, 128, 2145–2166. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef] [Green Version]
Satellite Name | Sensor Name | Swath (km) | Spectral Bands | Spatial Resolution (m) | Acquisition Date | Maize Growth Stage | Number of Fields Studied | |
---|---|---|---|---|---|---|---|---|
Conventional | Organic | |||||||
Landsat-5 | Thematic Mapper (TM) | 185 | 7 MS (blue, green, red, NIR, SWIR, TIR, SWIR) | 30 (TIR: 120) | 8 July 2010 | Reproductive 1 | 20 | 12 |
WorldView-2 | MS: WV110 PAN: WV60 | 16.4 | 8 MS (coastal, blue, green, yellow, red, red-edge, NIR, NIR2) PAN (450–800 nm) | MS: 2 PAN: 0.5 | 10 August 2010 | Reproductive 3 | 14 | 9 |
KOMPSAT-2 | Multispectral Camera (MSC) | 15 | 4 MS (blue, green, red, NIR) PAN (500–900 nm) | MS: 4 PAN: 1 | 21 September 2010 | Maturity | 17 | 11 |
SPOT-4 | High-Resolution Visible and InfraRed (HRVIR) | 60 | 4 MS (green, red, NIR, SWIR) 1 M (610–680 nm) | MS: 20 M: 10 | 24 September 2010 | Maturity | 13 | 12 |
Pixel/Object-Based | Name | Definition |
---|---|---|
PIXEL | Standard deviation | Standard deviation of pixel values by field. |
GLCM standard deviation | Standard deviation of the GLCM values. | |
GLCM homogeneity | Measure of the local homogeneity in the image. Homogeneity is high if higher values concentrates along the GLCM diagonal. | |
GLCM contrast | Contrast is the opposite of homogeneity. Measure of the amount of local variation in the image. | |
GLCM Angular 2nd moment | Measure of the local homogeneity. The value is high if some elements of the GLCM are large and the remaining ones are small. | |
GLCM entropy | The value is high if the elements of the GLCM are distributed equally. It is low if the elements are close to either 0 or 1. | |
GLCM dissimilarity | Similar to contrast. High if the local region has a high contrast. | |
GLDV Angular 2nd moment | Measure of the local homogeneity. The value is high if some elements are large and the remaining ones are small. | |
GLDV entropy | The values are high if all elements have similar values. It is the opposite of GLDV Angular Second Moment. | |
OBJECT | Mean of densities of sub-objects | Mean value of the densities of the sub-objects. The density index describes the distribution in space of the pixels of an image object. The densest shape is a square; the more an object is shaped like a filament, the lower its density. |
Standard deviation of densities of sub-objects | Standard deviation calculated from the densities of the sub-objects (confer previous definition). | |
Mean of asymmetries of sub-objects | Mean value of the asymmetries of the sub-objects. The asymmetry index describes the relative length of an image object. It corresponds to the ratio of the lengths of the major and minor axes of an ellipse approximated around a given image object. The index value increases with this asymmetry. Similar to the length/width ratio of an image object. | |
Standard deviation of asymmetries of sub-objects | Standard deviation of the asymmetries of the sub-objects (confer previous definition). | |
Standard deviation of mean values of sub-objects | Standard deviation of the mean values of the sub-objects. This index might appear very similar to the simple standard deviation computed from the single pixel values; however, it can be more meaningful because—assuming an adequate segmentation—the standard deviation is computed over homogeneous and meaningful areas. | |
Average mean difference of neighbor sub-objects | The contrast inside an image object expressed by the average of all mean absolute difference of each sub-object with its adjacent sub-objects of the same object. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denis, A.; Desclee, B.; Migdall, S.; Hansen, H.; Bach, H.; Ott, P.; Kouadio, A.L.; Tychon, B. Multispectral Remote Sensing as a Tool to Support Organic Crop Certification: Assessment of the Discrimination Level between Organic and Conventional Maize. Remote Sens. 2021, 13, 117. https://doi.org/10.3390/rs13010117
Denis A, Desclee B, Migdall S, Hansen H, Bach H, Ott P, Kouadio AL, Tychon B. Multispectral Remote Sensing as a Tool to Support Organic Crop Certification: Assessment of the Discrimination Level between Organic and Conventional Maize. Remote Sensing. 2021; 13(1):117. https://doi.org/10.3390/rs13010117
Chicago/Turabian StyleDenis, Antoine, Baudouin Desclee, Silke Migdall, Herbert Hansen, Heike Bach, Pierre Ott, Amani Louis Kouadio, and Bernard Tychon. 2021. "Multispectral Remote Sensing as a Tool to Support Organic Crop Certification: Assessment of the Discrimination Level between Organic and Conventional Maize" Remote Sensing 13, no. 1: 117. https://doi.org/10.3390/rs13010117
APA StyleDenis, A., Desclee, B., Migdall, S., Hansen, H., Bach, H., Ott, P., Kouadio, A. L., & Tychon, B. (2021). Multispectral Remote Sensing as a Tool to Support Organic Crop Certification: Assessment of the Discrimination Level between Organic and Conventional Maize. Remote Sensing, 13(1), 117. https://doi.org/10.3390/rs13010117