Next Article in Journal
A Novel ENSO Monitoring Method using Precipitable Water Vapor and Temperature in Southeast China
Previous Article in Journal
Deep Quadruplet Network for Hyperspectral Image Classification with a Small Number of Samples
Previous Article in Special Issue
Monsoon Season Quantitative Assessment of Biomass Burning Clear-Sky Aerosol Radiative Effect at Surface by Ground-Based Lidar Observations in Pulau Pinang, Malaysia in 2014
Open AccessArticle

Impact of Sea Breeze Dynamics on Atmospheric Pollutants and Their Toxicity in Industrial and Urban Coastal Environments

Univ. Littoral Côte d’Opale, UR 4493—LPCA—Laboratoire de Physico-Chimie de l’Atmosphère, 59140 Dunkerque, France
Univ. Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, UR 4492—UCEiV—Unité de Chimie Environnementale et Interactions sur le Vivant, 59140 Dunkerque, France
Univ. Lille, CNRS, UMR 8518—LOA—Laboratoire d’Optique Atmosphérique, 59000 Lille, France
Univ. Lille, CNRS, UMR 8522—PC2A—Physico-Chimie des Processus de Combustion et de l’Atmosphère, 59000 Lille, France
Univ. Lille, Univ. Littoral Côte d’Opale, CNRS, UMR 8187—LOG—Laboratoire d’Océanologie et de Géosciences, F 62930 Wimereux, France
Author to whom correspondence should be addressed.
Remote Sens. 2020, 12(4), 648;
Received: 16 January 2020 / Revised: 11 February 2020 / Accepted: 13 February 2020 / Published: 15 February 2020
(This article belongs to the Special Issue Lidar Remote Sensing of Aerosols Observation)
Sea breeze (SB) phenomena may strongly influence air quality and lead to important effects on human health. In order to study the impact of SB dynamics on the properties and toxicity of aerosols, an atmospheric mobile unit was deployed during a field campaign performed in an urbanized and industrialized coastal area in Northern France. This unit combines aerosol samplers, two scanning lidars (Doppler and elastic) and an air-liquid interface (ALI, Vitrocell®) in vitro cell exposure device. Our study highlights that after the passage of an SB front, the top of the atmospheric boundary layer collapses as the thermal internal boundary layer (TIBL) develops, which leads to high aerosol extinction coefficient values (>0.4 km−1) and an increase of PM2.5 and NOx concentrations in the SB current. The number-size distribution of particles indicates a high proportion of fine particles (with diameter below 500 nm), while the volume-size distribution shows a major mode of coarse particles centered on 2–3 µm. Individual particle analyses performed by cryo-transmission scanning electron microscopy (cryo-TSEM)-EDX highlights that submicronic particles contained a high fraction of secondary compounds, which may result from nucleation and/or condensation of condensable species (vapors or gaseous species after photo-oxidation). Secondary aerosol (SA) formation can be enhanced in some areas, by the interaction between the SB flow and the upper continental air mass, particularly due to the effect of both turbulence and temperature/humidity gradients between these two contrasting air masses. Potential areas of SA formation are located near the ground, during the SB front passage and in the vicinity of the SB current top. During the sea breeze event, an increase in the oxidative stress and inflammation processes in exposed lung cells, compared to the unexposed cells, can also be seen. In some instances, short singularity periods are observed during SB, corresponding to a double flow structure. It consists of two adjacent SB currents that induce an important increase of the TIBL top, improving the pollutants dispersion. This is associated with a substantial decrease of aerosol mass concentrations. View Full-Text
Keywords: air quality; lidar; sea breeze; atmospheric boundary layer; atmospheric dynamics; aerosols; toxicology air quality; lidar; sea breeze; atmospheric boundary layer; atmospheric dynamics; aerosols; toxicology
Show Figures

Graphical abstract

MDPI and ACS Style

Augustin, P.; Billet, S.; Crumeyrolle, S.; Deboudt, K.; Dieudonné, E.; Flament, P.; Fourmentin, M.; Guilbaud, S.; Hanoune, B.; Landkocz, Y.; Méausoone, C.; Roy, S.; Schmitt, F.G.; Sentchev, A.; Sokolov, A. Impact of Sea Breeze Dynamics on Atmospheric Pollutants and Their Toxicity in Industrial and Urban Coastal Environments. Remote Sens. 2020, 12, 648.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop