Land Cover Changes in Open-Cast Mining Complexes Based on High-Resolution Remote Sensing Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Remote Sensing Data Sources
2.3. Atmospheric Corrections and Orthorectification
2.4. Elaboration of Remote Sensing Indices
2.5. LiDAR Data Processing
2.6. GEOBIA: Image Segmentation, Multilayer Calibration and Hierarchical Classification
2.7. Detection of Land Cover and Open-Cast Mine Changes
2.8. Classification Accuracy Assessment
2.9. Accuracy Assessment of Land Change
3. Results
3.1. High-Resolution Satellite Image Accuracy Assessment and Estimated Area of Land Change
3.2. Analysis of the Spatial-Temporal Distribution of Land Cover and Land Use Classes
4. Discussion
4.1. Assessment of the High-Resolution Satellite Image Accuracy and the GEOBIA Approach
4.2. Revegetation Analysis from GEOBIA using High-Resolution Satellite Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koruyan, K.; Deliormanli, A.H.; Karaca, Z.; Momayez, M.; Lu, H.; Yalçin, E. Remote sensing in management of mining land and proximate habitat. J. S. Afr. Inst. Min. Metall. 2012, 112, 667–672. [Google Scholar]
- Gastauer, M.; Souza Filho, P.W.M.; Ramos, S.J.; Caldeira, C.F.; Silva, J.R.; Siqueira, J.O.; Furtini Neto, A.E. Mine land rehabilitation in Brazil: Goals and techniques in the context of legal requirements. Ambio 2018, 48, 74–88. [Google Scholar] [CrossRef]
- Matlaba, V.J.; Maneschy, M.C.; Filipe dos Santos, J.; Mota, J.A. Socioeconomic dynamics of a mining town in Amazon: A case study from Canaã dos Carajás, Brazil. Miner. Econ. 2019, 32, 75–90. [Google Scholar] [CrossRef]
- Santos, J.F.; Maia, M.B.; Maneschy, M.C.; Matlaba, V.; Mota, J.A. Redes sociais ao longo da estrada de ferro Carajás na Amazônia Oriental. Finisterra 2018, 109, 149–166. [Google Scholar]
- Skirycz, A.; Castilho, A.; Chaparro, C.; Carvalho, N.; Tzotzos, G.; Siqueira, J.O. Canga biodiversity, a matter of mining. Front. Plant Sci. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Bisone, S.; Chatain, V.; Blanc, D.; Gautier, M.; Bayard, R.; Sanchez, F.; Gourdon, R. Geochemical characterization and modeling of arsenic behavior in a highly contaminated mining soil. Environ. Earth Sci. 2016, 75, 69621. [Google Scholar] [CrossRef]
- International Finance Corporation. Performance Standard 6: Biodiversity Conservation and Sustainable Management of Natural Resources; IFC: Washington, DC, USA, 2012. [Google Scholar]
- Maron, M.; Brownlie, S.; Bull, J.W.; Evans, M.C.; von Hase, A.; Quétier, F.; Watson, J.E.M.; Gordon, A. The many meanings of no net loss in environmental policy. Nat. Sustain. 2018, 1, 19–27. [Google Scholar] [CrossRef]
- Ekstrom, J.; Bennun, L.; Mitchell, R. A Cross-Sector Guide for Implementing the Mitigation Hierarchy; Cambridge: London, UK, 2015. [Google Scholar]
- Bull, J.W.; Suttle, K.B.; Gordon, A.; Singh, N.J.; Milner-Gulland, E.J. Biodiversity offsets in theory and practice. Oryx 2013, 47, 369–380. [Google Scholar] [CrossRef]
- Bull, J.W.; Gordon, A.; Watson, J.E.M.; Maron, M. Seeking convergence on the key concepts in ‘no net loss’ policy. J. Appl. Ecol. 2016, 53, 1686–1693. [Google Scholar] [CrossRef]
- Moffat, K.; Zhang, A. The paths to social licence to operate: An integrative model explaining community acceptance of mining. Resour. Policy 2014, 39, 61–70. [Google Scholar] [CrossRef]
- Gastauer, M.; Caldeira, C.F.; Ramos, S.J.; Trevelin, L.C.; Santiago, A.; Aurélio, M.; Carneiro, C.; Coelho, F.; Silva, R.; Souza-Filho, P.W.M.; et al. Integrating Environmental Variables by Multivariate Ordination enables the Reliable Estimation of Mineland Rehabilitation Status. J. Environ. Manag. 2019, 256, 109894. [Google Scholar] [CrossRef]
- Gastauer, M.; Silva, J.R.; Caldeira Junior, C.F.; Ramos, S.J.; Souza Filho, P.W.M.; Furtini Neto, A.E.; Siqueira, J.O. Mine land rehabilitation: Modern ecological approaches for more sustainable mining. J. Clean. Prod. 2018, 172, 1409–1422. [Google Scholar] [CrossRef]
- Perring, M.P.; Standish, R.J.; Hobbs, R.J. Incorporating novelty and novel ecosystems into restoration planning and practice in the 21st century. Ecol. Process. 2013, 2, 1–8. [Google Scholar] [CrossRef]
- Padmanaban, R.; Bhowmik, A.; Cabral, P. A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area. ISPRS Int. J. Geo Inf. 2017, 6, 401. [Google Scholar] [CrossRef]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976-2006 Landsat time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Asner, G.P.; Llactayo, W.; Tupayachi, R.; Luna, E.R. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc. Natl. Acad. Sci. USA 2013, 110, 18454–18459. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; He, H.; Wang, L. A Review of Fine-Scale Land Use and Land Cover Classification in Open-Pit Mining Areas by Remote Sensing Techniques. Remote Sens. 2018, 10, 15. [Google Scholar] [CrossRef]
- Sonter, L.J.; Barrett, D.J.; Soares-Filho, B.S.; Moran, C.J. Global demand for steel drives extensive land-use change in Brazil’s Iron Quadrangle. Glob. Environ. Chang. 2014, 26, 63–72. [Google Scholar] [CrossRef]
- Souza-Filho, P.W.M.; de Souza, E.B.; Silva Júnior, R.O.; Nascimento, W.R.; Versiani de Mendonça, B.R.; Guimarães, J.T.F.; Dall’Agnol, R.; Siqueira, J.O. Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon. J. Environ. Manag. 2016, 167, 175–184. [Google Scholar] [CrossRef]
- Souza-Filho, W.P.; Nascimento, R.W.; Santos, C.D.; Weber, J.E.; Silva, O.R.; Siqueira, O.J. A GEOBIA Approach for Multitemporal Land-Cover and Land-Use Change Analysis in a Tropical Watershed in the Southeastern Amazon. Remote Sens. 2018, 10, 1683. [Google Scholar] [CrossRef]
- Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. J. Environ. Manag. 2016, 182, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Demirel, N.; Emil, M.K.; Duzgun, H.S. Landuse change detection in a surface coal mine using multi-temporal high-resolution satellite images. Int. J. Min. Reclam. Environ. 2011, 25, 342–349. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Gallant, A.L.; Shi, H.; Zhu, Z. Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sens. Environ. 2016, 185, 258–270. [Google Scholar] [CrossRef]
- Ma, B.; Chen, Y.; Zhang, S.; Li, X. Remote Sensing Extraction Method of Tailings Ponds in Ultra-Low-Grade Iron Mining Area Based on Spectral Characteristics and Texture Entropy. Entropy 2018, 20, 345. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Isidro, M.C.; McIntyre, N.; Lechner, M.A.; Callow, I. Applicability of Earth Observation for Identifying Small-Scale Mining Footprints in a Wet Tropical Region. Remote Sens. 2017, 9, 945. [Google Scholar] [CrossRef]
- Demirel, N.; Emil, M.K.; Duzgun, H.S. Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery. Int. J. Coal Geol. 2011, 86, 3–11. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Strager, M.P.; Pal, M. Combining RapidEye Satellite Imagery and Lidar for Mapping of Mining and Mine Reclamation. Photogramm. Eng. Remote Sens. 2014, 2, 179–189. [Google Scholar] [CrossRef]
- Piló, L.B.; Auler, A.S.; Martins, F. Carajás National Forest: Iron Ore Plateaus and Caves in Southeastern Amazon. In Landscapes and Landforms of Brazil; Vieira, B.C., Salgado, A.A.R., Santos, L.J.C., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 273–283. ISBN 978-94-017-8023-0. [Google Scholar]
- Viana, P.L.; Mota, N.F.D.O.; Gil, A.D.S.B.; Salino, A.; Zappi, D.C.; Harley, R.M.; Ilkiu-Borges, A.L.; Secco, R.D.S.; Almeida, T.E.; Watanabe, M.T.C.; et al. Flora das cangas da Serra dos Carajás, Pará, Brasil: História, área de estudos e metodologia. Rodriguésia 2016, 67, 1107–1124. [Google Scholar] [CrossRef]
- de Mota, N.F.O.; Silva, L.V.C.; Martins, F.D.; Viana, P.L. Vegetação sobre sistemas ferruginosos da Serra dos Carajás. In Geossistemas ferruginosos do Brasil: Áreas prioritárias para conservação da diversidade geológica e biológica, patrimônio cultural e serviços ambientais; Carmo, F.F., Kamino, L.H., Eds.; 3iEditora: Belo Horizonte, Brazil, 2015; pp. 289–315. [Google Scholar]
- Resende, N.P. Carajás: Memória da descoberta; Editora Gráfica Stampa: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Paradella, W.R.; Ferretti, A.; Mura, J.C.; Colombo, D.; Gama, F.F.; Tamburini, A.; Santos, A.R.; Novali, F.; Galo, M.; Camargo, P.O.; et al. Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Eng. Geol. 2015, 193, 61–78. [Google Scholar] [CrossRef]
- PCI. Geomatica Image processing with Focus. In Geomatica I Course Guide, Version 0.2; PCI Geomatica Enterprises: Markham, ON, Canada, 2015; pp. 59–79. [Google Scholar]
- PCI. Geomatica Geomatica Orthoengine: Course Exercises; PCI Geomatica Enterprises: Markham, ON, Canada, 2015; p. 172. [Google Scholar]
- Tarpley, J.D.; Schneider, S.R.; Money, R.L. Global Vegetation Indices from the NOAA-7 Meteorological Satellite. J. Clim. Appl. Meteorol. 1984, 23, 491–494. [Google Scholar] [CrossRef]
- McFEETERS, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef]
- Desclée, B.; Bogaert, P.; Defourny, P. Forest change detection by statistical object-based method. Remote Sens. Environ. 2006, 102, 1–11. [Google Scholar] [CrossRef]
- Duveiller, G.; Defourny, P.; Desclée, B.; Mayaux, P. Deforestation in Central Africa: Estimates at regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts. Remote Sens. Environ. 2008, 112, 1969–1981. [Google Scholar] [CrossRef]
- Souza-Filho, P.W.M.; Giannini, T.C.; Jaffé, R.; Giulietti, A.M.; Santos, D.C.; Nascimento, W.R., Jr.; Guimarães, J.T.F.; Costa, M.F.; Imperatriz-Fonseca, V.L.; Siqueira, J.O. Mapping and quantification of ferruginous outcrop savannas in the Brazilian Amazon: A challenge for biodiversity conservation. PLoS ONE 2019, 14, e0211095. [Google Scholar] [CrossRef]
- Raši, R.; Bodart, C.; Stibig, H.-J.; Eva, H.; Beuchle, R.; Carboni, S.; Simonetti, D.; Achard, F. An automated approach for segmenting and classifying a large sample of multi-date Landsat imagery for pan-tropical forest monitoring. Remote Sens. Environ. 2011, 115, 3659–3669. [Google Scholar] [CrossRef]
- Baatz, M.; Schäpe, A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation. 2000. Available online: http://www.agit.at/papers/2000/baatz_FP_12.pdf (accessed on 23 December 2012).
- Rejaur Rahman, M.; Saha, S.K. Multi-resolution segmentation for object-based classification and accuracy assessment of land use/land cover classification using remotely sensed data. J. Indian Soc. Remote Sens. 2008, 36, 189–201. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M.; Li, G.; Moran, E.; Hetrick, S.; Freitas, C.D.C.; Dutra, L.V.; Sant’Anna, S.J.S. Land use/cover classification in the Brazilian Amazon using satellite images. Pesqui. Agropecu. Bras. 2012, 47, 10–1590. [Google Scholar] [CrossRef] [PubMed]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; Taylor & Francis: London, UK, 2008. [Google Scholar]
- Pontius, R.G., Jr.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Gallego, F.J. Remote sensing and land cover area estimation. Int. J. Remote Sens. 2004, 25, 3019–3047. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Puertas, O.L.; Brenning, A.; Meza, F.J. Balancing misclassification errors of land cover classification maps using support vector machines and Landsat imagery in the Maipo river basin (Central Chile, 1975–2010). Remote Sens. Environ. 2013, 137, 112–123. [Google Scholar] [CrossRef]
- Johansen, K.; Erskine, P.D.; McCabe, M.F. Using Unmanned Aerial Vehicles to assess the rehabilitation performance of open cut coal mines. J. Clean. Prod. 2019, 209, 819–833. [Google Scholar] [CrossRef]
- Kimball, S.; Lulow, M.; Sorenson, Q.; Balazs, K.; Fang, Y.-C.; Davis, S.J.; O’Connell, M.; Huxman, T.E. Cost-effective ecological restoration. Restor. Ecol. 2015, 23, 800–810. [Google Scholar] [CrossRef]
- Chazdon, R.L. Tropical forest regeneration. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat 2012, 7, 195–218. [Google Scholar]
- Chen, J.; Li, K.; Chang, K.-J.; Sofia, G.; Tarolli, P. Open-pit mining geomorphic feature characterisation. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 76–86. [Google Scholar] [CrossRef]
Satellite Acquisition date | WorldView-3 1 August 2015 | GeoEye 1 July 2012 | Ikonos 23 May 2011; 22 July 2013 |
---|---|---|---|
Spectral Resolution | |||
Coastal | 400–450 nm | --- | --- |
Blue | 450–510 nm | 450–520 nm | 450–520 nm |
Green | 510–580 nm | 520–600 nm | 520–600 nm |
Yellow | 585–625 nm | --- | --- |
Red | 630–690 nm | 625–695 nm | 630–690 nm |
Red Edge | 705–745 nm | --- | --- |
Near Infrared 1 | 770–895 nm | 760–900 nm | 760–900 nm |
Near Infrared 2 | 860–1040 nm | ||
Panchromatic | 450–800 nm | 450–900 nm | 450–900 nm |
Spatial Resolution | |||
Panchromatic | 0.3 m | 0.5 m | 1 m |
Multispectral | 1.24 m | 2 m | 4 m |
Radiometric Quantification | 11 bits per pixel | 11 bits per pixel | 11 bits per pixel |
Scene Size | 13.1 km | 15.2 km | 11.3 km |
Class | Layer | Ikonos 2011 | GeoEye 2012 | Ikonos 2013 | WorldView 2015 |
---|---|---|---|---|---|
Forests | B1: Red | - | 0–1.9 | - | - |
B2: Green | 2.1–5.5 * | 2.1–5.5 * | 2.1–5.5 * | 1.7–38 * | |
B3: Blue | 2.8–6.3 * | 1.8–6.3 * | 2.5–7.3 * | 0.9–6.3 * | |
B4: Infrared | - | - | - | - | |
B5: NDVI | 0.85–1 | 0.76–1 | 0.65–1 | 0.81–1 | |
B6: NDWI | - | - | - | - | |
B7: DTM | - | - | - | - | |
B8: SM | - | - | - | - | |
Cangas | B1: Red | 1.3–2.7 | 1.3–2.7 | 1.3–3.4 | 1.3–2.5 |
B2: Green | 3.8–5.75 * | 3.8–5.75 * | 3.8–5.75 * | 3.1–5.75 * | |
B3: Blue | 4.5–8.4 * | 4.5–7.4 * | 4.5–9.3 * | 4.5–7.4 * | |
B4: Infrared | 18–26 * | 10–18.5 * | 10–18 * | 10–18.5 * | |
B5: NDVI | 0.78–0.88 | - | - | 0.64–0.8 | |
B6: NDWI | −0.7–−0.4 | - | - | −0.47–−0.33 | |
B7: DTM | - | - | - | 562–700 | |
B8: SM | 0–17.5 * | 0–17.1 * | 0–17.5 * | 0–23 * | |
Complementary cangas (threshold condition: objects adjoining canga edges) | B1: Red | 0.85–3.3 * | 0.85–3.3 * | 0.85–3.6 * | 0.85–3.3 * |
B2: Green | 3–6.5 * | 3–6.5 * | 3–6.5 * | 3–6.5 * | |
B3: Blue | 3.1–9.6 * | 3.1–9.6 * | 3.1–9.9 * | 3.1–9.6 * | |
B4: Infrared | - | - | - | - | |
B5: NDVI | 0.74–0.94 | 0.72–0.94 | 0.57–0.94 | 0.67–0.94 | |
B6: NDWI | - | - | - | - | |
B7: DTM | - | 0–700 | 0–700 | 0–722 | |
B8: SM | - | - | - | - | |
Mining areas | B1: Red | 0.27–7.7 * | 0.27–9.6 * | 0.27–10 * | 0.27–9.6 * |
B2: Green | 1.6–13.5 * | 1.6–14.6 * | 1.6–17 * | 1.6–14.6 * | |
B3: Blue | 6–25 | 4.3–47 | 4.3–47 | 3.5–47 | |
B4: Infrared | - | - | - | - | |
B5: NDVI | - | - | - | - | |
B6: NDWI | −9.5–0.35 * | −9.5–0.35 * | −9.5–0.35 * | −9.5–0.35 * | |
B7: DTM | - | - | - | - | |
B8: SM | - | - | - | - | |
Water bodies | B1: Red | - | - | - | - |
B2: Green | - | - | - | - | |
B3: Blue | - | - | - | - | |
B4: Infrared | - | - | - | - | |
B5: NDVI | - | - | - | - | |
B6: NDWI | 0.1–1 * | 0.1–1 * | 0.1–1 * | 0.1–1 * | |
B7: DTM | - | - | - | - | |
B8: SM | - | - | - | - |
Class | Layers | Ikonos 2011 | GeoEye 2012 | Ikonos 2013 | WorldView 2015 |
---|---|---|---|---|---|
Complementary forests 1 | B1: Red | - | - | - | - |
B2: Green | 2.1–5.5 * | 2.1–5.5 * | 2.1–5.5 * | 2.1–5.5 * | |
B3: Blue | 2.8–6 * | 2.8–6 * | 2.8–7 * | 2.8–6 * | |
B4: Infrared | - | - | - | - | |
B5: NDVI | 0.87–1 * | 0.87–1 * | 0.73–1 * | 0.87–1 * | |
B6: NDWI | - | - | - | - | |
B7: DTM | - | - | - | - | |
B8: SM | - | - | - | - | |
Revegetated and rehabilitated sites | B1: Red | 1.5–5 * | 1.4–5 * | 1–5 * | 1–5 * |
B2: Green | 4.5–11 * | 3.3–11 * | 2–11 * | 2–11 * | |
B3: Blue | 5.5–14.2 * | 3.6–14.2 * | 2.3–14.2 * | 2.3–14.2 * | |
B4: Infrared | - | - | - | - | |
B5: NDVI | 0.7–0.9 | 0.65–0.92 | 0.56–0.92 | 0.6–0.92 | |
B6: NDWI | −1–−0.3 * | - | - | −1–−0.3 * | |
B7: DTM | - | - | - | - | |
B8: SM | - | - | - | - | |
Complementary forests 2 | B1: Red | - | - | - | - |
B2: Green | - | - | - | - | |
B3: Blue | - | - | - | - | |
B4: Infrared | - | - | - | - | |
B5: NDVI | 0.78–1 | 0.78–1 | 0.78–1 | 0.78–1 | |
B6: NDWI | - | - | - | - | |
B7: DTM | - | - | - | - | |
B8: SM | - | - | - | - |
(A) Error Matrix of Classification of the Land Change Map (Line) against the Reference Data (Column) for the Sample Sites | ||||||||||
Area | Classes | UM | M-REV | C-M | UC | F-M | UF | UREV | REV-M | Totals |
1928.74 | UM | 163 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 165 |
377.54 | M-REV | 4 | 27 | 0 | 0 | 0 | 0 | 1 | 0 | 32 |
353.66 | C-M | 1 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 31 |
671.71 | UC | 0 | 0 | 3 | 51 | 0 | 1 | 0 | 0 | 55 |
264.06 | F-M | 0 | 0 | 1 | 0 | 14 | 0 | 1 | 1 | 17 |
6790.13 | UF | 2 | 0 | 0 | 3 | 0 | 617 | 11 | 0 | 633 |
378.08 | UREV | 1 | 0 | 0 | 1 | 0 | 5 | 56 | 1 | 64 |
189.81 | REV-M | 4 | 0 | 0 | 0 | 0 | 2 | 4 | 17 | 27 |
10953.7 | Totals | 175 | 28 | 34 | 55 | 14 | 625 | 74 | 19 | 1024 |
Producer’s accuracy | 93.1 | 96.4 | 88.2 | 92.7 | 100.0 | 98.7 | 75.7 | 89.5 | ||
User’s accuracy | 98.8 | 84.4 | 96.8 | 92.7 | 82.4 | 97.5 | 87.5 | 63.0 | ||
Kappa per class | 0.99 | 0.84 | 0.97 | 0.92 | 0.82 | 0.94 | 0.87 | 0.62 | ||
Agreement | 163.00 | 27.00 | 30.00 | 51.00 | 14.00 | 617.00 | 56.00 | 17.00 | 975.0 | |
By chance | 28.20 | 0.88 | 1.03 | 2.95 | 0.23 | 386.35 | 4.63 | 0.50 | 424.8 | |
Overall accuracy = | 0.952 | Kappa index = | 0.918 | |||||||
(B) Error Matrix by Estimated Proportions of Areas | ||||||||||
W | Classes | UM | M-REV | C-M | UC | F-M | UF | UREV | REV-M | Totals |
0.176 | UM | 0.174 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.176 |
0.034 | M-REV | 0.004 | 0.029 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.034 |
0.032 | C-M | 0.001 | 0.000 | 0.031 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.032 |
0.061 | UC | 0.000 | 0.000 | 0.003 | 0.057 | 0.000 | 0.001 | 0.000 | 0.000 | 0.061 |
0.024 | F-M | 0.000 | 0.000 | 0.001 | 0.000 | 0.020 | 0.000 | 0.001 | 0.001 | 0.024 |
0.620 | UF | 0.002 | 0.000 | 0.000 | 0.003 | 0.000 | 0.604 | 0.011 | 0.000 | 0.620 |
0.035 | UREV | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.003 | 0.030 | 0.001 | 0.035 |
0.017 | REV-M | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.003 | 0.011 | 0.017 |
1.000 | Totals | 0.184 | 0.030 | 0.036 | 0.060 | 0.020 | 0.609 | 0.047 | 0.013 | 1.0 |
Producer’s accuracy | 94.4 | 96.5 | 86.8 | 94.2 | 100.0 | 99.2 | 64.118 | 84.789 | ||
User’s accuracy | 98.8 | 84.4 | 96.8 | 92.7 | 82.4 | 97.5 | 87.500 | 62.963 | ||
Area (ha) | 2019.4 | 330.2 | 394.4 | 660.9 | 217.5 | 6674.3 | 515.96 | 140.95 | ||
ME (95%) | 71.9 | 53.4 | 55.5 | 60.2 | 49.3 | 92.0 | 91.6 | 48.0 | ||
Area (ha) | 2019 ± 72 | 330 ± 53 | 394 ± 56 | 661 ± 60 | 217 ± 49 | 6674 ± 92 | 516 ± 92 | 141 ± 48 | ||
Overall accuracy = | 0.96 | |||||||||
Normalized area | 1.047 | 0.875 | 1.115 | 0.984 | 0.824 | 0.983 | 1.365 | 0.743 | ||
NME | 0.037 | 0.141 | 0.157 | 0.090 | 0.187 | 0.014 | 0.242 | 0.253 | ||
Standard error | 36.663 | 27.255 | 28.325 | 30.700 | 25.166 | 46.957 | 46.753 | 24.481 | ||
Standard deviation | 0.109 | 0.363 | 0.177 | 0.260 | 0.381 | 0.157 | 0.331 | 0.483 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, F.S.; Gastauer, M.; Souza-Filho, P.W.M.; Nascimento, W.R., Jr.; Santos, D.C.; Costa, M.F. Land Cover Changes in Open-Cast Mining Complexes Based on High-Resolution Remote Sensing Data. Remote Sens. 2020, 12, 611. https://doi.org/10.3390/rs12040611
Nascimento FS, Gastauer M, Souza-Filho PWM, Nascimento WR Jr., Santos DC, Costa MF. Land Cover Changes in Open-Cast Mining Complexes Based on High-Resolution Remote Sensing Data. Remote Sensing. 2020; 12(4):611. https://doi.org/10.3390/rs12040611
Chicago/Turabian StyleNascimento, Filipe Silveira, Markus Gastauer, Pedro Walfir M. Souza-Filho, Wilson R. Nascimento, Jr., Diogo C. Santos, and Marlene F. Costa. 2020. "Land Cover Changes in Open-Cast Mining Complexes Based on High-Resolution Remote Sensing Data" Remote Sensing 12, no. 4: 611. https://doi.org/10.3390/rs12040611
APA StyleNascimento, F. S., Gastauer, M., Souza-Filho, P. W. M., Nascimento, W. R., Jr., Santos, D. C., & Costa, M. F. (2020). Land Cover Changes in Open-Cast Mining Complexes Based on High-Resolution Remote Sensing Data. Remote Sensing, 12(4), 611. https://doi.org/10.3390/rs12040611