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Abstract: Remote sensing technologies can play a fundamental role in the environmental assessment
of open-cast mining and the accurate quantification of mine land rehabilitation efforts. Here, we
developed a systematic geographic object-based image analysis (GEOBIA) approach to map the
amount of revegetated area and quantify the land use changes in open-cast mines in the Carajás
region in the eastern Amazon, Brazil. Based on high-resolution satellite images from 2011 to 2015
from different sensors (GeoEye, WorldView-3 and IKONOS), we quantified forests, cangas (natural
metalliferous savanna ecosystems), mine land, revegetated areas and water bodies. Based on the
GEOBIA approach, threshold values were established to discriminate land cover classes using
spectral bands, the normalized difference vegetation index (NDVI), normalized difference water
index (NDWI) and a light detection and range sensor (LiDAR) digital terrain model and slope map.
The overall accuracy was higher than 90%, and the kappa indices varied between 0.82 and 0.88.
During the observation period, the mining complex expanded, which led to the conversion of canga
and forest vegetation to mine land. At the same time, the amount of revegetated area increased.
Thus, we conclude that our approach is capable of providing consistent information regarding land
cover changes in mines, with a special focus on the amount of revegetation necessary to fulfill
environmental liabilities.

Keywords: GEOBIA; canga ecosystem; Carajás National Forest; mine land revegetation; satellite
images; environmental assessment

1. Introduction

The societal and environmental impacts of mining activities have become a great focus of public
interest [1]. On the one hand, societies expect the production of inexpensive raw materials to drive
the economy. The exploitation of mineral reserves should be embedded in efficient and responsible
management plans that have a strong focus on the development of neighboring communities and
sustainable land use. This balancing act has led to the emergence of environmental regulations in
many countries, including Brazil [2], and a series of self-commitments by the mining industry [3,4].

The transformation of natural ecosystems during open-cast mining reduces the amount of wildlife
habitat and endangers populations of rare, endemic or threatened species [5,6]. To reduce these
environmental changes, the mitigation hierarchy offers a useful form of guidance [7,8]. According
to this framework, measures should be taken to avoid and minimize any potential impacts before
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an enterprise starts. Then, international good practices indicate opportunities for remediation, i.e.,
reverse the residual impacts, and these practices are considered before offsets are outlined to address
unavoidable impacts [9]. The four pillars of the mitigation hierarchy process increase environmental
sustainability by avoiding net losses or generating positive impacts [10,11] as well as by increasing
social acceptance of mining [12].

Remediation includes revegetation, i.e., greening, and the progressive rehabilitation of biodiversity,
ecosystem structure and ecosystem function in degraded, damaged or destroyed mine lands [2].
Although considerable progress can be achieved in short time periods [13], such mine land rehabilitation
remains challenging, especially in tropical ecosystems, as issues related to species selection, biological
invasions, and monitoring the effectiveness of rehabilitation activities are not fully resolved [14].
Uncertain rehabilitation trajectories or unclear outcomes of rehabilitation activities [15] require
constant monitoring to effectively regulate mining [16]. In addition, information about the status of
environmental rehabilitation is derived from ground data [13]. This monitoring requires accurate
quantification of the temporal and spatial extents of revegetation and rehabilitation sites within the
mines [17].

An increasing demand for accurate and timely information on the nature and extent of land
use and land cover changes in and around open-cast mines highlights the importance of remote
sensing methods, which can provide accurate tools to track these changes over time [18–22]. Remote
sensing covers large areas and has a higher temporal frequency and lower costs than ground-based
investigations. Thus, remote sensing may play a fundamental role in the environmental monitoring
of rehabilitation activities in mining areas [1,23] given that geographic information systems, satellite
images and digital classification systems are available for the automated detection of land use and
land cover changes [24–26]. Specifically, the automated analysis of time series, as proposed by the
Landsat-based detection of trends in disturbance and recovery (LandTrendr) approach [27], enables
the successful tracking of revegetation dynamics within mines based on vegetation indices [28].
However, because these vegetation indices by themselves are unable to discriminate between natural
vegetation and revegetated areas, the separation between classes is based on only historical evidence.
Furthermore, the LandTrendr approach is restricted to Landsat imagery with a low spatial resolution (30
× 30 m) and thus is unable to adequately map revegetation activities on steep benches. More recently,
high-resolution satellite images have been used to capture land use change dynamics [19,29,30] and
mine reclamation patterns [31] via fine-scale land mining interpretation. Hence, we adopt a geographic
object-based image analysis (GEOBIA) approach to detect small-scale vegetation suppression and
revegetation activities in open-cast mines from high spatial resolution image datasets captured by
spaceborne remote sensors.

The objective of this study was to provide a methodology to track land cover and land use changes
in mines, including the spatial and temporal dynamics of revegetated mine lands, with a special focus
on the recognition of small revegetated areas on steep benches. To do so, we quantified the amount of
natural vegetation converted to mining areas as well as the amount of mine land revegetated between
2011 and 2015 in the largest iron ore open-cast mining complex in the world, which is situated in the
Carajás National Forest (CNF), in eastern Amazon, Brazil.

2. Materials and Methods

2.1. Study Site

The study area includes the iron ore open-cast mines from the N4-N5 complex situated in the
CNF in the watershed of the Itacaiúnas River, eastern Amazon (Figure 1). The study area has a mean
temperature of approximately 25 ◦C and annual precipitation between 1900 and 2000 mm [32]. The
climate of the region is tropical warm, with rainy summers and dry hot winters. The CNF is a protected
area dominated by dense and open evergreen forests as well as by semideciduous submontane and
montane forest formations that cover the hillsides and lower portions of the landscape. In two mountain
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ridges within the CNF, Serra Sul and Serra Norte, patches of banded iron formations outcrop on the
mountain tops. These patches are covered by hyperdiverse, endemic savanna vegetation [33,34] that is
locally called canga. These cangas cover the largest iron ore reserves in the world [35] and represent the
major business in the region. Since the 1980s, the world’s largest iron ore mining complex has been in
operation, and it extracts 120 Mt of iron ore annually [36].
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Figure 1. Location map of the N4-N5 mining complex indicating mine pits (N) and waste piles (WP) in
relation to the Itacaiunas River watershed, southeastern Amazon, Brazil, South America. WorldView-3
satellite image in color-composite 1R2G3B acquired in 2015. The red line represents the boundaries of
mining features; WP represents a waste pile; and N represents the mine pits (N is derived from Serra
Norte, and the number refers to the original canga body, numbered consecutively for each mountain
range in the CNF).

During mining operation, the original vegetation, i.e., forests and cangas, is logged, and topsoil
and mining waste are removed and deposited in waste piles to guarantee access to high-quality iron
ore. Benches in active mine pits are revegetated to reduce soil erosion and increase their stabilization.
Furthermore, benches from permanent structures, such as waste piles, are subjected to permanent
environmental rehabilitation to reduce the overall impact of mining enterprises on natural resources [14].
In both cases, similar mixtures of native and fast-growing and nonnative species are applied together
with organic and inorganic fertilizers and fixing material via hydroseeding after bench preparation
using biotextiles and/or manual trench digging. The species mixtures used for temporary revegetation
in mining pits do not include tree species, as trees may destabilize the landscape by falling; however,
the establishment of trees or shrubs from forest and canga ecosystems is implemented during the
environmental rehabilitation of waste pile benches.

2.2. Remote Sensing Data Sources

High-resolution images from three different sensors (2011, 2013 IKONOS, 2012 GeoEye and 2015
WorldView-3) were acquired and used in this research. Table 1 provides detailed information about
this remote sensing dataset. All images were acquired in August of each year (i.e., the dry season) to
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minimize the cloud cover and the spectral differences in vegetation cover as a function of seasonality
along the analyzed time series. The spatial resolution differed among the images, i.e., 4 m for IKONOS,
2 m for GeoEye and 1.24 m for WorldView-3. Additionally, a digital terrain model was used to map the
land cover and land use classes in the N4-N5 mining complex. Figure 2 illustrates the main steps of
the digital image processing and GEOBIA proposed in this study.

Table 1. General characteristics of WorldView-3, GeoEye and IKONOS images acquired during the dry
season (August) used in this study.

Satellite
Acquisition date

WorldView-3
1 August 2015

GeoEye
1 July 2012

Ikonos
23 May 2011; 22 July 2013

Spectral Resolution
Coastal 400–450 nm — —

Blue 450–510 nm 450–520 nm 450–520 nm
Green 510–580 nm 520–600 nm 520–600 nm
Yellow 585–625 nm — —

Red 630–690 nm 625–695 nm 630–690 nm
Red Edge 705–745 nm — —

Near Infrared 1 770–895 nm
760–900 nm 760–900 nmNear Infrared 2 860–1040 nm

Panchromatic 450–800 nm 450–900 nm 450–900 nm

Spatial Resolution
Panchromatic 0.3 m 0.5 m 1 m
Multispectral 1.24 m 2 m 4 m

Radiometric
Quantification 11 bits per pixel 11 bits per pixel 11 bits per pixel

Scene Size 13.1 km 15.2 km 11.3 km
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2.3. Atmospheric Corrections and Orthorectification

Conversions from digital number to ground reflectance data were carried out in the Atmospheric
Correction (ATCOR) module of PCI Geomatica 2016 software [37]. Specifically, the ATCOR wizard
was applied to calibrate the radiometric models considering the entire scene and to generate the
reflectance images. As images may suffer from deformation due to sensor inclination and altitude
variations, the images were orthorectified after atmospheric correction. This orthorectification,
including georeferencing of the imagery, was carried out in the OrthoEngine Tool of PCI Geomatica [38]
using the digital terrain model as the basis for the coordinates (latitude, longitude) and altitude. The
root mean square error was approximately one pixel in size. To map the land cover as accurately
as possible, the pixel size of GeoEye was 2 m, whereas the IKONOS and WorldView-3 images were
resampled to 2 × 2 m during the orthorectification process. Hence, the IKONOS image had the original
reflectance preserved, while only WorldView-3 reflectance values needed to be resampled from nearest
neighbor interpolation. In the next step, images were mosaicked to cover the complete study site.

2.4. Elaboration of Remote Sensing Indices

In addition to the original multispectral bands of the orbital sensors (B1–red, B2–green, B3–blue,
and B4–infrared) and the light detection and ranging sensor (LiDAR, see next section for details), a digital
terrain model derived from LiDAR was used for image interpretation. We also computed the normalized
difference vegetation index–NDVI [39] and normalized difference water index–NDWI [39,40] (Figure 2).
The WorldView-3 image presents two spectral bands in the infrared region; we used the spectral band
with wavelengths between 770 and 895 nm, which is similar to the near infrared band from further
sensors used in this study. The NDVI highlights the presence of vegetation, while the NDWI separates
water surfaces from all further land classes. For both indices, higher values indicate the presence of
more photosynthetically active vegetation [40].

2.5. LiDAR Data Processing

An overflight with a full waveform LiDAR was carried out in June 2012, with six elevation points
per square meter. From that, the digital terrain model (DTM) was produced, and ground returns
were separated from vegetation returns using the GroundFilter DTM by Triangular Irregular Network
interpolation to generate a bare earth surface using the raster calculator in ArcMap. A digital slope
map (SM) was created using geoprocessing tools. Both maps were generated in ArcGIS 10.3 software
(ESRI) at 2 m spatial resolution.

Using the high-resolution satellite images alone, the cangas were often difficult to distinguish from
old mining areas (mining areas that remained mining areas throughout the observation period), such
as weathered slopes or rocky outcrops within the mine, which presented similar reflectance parameters
as the canga areas. Hence, the inclusion of LiDAR (DTM and SM) data resulting from a single overflight
increased the accuracy of the classification in these cases.

2.6. GEOBIA: Image Segmentation, Multilayer Calibration and Hierarchical Classification

Segmentation is the division of a scene into homogeneous parts to extract image objects [41].
The segmentation of the N4-N5 iron ore open-cast mine scenes was carried out by a multiresolution
segmentation algorithm based on the homogeneity definition [42]. A four-date segmentation was
conducted from all of the ground reflectance bands from 2011 and 2013 IKONOS, 2012 GeoEye and
2015 WorldView-3 with the same resampled pixel size (2 m). To detect land cover and land use
changes, we carried out a segmentation process from four separate single-date images, as suggested by
Descleé et al. [43] and Duveiller et al. [44]. Multidate segmentation allowed for the comparison of four
single images based on objects with the same geometry, delineating spatially and spectrally consistent
segments and avoiding misclassification [45]. Hence, it was possible to estimate the most accurate and
rapid process, reducing additional processing efforts required to outline polygons [46].
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The segmentation approach was developed on two levels using eCognition software (Trimble,
München, Germany). First, the macrosegmentation aimed to segregate large features of the image
using a less-refined segmentation (scale: 100, compactness: 0.5, and form: 0.1, using weight 1 for all 8
bands). In the second step, a more refined microsegmentation was performed (scale: 30, compactness:
0.5, and form: 0.1, using weight 25 for the NDVI band, 15 for the infrared band, and 1 for the other
bands) (Figure 2). Different weights were chosen from a trial and error (heuristics) approach to enhance
specific objects that were effectively differentiated in predetermined spectral bands and indices [22,47].

To calibrate the threshold values for the classification of segments, 35 ground control points
were used for each class. This procedure was separately carried out for each segmentation step and
resulted in the definition of the threshold values shown in Tables 2 and 3. A hierarchical classification
was carried out from fuzzy logic [48]. Based on these threshold layer values, macrosegments were
classified into forests, cangas, mining areas and water bodies using the threshold values shown in
Table 2. Objects located in the boundary between canga and forest classes (i.e., canga-forest transitions)
presented different spectral and topographic characteristics. After their identification, these objects
were pooled into the canga class. The classification of microsegments in the mining area class enables
the differentiation between revegetated and non-revegetated mining areas (Table 3). This refinement
was necessary to identify revegetated and rehabilitated areas within mines and to separate them from
misclassified forests, which were defined as complementary forests 1 and forests 2 and were grouped
with the forest class during the first segmentation. Moreover, the DTM and SM derived from LiDAR
data were important for discriminating the canga class from the mining areas.

Table 2. Layers, functions and thresholds used to classify macrosegments in the classes of forests,
cangas, mining areas and water bodies. NDVI represents the normalized difference vegetation index,
NDWI represents the normalized difference water index, DTM represents the digital terrain model and
SM represents the digital slope map.

Class Layer Ikonos 2011 GeoEye 2012 Ikonos 2013 WorldView 2015

Forests

B1: Red - 0–1.9 - -
B2: Green 2.1–5.5 * 2.1–5.5 * 2.1–5.5 * 1.7–38 *
B3: Blue 2.8–6.3 * 1.8–6.3 * 2.5–7.3 * 0.9–6.3 *
B4: Infrared - - - -
B5: NDVI 0.85–1 0.76–1 0.65–1 0.81–1
B6: NDWI - - - -
B7: DTM - - - -
B8: SM - - - -

Cangas

B1: Red 1.3–2.7 1.3–2.7 1.3–3.4 1.3–2.5
B2: Green 3.8–5.75 * 3.8–5.75 * 3.8–5.75 * 3.1–5.75 *
B3: Blue 4.5–8.4 * 4.5–7.4 * 4.5–9.3 * 4.5–7.4 *
B4: Infrared 18–26 * 10–18.5 * 10–18 * 10–18.5 *
B5: NDVI 0.78–0.88 - - 0.64–0.8
B6: NDWI −0.7–−0.4 - - −0.47–−0.33
B7: DTM - - - 562–700
B8: SM 0–17.5 * 0–17.1 * 0–17.5 * 0–23 *

Complementary
cangas (threshold
condition: objects
adjoining canga
edges)

B1: Red 0.85–3.3 * 0.85–3.3 * 0.85–3.6 * 0.85–3.3 *
B2: Green 3–6.5 * 3–6.5 * 3–6.5 * 3–6.5 *
B3: Blue 3.1–9.6 * 3.1–9.6 * 3.1–9.9 * 3.1–9.6 *
B4: Infrared - - - -
B5: NDVI 0.74–0.94 0.72–0.94 0.57–0.94 0.67–0.94
B6: NDWI - - - -
B7: DTM - 0–700 0–700 0–722
B8: SM - - - -
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Table 2. Cont.

Class Layer Ikonos 2011 GeoEye 2012 Ikonos 2013 WorldView 2015

Mining areas

B1: Red 0.27–7.7 * 0.27–9.6 * 0.27–10 * 0.27–9.6 *
B2: Green 1.6–13.5 * 1.6–14.6 * 1.6–17 * 1.6–14.6 *
B3: Blue 6–25 4.3–47 4.3–47 3.5–47
B4: Infrared - - - -
B5: NDVI - - - -
B6: NDWI −9.5–0.35 * −9.5–0.35 * −9.5–0.35 * −9.5–0.35 *
B7: DTM - - - -
B8: SM - - - -

Water bodies

B1: Red - - - -
B2: Green - - - -
B3: Blue - - - -
B4: Infrared - - - -
B5: NDVI - - - -
B6: NDWI 0.1–1 * 0.1–1 * 0.1–1 * 0.1–1 *
B7: DTM - - - -
B8: SM - - - -

* indicates open intervals; otherwise, intervals are closed.

Table 3. Layers, functions and thresholds used to classify microsegments from mining areas in the
classes of forests, revegetated sites and rehabilitated sites. NDVI represents the normalized difference
vegetation index, NDWI represents the normalized difference water index, DTM represents the digital
terrain model and SM represents the digital slope map.

Class Layers Ikonos 2011 GeoEye 2012 Ikonos 2013 WorldView 2015

Complementary
forests 1

B1: Red - - - -
B2: Green 2.1–5.5 * 2.1–5.5 * 2.1–5.5 * 2.1–5.5 *
B3: Blue 2.8–6 * 2.8–6 * 2.8–7 * 2.8–6 *
B4: Infrared - - - -
B5: NDVI 0.87–1 * 0.87–1 * 0.73–1 * 0.87–1 *
B6: NDWI - - - -
B7: DTM - - - -
B8: SM - - - -

Revegetated and
rehabilitated sites

B1: Red 1.5–5 * 1.4–5 * 1–5 * 1–5 *
B2: Green 4.5–11 * 3.3–11 * 2–11 * 2–11 *
B3: Blue 5.5–14.2 * 3.6–14.2 * 2.3–14.2 * 2.3–14.2 *
B4: Infrared - - - -
B5: NDVI 0.7–0.9 0.65–0.92 0.56–0.92 0.6–0.92
B6: NDWI −1–−0.3 * - - −1–−0.3 *
B7: DTM - - - -
B8: SM - - - -

Complementary
forests 2

B1: Red - - - -
B2: Green - - - -
B3: Blue - - - -
B4: Infrared - - - -
B5: NDVI 0.78–1 0.78–1 0.78–1 0.78–1
B6: NDWI - - - -
B7: DTM - - - -
B8: SM - - - -

* indicates open intervals; otherwise, intervals are closed.

2.7. Detection of Land Cover and Open-Cast Mine Changes

In the next step, the polygons were vectorized to calculate the areas of the different classes for
each year [22]. To do so, the classifications obtained for each year were exported as shapefiles (.shp)
and loaded into ArcGIS 10.3 software (ESRI, Readlands, CA, USA) before the area (in hectares) was
calculated using the geometry calculation function present in the layer attributes table. For the analysis
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of temporal changes, a conceptual tree of the possible typologies and their transitions was elaborated
(Figure 3). Changes between classes during the observation period were detected by comparison
among polygons from maps of different dates. Each map was compared to its previous map by
subtraction to generate a new thematic map resulting from this differentiation and a table of changes
between classes [49]. The “dissolve” geoprocessing function was used for each date of the scene
and used to unify polygons from each layer by class. Then, the polygons were compared between
subsequent dates using the “Intersect” tool in ArcGIS to produce maps that indicated the land use
changes from 2011 to 2012, 2012 to 2013, 2013 to 2015, and 2011 to 2015 (Figure 2).
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2.8. Classification Accuracy Assessment

To evaluate the accuracy of the GEOBIA classification, polygons were used as the sampling
units [50]. It is important to mention that ground control points were not collected in the field. Hence,
in each scene, 1024 calibration points were randomly stratified per class in the high-resolution images.
This method guaranteed that the number of points was proportional to the size of the land use and
land cover class in each scene. For these points, the GEOBIA classification was compared to actual
land use and land cover to generate a confusion matrix (Table S1). The actual vegetation was evaluated
by manual image analysis by two independent reviewers who were familiar with the scene. Then, the
relation of omission and commission errors, the producer’s and the user’s accuracy, the kappa index
per class, the overall kappa index, overall accuracy [50], quantity disagreement (QD) and allocation
disagreement (AD) indices [51] were computed for each multitemporal mosaic.

2.9. Accuracy Assessment of Land Change

To assess the accuracy and estimate the area of the land change map, 1024 check points were
selected to validate the land change map from 2011 to 2015. The objective of this analysis followed best
practices to assess the accuracy of the change classification and estimate the area of change in terms of
a classification error matrix [52,53]. The error matrix was used to cross-tabulate the land change class
labels allocated by the classification of the high-resolution images against the reference check points
collected at the sample sites. Accuracy parameters derived from a sample error matrix of unchanged
classes (forest, canga, mine, revegetation and water) and changed classes (forest to mine, canga to mine,
mine to revegetation, and revegetation to mine) included overall accuracy, user accuracy of class i (the
proportion of the area mapped as class i that was referenced as class i), and producer accuracy of class j
(the proportion of the area referenced as class j that was mapped as class j) as proposed by [53].
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To assess the accuracy of the land change map, the accuracy was reported in terms of estimated
area proportions (p̂ij) and not in terms of sample counts, nij. Hence, pij was substituted by p̂ij and
applied for simple random and stratified sampling [53] using the following equation:

p̂i j = Wi
ni j

ni
(1)

where Wi is the proportion of the area mapped as class i, ni is the sum of the mapped class at row (i, k)
in the error matrix, and p̂i j is the sum over class k. The estimated area of class k is:

Âk = p̂k × Atotal (2)

where A is the total map area. The standard error of the estimated area S(Âk) is given by:

S(Âk) = S( p̂k ) × Atotal (3)

An approximate 95% confidence interval is obtained as Âk ± 1.96 × S(Âk). For details about the
matrix nomenclature, consult Olofsson et al. [53].

3. Results

3.1. High-Resolution Satellite Image Accuracy Assessment and Estimated Area of Land Change

Based on the evaluation of 1024 points per scene, the overall accuracy of the final land cover and
land use maps varied between 90% and 94%; the highest value was obtained in 2011, and the lowest
value was obtained in 2012. Therefore, the overall disagreement is very low, and the AD and QD are
lower than 8% and 5%, respectively (Tables S1 and S2). The highest kappa index per class was found
for forests and cangas in all scenes, while the lowest values were detected for water (except in 2011) and
rehabilitated areas (Figure 4a). The AD and QD per class were lower than 5.1% and 2.75%, respectively
(Figure 4b). The largest user’s and producer’s accuracy values were found in forest and mining areas
(Figure 4c,d). The greatest omission and commission errors of classification were associated with the
misclassification of revegetation and water areas (Table 4).

AD allowed for the evaluation of classification as spatial mismatches during map comparisons,
thus contributing to the detection of false transitions. QD was important for computing areal differences
in classes among maps [22]. Our results showed that the AD of each class was frequently higher than
the QD except for the forest and canga classes in 2011 and canga class in 2013, indicating that the area
of the classes tended to be accurate for this purpose. However, the land change detection between
different maps tended to be less reliable than that of the computed areas; hence, we expected that none
of the results would be significantly affected.

The accuracy assessment and estimated area of land change were calculated from Equation (2)
and Equation (3). For example, the estimated area of the mine class was Âmine = p̂mine × Atotal = 0.184
× 10,953.7 = 1928.74 ha. The mapped area of mine (Amine,1) was 2019.44 ha; thus, the mine area was
overestimated by 90.7 ha. Hence, a degradation area was identified with a 95% confidence interval
equal to 2019.4 ± 71.9 ha.

The overall accuracy of the estimated area of land change was 96% (Table 4). The user accuracy
varied between 63% (from revegetation to mine) and 99% (unchanged mine), resulting in a slight
underestimation of the area changed from revegetation to mine and an overestimation of the unchanged
rehabilitation area (Figure 5).
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Table 4. Error matrix expressed in terms of classification of the land change map (A) and estimated
proportions of areas (B). W = mapped area proportion, UM = unchanged mine, M-REV = from mine to
revegetation, C-M = from canga to mine, UC = unchanged canga, F-M = from forest to mine, UF =

unchanged forest, UREV = unchanged revegetation, REV-M = from revegetation to mine, ME = Margin
of error, and NME = Normalized margin of Error.

(A) Error Matrix of Classification of the Land Change Map (Line) against the Reference Data (Column) for the Sample Sites

Area Classes UM M-REV C-M UC F-M UF UREV REV-M Totals

1928.74 UM 163 1 0 0 0 0 1 0 165
377.54 M-REV 4 27 0 0 0 0 1 0 32
353.66 C-M 1 0 30 0 0 0 0 0 31
671.71 UC 0 0 3 51 0 1 0 0 55
264.06 F-M 0 0 1 0 14 0 1 1 17

6790.13 UF 2 0 0 3 0 617 11 0 633
378.08 UREV 1 0 0 1 0 5 56 1 64
189.81 REV-M 4 0 0 0 0 2 4 17 27

10953.7 Totals 175 28 34 55 14 625 74 19 1024

Producer’s accuracy 93.1 96.4 88.2 92.7 100.0 98.7 75.7 89.5
User’s accuracy 98.8 84.4 96.8 92.7 82.4 97.5 87.5 63.0
Kappa per class 0.99 0.84 0.97 0.92 0.82 0.94 0.87 0.62

Agreement 163.00 27.00 30.00 51.00 14.00 617.00 56.00 17.00 975.0
By chance 28.20 0.88 1.03 2.95 0.23 386.35 4.63 0.50 424.8

Overall accuracy = 0.952 Kappa index = 0.918

(B) Error Matrix by Estimated Proportions of Areas

W Classes UM M-REV C-M UC F-M UF UREV REV-M Totals

0.176 UM 0.174 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.176
0.034 M-REV 0.004 0.029 0.000 0.000 0.000 0.000 0.001 0.000 0.034
0.032 C-M 0.001 0.000 0.031 0.000 0.000 0.000 0.000 0.000 0.032
0.061 UC 0.000 0.000 0.003 0.057 0.000 0.001 0.000 0.000 0.061
0.024 F-M 0.000 0.000 0.001 0.000 0.020 0.000 0.001 0.001 0.024
0.620 UF 0.002 0.000 0.000 0.003 0.000 0.604 0.011 0.000 0.620
0.035 UREV 0.001 0.000 0.000 0.001 0.000 0.003 0.030 0.001 0.035
0.017 REV-M 0.003 0.000 0.000 0.000 0.000 0.001 0.003 0.011 0.017
1.000 Totals 0.184 0.030 0.036 0.060 0.020 0.609 0.047 0.013 1.0

Producer’s accuracy 94.4 96.5 86.8 94.2 100.0 99.2 64.118 84.789
User’s accuracy 98.8 84.4 96.8 92.7 82.4 97.5 87.500 62.963

Area (ha) 2019.4 330.2 394.4 660.9 217.5 6674.3 515.96 140.95
ME (95%) 71.9 53.4 55.5 60.2 49.3 92.0 91.6 48.0

Area (ha) 2019 ± 72 330 ± 53 394 ± 56 661 ± 60 217 ± 49 6674 ± 92 516 ± 92 141 ± 48
Overall accuracy = 0.96
Normalized area 1.047 0.875 1.115 0.984 0.824 0.983 1.365 0.743

NME 0.037 0.141 0.157 0.090 0.187 0.014 0.242 0.253
Standard error 36.663 27.255 28.325 30.700 25.166 46.957 46.753 24.481

Standard deviation 0.109 0.363 0.177 0.260 0.381 0.157 0.331 0.483
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3.2. Analysis of the Spatial-Temporal Distribution of Land Cover and Land Use Classes

The multiresolution classification with the GEOBIA approach effectively classified the
high-resolution satellite images into land cover and open-cast mine classes. Figure 6 illustrates
the multitemporal maps throughout the study site for the years 2011, 2012, 2013 and 2015, showing the
reduction in forest and canga areas and the expansion of mining and revegetated areas.Remote Sens. 2020, 12, 611 13 of 23 

 

 
Figure 6. Classified high-resolution 2011 Ikonos, 2012 GeoEye, 2013 Ikonos and 2015 WorldView-3 
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Between 2011 and 2015, the natural vegetation, i.e., cangas and forests, was reduced by 687 ha, 
while the mining and revegetated areas increased by 420 ha and 279 ha, respectively (Figure 7). 
Throughout the observation period, forests remained the largest unchanged class in the study site 
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Figure 6. Classified high-resolution 2011 Ikonos, 2012 GeoEye, 2013 Ikonos and 2015 WorldView-3
images illustrating the temporal and spatial changes in forest, canga, open-cast mine and revegetated
(REV) land cover classes. Figure 6 illustrates the multitemporal maps throughout the study site for the
years 2011, 2012, 2013 and 2015, showing the reduction in forest and canga areas and the expansion of
mining and revegetated areas.

Between 2011 and 2015, the natural vegetation, i.e., cangas and forests, was reduced by 687 ha,
while the mining and revegetated areas increased by 420 ha and 279 ha, respectively (Figure 7).
Throughout the observation period, forests remained the largest unchanged class in the study site
(Figure 8a).
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From 2011 to 2012, unchanged canga occupied an area of 983 ha, while unchanged mine and
revegetation areas occupied 2135 ha and 403 ha, respectively (Figure 8a). During this period, the largest
conversion of forest to mining area that was observed (207 ha) occurred due to the logging of the S2
waste pile area (Figure 8b). At the same time, the area of canga converted to mine area was lower than
that in the following periods (42 ha). Furthermore, 171 ha of mine land was revegetated; however, 165
ha of this revegetated area was reconverted to mine land (Figure 8b).

In the subsequent observation period (2012 to 2013), the areas of unchanged mine and revegetated
land increased by 10% and 15%, respectively (Figure 8b). The conversion of land from forest to mine
was reduced by more than 50%, while 116 ha of canga was converted to mining area, i.e., an increase of
more than 100% compared to the previous period (2011 to 2012). Although 199 ha of mine land was
revegetated between 2012 and 2013, the amount of revegetated area increased only marginally because
149 ha of revegetated area was reconverted to mine land (Figure 8b).

Between 2013 and 2015, the unchanged mine area declined in response to the expanding revegetated
area, reaching the highest values observed in this study (Figure 8a). This pattern is in response to the
establishment of spontaneous vegetation on the S2 waste pile (Figure 1). The conversion of forest to
mine increments remained stable (90 ha), while the conversion of canga to mine reached the highest
value (212 ha) in response to the installation of the N4 WS mine (Figure 8b). The reuse of revegetated
areas by mining activities reached the lowest value of the entire study period (129 ha) (Figure 8b).

This finding indicates a clear tendency of a decrease in canga area and its surrounding forest.
Throughout the period of change (2011–2015), we observed that the mining area expanded mainly
over canga (354 ha), followed by forest (264 ha). The revegetation of the mining area increased over
time (378 ha), while its reuse by mining decreased (Figure 6). The reformulation of the northern
(N) waste pile and the suppression of smaller portions of temporary revegetation in the mining area
were responsible for the transformation of revegetated sites in mining areas. Figure 9 illustrates the
unchanged land cover and land use (LCLU) classes and the “from-to” change detection classes based
on a bitemporal 2011–2015 mosaic image analysis.

Nevertheless, the proportion of revegetated areas in relation to mining areas increased from
24.63% in 2011 to 31.55% in 2015. This increase was partially due to the establishment of spontaneous
vegetation at waste pile S2, which, despite being logged, was still not used during the observation
period. When we zoomed in on the selected permanent structures, the annual/biannual increases
became clearly visible in the following waste piles: Northeast 2–NW2, West–W and South 4–S4
(Figure 10).
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Figure 10. Increase in revegetated area (REV) on three selected waste piles (South 4 [S 4], West [W] and
Northwest 2 [NW 2]) from the N4–N5 mining complex from Carajás, Brazil, between 2011 and 2015.
WorldView 3 satellite image in color-composite 1R2G3B acquired in 2015.

4. Discussion

4.1. Assessment of the High-Resolution Satellite Image Accuracy and the GEOBIA Approach

The two-step segmentation of the scenes and the utilization of eight different layers, including
spectral bands, elevation data and SMs, allowed for the mapping of the spatial land use dynamics of
the N4-N5 mining complex from the CNF between 2011 and 2015 with acceptable accuracy. The less
detailed scale of the first segmentation step permitted the separation of the entire scene in terms of
the areas of natural vegetation, i.e., canga and forest vegetation, and mining areas (including mining
and revegetated areas). From the level 1 of segmentation, the mining area class was segregated
into small-scale (>0.2 ha) revegetated and/or forest areas within the mine. The second segmentation
presented a level of detail that was approximately three times greater than that of the first segmentation,
allowing the identification of small and medium structures within the mine; this enhanced level
of detail enabled us to map the revegetated areas within the mine operations. Thus, despite the
use of different sensors that required individual atmospheric corrections and individual calibration,
the resolution of our mapping was higher than that obtained from similar approaches [28]. The
multispectral classification further allowed the separation of revegetated areas from areas covered
by natural vegetation from the time series without preliminary knowledge. The GEOBIA approach
presented here showed a straightforward method of mapping the revegetation inside mining areas,
and it avoided misclassifications with other vegetation cover that occurred in the neighborhood.

Overall, the kappa indices and accuracies of the classification indicate marginal confusion; these
mismatches occurred principally between small revegetated areas and areas of exposed soil in mining
sites, and these results confirmed the difficulties in identifying and classifying small features [54]. These
limits are set by the spatial resolution of the scenes. However, large revegetated areas from structures
such as waste piles were well classified, as the spectral characteristics differentiated them from the
surrounding mining areas or natural vegetation. In relation to allocation and quantity disagreement,
AD was greater than QD most of the time, indicating that the area of the classes tended to be more
accurate for this purpose. However, the change detection between different years tended to be less
reliable than the computed areas [22]. The accuracy assessment of land change maps has contributed to
estimates of the uncertainty of the area estimates [53], providing more efficient and rigorous methods
to estimate the accuracy and area of land change in iron ore mining sites. The major limitation of the



Remote Sens. 2020, 12, 611 17 of 21

GEOBIA approach was determining an appropriate scale in the two levels of segmentation to improve
the classification results. New developments must be made to try to calculate the segmentation scale
based on the pixel size and the area of the main target to be mapped.

The individual calibration of scenes originating from different sensors resulted in threshold values
that differed slightly between images. Nevertheless, the spectral differences in all scenes between
land use classes, including the differences between natural vegetation and revegetated areas, enabled
the detection of emerging structures such as areas of vegetation logging, i.e., land conversion from
natural ecosystems to mine lands, and emerging rehabilitation sites, i.e., conversion of mine lands to
revegetated areas. Thus, these spectral differences were sufficient to track the land use changes and
accurately quantify the effectively revegetated areas. However, the assessment of revegetation quality
still requires ground monitoring [13]. Specifically, the two-step segmentation of the high-resolution
images enabled the identification of small revegetated structures, such as strait slopes, indicating the
suitability of the proposed methodology for this study [22].

The evaluation of satellite images by segmentation and classification via eCognition as proposed
here represents an effective tool to monitor the spatial extent of revegetation activities within open-cast
mines. This technology may be helpful for monitoring the revegetation of mine lands conducted by
mining companies and thus could become an important tool for environmental monitoring by official
licensing agencies. Furthermore, the approach proposed here is suitable for monitoring revegetation
activities; the intersection and quantification of revegetated areas with areas planted by operations
contributes to the identification of revegetation constraints, e.g., inadequate planting periods or
substrates disabling plant survival, thus contributing to more effective mine land revegetation.

The reduction in natural vegetation and the increase in mining area show that the N4–N5
Carajás mining complex is a fully expanding mine and indicates that the iron ore reserves are not yet
exhausted. The amount of expansion (absolute as well as relative) of revegetated areas within the
mining complex shows that the mine land has been revegetated, which is the first step to address
environmental liabilities by mining companies. Ground points are necessary to assess the quality
of the revegetation, i.e., to assess whether revegetated areas are resilient ecosystems as required by
legislation [14]. The combination of ground investigations with additional remote investigations of
the scene may result in approaches that can be used to map the vegetation structure [55] or species
composition of revegetated areas, which may enable the tracking of the advance of revegetated sites
towards rehabilitated ecosystems [56].

4.2. Revegetation Analysis from GEOBIA using High-Resolution Satellite Data

Revegetation activities in the N4-N5 mining complex are carried out for the temporary revegetation
of benches to protect them from soil erosion and reduce dust loading during periods in which they are
not in use. Furthermore, permanent revegetation is carried out on permanent structures, such as waste
piles, to rehabilitate the biodiversity and ecosystem functioning of mine lands, reducing the overall
impact of mining operations. Our classification was unable to differentiate between temporary and
permanent rehabilitation areas, which is not surprising because similar seed mixtures and rehabilitation
techniques, such as hydroseeding, biotextiles or manual trench digging, were applied for both purposes.
Nevertheless, the high amount of revegetated area that was transformed to mining area (i.e., one-third
of all revegetated areas mapped in 2011) indicates that a high amount of mine land greening is
composed of temporary revegetation. In contrast, approximately two-thirds of the revegetated area
mapped in 2011 may correspond to permanent revegetation, and this land is intended to rehabilitate
mine land to improve long-term biodiversity and ecosystem services and reduce the overall impact of
mining operations.

Our classification revealed that only a very small amount (0.42 ha) of revegetated area was
confounded with natural forest vegetation during the observation period (less than 0.05% of the entire
rehabilitated area). However, this figure shows that the revegetated mining structures maintained their
spectral profiles during the observation period, which is expected because environmental rehabilitation
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in tropical ecosystems may span centuries [57], while the studied revegetated areas are, at most,
decades old.

Assessing the surface mining area through high-resolution satellite images has a high potential to
become an operational tool to monitor and evaluate the dynamics of land cover and land use changes in
open-cast mining complexes. It is important to emphasize that high spatial resolution satellite imageries
have been commercially available since 1999 with the IKONOS system. Therefore, high-resolution
satellites at one meter and below have been operating for more than twenty years, thus providing a
substantial amount of spatial and spectral information that is extremely useful for the recognition of
the geomorphic features of mines [58] and analysis of different trajectory types of land cover and land
use in mining areas [30]. Thus, the GEOBIA approach presented in this paper can be used to study
other sites of open-cast mines. Enabling the accuracy assessment and the estimation of the area of land
change can become a good practice for monitoring these complex man-made environments. Further
methodological advances should focus on the recognition and discrimination of different stages of
rehabilitation in mining areas (e.g., herbaceous, shrub and forest cover) from high-resolution satellite
and unmanned aerial vehicle systems to remotely track environmental advances of revegetated areas.

5. Conclusions

Our classification permitted the mapping of land cover and open-cast mine changes in the N4-N5
mining complex with sufficient accuracy. After the atmospheric correction of images, the generation of
the digital terrain and slope models, and calibration of the threshold values for individual scenes, the
proposed methodology was shown to be sufficiently robust to monitor land use changes in mining
sites, offering a powerful tool for all stakeholders. Specifically, the remote sensing of mine land
revegetation dynamics was able to monitor the occurrence of revegetation activities and the attendance
of the mitigation hierarchy as required by national environmental laws. It is important to highlight
the importance of the proposed two-step segmentation and multispectral classification to accurately
separate the land cover and land use classes in the mining scene. Combined with ground data,
additional remote investigations of the scene should be used to develop classification approaches for
revegetated sites according to their structure or species composition, which may be useful for tracking
advances in rehabilitating sites towards natural ecosystems. Moreover, the use of multitemporal high
spatial resolution satellite images can become an operational tool for the monitoring of cumulative
changes in land use related to mining operations.
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Author Contributions: Conceptualization, P.W.M.S.-F.; field work collection, F.S.N., W.R.N.J., D.C.S., P.W.M.S.-F.,
M.F.C.; digital image processing, GIS and formal analysis, accuracy assessments, F.S.N., W.R.N.J., D.C.S.,
P.W.M.S.-F., writing–original draft preparation, M.G., F.S.N., P.W.M.S.-F., review and editing, P.W.M.S.-F., M.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank the Vale Institute of Technology (ITV) for its management support. The
authors are also grateful to the Vale Mining Company for logistical support. PWMSF was supported by CNPq
through research scholarships. This project was carried out in the Carajás National Forest with permission from
IBAMA (SISBIO 35594-2).

Conflicts of Interest: The authors declare no conflicts of interest.

http://www.mdpi.com/2072-4292/12/4/611/s1


Remote Sens. 2020, 12, 611 19 of 21

References

1. Koruyan, K.; Deliormanli, A.H.; Karaca, Z.; Momayez, M.; Lu, H.; Yalçin, E. Remote sensing in management
of mining land and proximate habitat. J. S. Afr. Inst. Min. Metall. 2012, 112, 667–672.

2. Gastauer, M.; Souza Filho, P.W.M.; Ramos, S.J.; Caldeira, C.F.; Silva, J.R.; Siqueira, J.O.; Furtini Neto, A.E.
Mine land rehabilitation in Brazil: Goals and techniques in the context of legal requirements. Ambio 2018, 48,
74–88. [CrossRef]

3. Matlaba, V.J.; Maneschy, M.C.; Filipe dos Santos, J.; Mota, J.A. Socioeconomic dynamics of a mining town in
Amazon: A case study from Canaã dos Carajás, Brazil. Miner. Econ. 2019, 32, 75–90. [CrossRef]

4. Santos, J.F.; Maia, M.B.; Maneschy, M.C.; Matlaba, V.; Mota, J.A. Redes sociais ao longo da estrada de ferro
Carajás na Amazônia Oriental. Finisterra 2018, 109, 149–166.

5. Skirycz, A.; Castilho, A.; Chaparro, C.; Carvalho, N.; Tzotzos, G.; Siqueira, J.O. Canga biodiversity, a matter
of mining. Front. Plant Sci. 2014, 5, 1–9. [CrossRef]

6. Bisone, S.; Chatain, V.; Blanc, D.; Gautier, M.; Bayard, R.; Sanchez, F.; Gourdon, R. Geochemical characterization
and modeling of arsenic behavior in a highly contaminated mining soil. Environ. Earth Sci. 2016, 75, 69621.
[CrossRef]

7. International Finance Corporation. Performance Standard 6: Biodiversity Conservation and Sustainable Management
of Natural Resources; IFC: Washington, DC, USA, 2012.

8. Maron, M.; Brownlie, S.; Bull, J.W.; Evans, M.C.; von Hase, A.; Quétier, F.; Watson, J.E.M.; Gordon, A. The
many meanings of no net loss in environmental policy. Nat. Sustain. 2018, 1, 19–27. [CrossRef]

9. Ekstrom, J.; Bennun, L.; Mitchell, R. A Cross-Sector Guide for Implementing the Mitigation Hierarchy; Cambridge:
London, UK, 2015.

10. Bull, J.W.; Suttle, K.B.; Gordon, A.; Singh, N.J.; Milner-Gulland, E.J. Biodiversity offsets in theory and practice.
Oryx 2013, 47, 369–380. [CrossRef]

11. Bull, J.W.; Gordon, A.; Watson, J.E.M.; Maron, M. Seeking convergence on the key concepts in ‘no net loss’
policy. J. Appl. Ecol. 2016, 53, 1686–1693. [CrossRef]

12. Moffat, K.; Zhang, A. The paths to social licence to operate: An integrative model explaining community
acceptance of mining. Resour. Policy 2014, 39, 61–70. [CrossRef]

13. Gastauer, M.; Caldeira, C.F.; Ramos, S.J.; Trevelin, L.C.; Santiago, A.; Aurélio, M.; Carneiro, C.; Coelho, F.;
Silva, R.; Souza-Filho, P.W.M.; et al. Integrating Environmental Variables by Multivariate Ordination enables
the Reliable Estimation of Mineland Rehabilitation Status. J. Environ. Manag. 2019, 256, 109894. [CrossRef]

14. Gastauer, M.; Silva, J.R.; Caldeira Junior, C.F.; Ramos, S.J.; Souza Filho, P.W.M.; Furtini Neto, A.E.; Siqueira, J.O.
Mine land rehabilitation: Modern ecological approaches for more sustainable mining. J. Clean. Prod. 2018,
172, 1409–1422. [CrossRef]

15. Perring, M.P.; Standish, R.J.; Hobbs, R.J. Incorporating novelty and novel ecosystems into restoration planning
and practice in the 21st century. Ecol. Process. 2013, 2, 1–8. [CrossRef]

16. Padmanaban, R.; Bhowmik, A.; Cabral, P. A Remote Sensing Approach to Environmental Monitoring in a
Reclaimed Mine Area. ISPRS Int. J. Geo Inf. 2017, 6, 401. [CrossRef]

17. Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the
extent of surface mining and reclamation in the Central Appalachians detected using a 1976-2006 Landsat
time series. Remote Sens. Environ. 2009, 113, 62–72. [CrossRef]

18. Asner, G.P.; Llactayo, W.; Tupayachi, R.; Luna, E.R. Elevated rates of gold mining in the Amazon revealed
through high-resolution monitoring. Proc. Natl. Acad. Sci. USA 2013, 110, 18454–18459. [CrossRef]

19. Chen, W.; Li, X.; He, H.; Wang, L. A Review of Fine-Scale Land Use and Land Cover Classification in Open-Pit
Mining Areas by Remote Sensing Techniques. Remote Sens. 2018, 10, 15. [CrossRef]

20. Sonter, L.J.; Barrett, D.J.; Soares-Filho, B.S.; Moran, C.J. Global demand for steel drives extensive land-use
change in Brazil’s Iron Quadrangle. Glob. Environ. Chang. 2014, 26, 63–72. [CrossRef]

21. Souza-Filho, P.W.M.; de Souza, E.B.; Silva Júnior, R.O.; Nascimento, W.R.; Versiani de Mendonça, B.R.;
Guimarães, J.T.F.; Dall’Agnol, R.; Siqueira, J.O. Four decades of land-cover, land-use and hydroclimatology
changes in the Itacaiúnas River watershed, southeastern Amazon. J. Environ. Manag. 2016, 167, 175–184.
[CrossRef]

http://dx.doi.org/10.1007/s13280-018-1053-8
http://dx.doi.org/10.1007/s13563-018-0159-6
http://dx.doi.org/10.3389/fpls.2014.00653
http://dx.doi.org/10.1007/s12665-015-5203-z
http://dx.doi.org/10.1038/s41893-017-0007-7
http://dx.doi.org/10.1017/S003060531200172X
http://dx.doi.org/10.1111/1365-2664.12726
http://dx.doi.org/10.1016/j.resourpol.2013.11.003
http://dx.doi.org/10.1016/j.jenvman.2019.109894
http://dx.doi.org/10.1016/j.jclepro.2017.10.223
http://dx.doi.org/10.1186/2192-1709-2-18
http://dx.doi.org/10.3390/ijgi6120401
http://dx.doi.org/10.1016/j.rse.2008.08.012
http://dx.doi.org/10.1073/pnas.1318271110
http://dx.doi.org/10.3390/rs10010015
http://dx.doi.org/10.1016/j.gloenvcha.2014.03.014
http://dx.doi.org/10.1016/j.jenvman.2015.11.039


Remote Sens. 2020, 12, 611 20 of 21

22. Souza-Filho, W.P.; Nascimento, R.W.; Santos, C.D.; Weber, J.E.; Silva, O.R.; Siqueira, O.J. A GEOBIA Approach
for Multitemporal Land-Cover and Land-Use Change Analysis in a Tropical Watershed in the Southeastern
Amazon. Remote Sens. 2018, 10, 1683. [CrossRef]

23. Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the capability of remote sensing and GIS techniques
for monitoring reclamation success in coal mine degraded lands. J. Environ. Manag. 2016, 182, 272–283.
[CrossRef] [PubMed]

24. Demirel, N.; Emil, M.K.; Duzgun, H.S. Landuse change detection in a surface coal mine using multi-temporal
high-resolution satellite images. Int. J. Min. Reclam. Environ. 2011, 25, 342–349. [CrossRef]

25. Vogelmann, J.E.; Gallant, A.L.; Shi, H.; Zhu, Z. Perspectives on monitoring gradual change across the
continuity of Landsat sensors using time-series data. Remote Sens. Environ. 2016, 185, 258–270. [CrossRef]

26. Ma, B.; Chen, Y.; Zhang, S.; Li, X. Remote Sensing Extraction Method of Tailings Ponds in Ultra-Low-Grade
Iron Mining Area Based on Spectral Characteristics and Texture Entropy. Entropy 2018, 20, 345. [CrossRef]

27. Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly
Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114,
2897–2910. [CrossRef]

28. Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the dynamics of vegetation
disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean.
Prod. 2018, 178, 353–362. [CrossRef]

29. Isidro, M.C.; McIntyre, N.; Lechner, M.A.; Callow, I. Applicability of Earth Observation for Identifying
Small-Scale Mining Footprints in a Wet Tropical Region. Remote Sens. 2017, 9, 945. [CrossRef]

30. Demirel, N.; Emil, M.K.; Duzgun, H.S. Surface coal mine area monitoring using multi-temporal high-resolution
satellite imagery. Int. J. Coal Geol. 2011, 86, 3–11. [CrossRef]

31. Maxwell, A.E.; Warner, T.A.; Strager, M.P.; Pal, M. Combining RapidEye Satellite Imagery and Lidar for
Mapping of Mining and Mine Reclamation. Photogramm. Eng. Remote Sens. 2014, 2, 179–189. [CrossRef]

32. Piló, L.B.; Auler, A.S.; Martins, F. Carajás National Forest: Iron Ore Plateaus and Caves in Southeastern
Amazon. In Landscapes and Landforms of Brazil; Vieira, B.C., Salgado, A.A.R., Santos, L.J.C., Eds.; Springer:
Dordrecht, The Netherlands, 2015; pp. 273–283. ISBN 978-94-017-8023-0.

33. Viana, P.L.; Mota, N.F.D.O.; Gil, A.D.S.B.; Salino, A.; Zappi, D.C.; Harley, R.M.; Ilkiu-Borges, A.L.; Secco, R.D.S.;
Almeida, T.E.; Watanabe, M.T.C.; et al. Flora das cangas da Serra dos Carajás, Pará, Brasil: História, área de
estudos e metodologia. Rodriguésia 2016, 67, 1107–1124. [CrossRef]

34. de Mota, N.F.O.; Silva, L.V.C.; Martins, F.D.; Viana, P.L. Vegetação sobre sistemas ferruginosos da Serra
dos Carajás. In Geossistemas ferruginosos do Brasil: Áreas prioritárias para conservação da diversidade geológica e
biológica, patrimônio cultural e serviços ambientais; Carmo, F.F., Kamino, L.H., Eds.; 3iEditora: Belo Horizonte,
Brazil, 2015; pp. 289–315.

35. Resende, N.P. Carajás: Memória da descoberta; Editora Gráfica Stampa: Rio de Janeiro, Brazil, 2009.
36. Paradella, W.R.; Ferretti, A.; Mura, J.C.; Colombo, D.; Gama, F.F.; Tamburini, A.; Santos, A.R.; Novali, F.;

Galo, M.; Camargo, P.O.; et al. Mapping surface deformation in open pit iron mines of Carajás Province
(Amazon Region) using an integrated SAR analysis. Eng. Geol. 2015, 193, 61–78. [CrossRef]

37. PCI. Geomatica Image processing with Focus. In Geomatica I Course Guide, Version 0.2; PCI Geomatica
Enterprises: Markham, ON, Canada, 2015; pp. 59–79.

38. PCI. Geomatica Geomatica Orthoengine: Course Exercises; PCI Geomatica Enterprises: Markham, ON, Canada,
2015; p. 172.

39. Tarpley, J.D.; Schneider, S.R.; Money, R.L. Global Vegetation Indices from the NOAA-7 Meteorological
Satellite. J. Clim. Appl. Meteorol. 1984, 23, 491–494. [CrossRef]

40. McFEETERS, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open
water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [CrossRef]

41. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65,
2–16. [CrossRef]

42. Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van
der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm.
ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [CrossRef]

43. Desclée, B.; Bogaert, P.; Defourny, P. Forest change detection by statistical object-based method. Remote Sens.
Environ. 2006, 102, 1–11. [CrossRef]

http://dx.doi.org/10.3390/rs10111683
http://dx.doi.org/10.1016/j.jenvman.2016.07.070
http://www.ncbi.nlm.nih.gov/pubmed/27491028
http://dx.doi.org/10.1080/17480930.2011.608889
http://dx.doi.org/10.1016/j.rse.2016.02.060
http://dx.doi.org/10.3390/e20050345
http://dx.doi.org/10.1016/j.rse.2010.07.008
http://dx.doi.org/10.1016/j.jclepro.2018.01.050
http://dx.doi.org/10.3390/rs9090945
http://dx.doi.org/10.1016/j.coal.2010.11.010
http://dx.doi.org/10.14358/PERS.80.2.179-189
http://dx.doi.org/10.1590/2175-7860201667501
http://dx.doi.org/10.1016/j.enggeo.2015.04.015
http://dx.doi.org/10.1175/1520-0450(1984)023&lt;0491:GVIFTN&gt;2.0.CO;2
http://dx.doi.org/10.1080/01431169608948714
http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014
http://dx.doi.org/10.1016/j.rse.2006.01.013


Remote Sens. 2020, 12, 611 21 of 21

44. Duveiller, G.; Defourny, P.; Desclée, B.; Mayaux, P. Deforestation in Central Africa: Estimates at regional,
national and landscape levels by advanced processing of systematically-distributed Landsat extracts. Remote
Sens. Environ. 2008, 112, 1969–1981. [CrossRef]

45. Souza-Filho, P.W.M.; Giannini, T.C.; Jaffé, R.; Giulietti, A.M.; Santos, D.C.; Nascimento, W.R., Jr.;
Guimarães, J.T.F.; Costa, M.F.; Imperatriz-Fonseca, V.L.; Siqueira, J.O. Mapping and quantification of
ferruginous outcrop savannas in the Brazilian Amazon: A challenge for biodiversity conservation. PLoS
ONE 2019, 14, e0211095. [CrossRef]

46. Raši, R.; Bodart, C.; Stibig, H.-J.; Eva, H.; Beuchle, R.; Carboni, S.; Simonetti, D.; Achard, F. An automated
approach for segmenting and classifying a large sample of multi-date Landsat imagery for pan-tropical
forest monitoring. Remote Sens. Environ. 2011, 115, 3659–3669. [CrossRef]

47. Baatz, M.; Schäpe, A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale
Image Segmentation. 2000. Available online: http://www.agit.at/papers/2000/baatz_FP_12.pdf (accessed on
23 December 2012).

48. Rejaur Rahman, M.; Saha, S.K. Multi-resolution segmentation for object-based classification and accuracy
assessment of land use/land cover classification using remotely sensed data. J. Indian Soc. Remote Sens. 2008,
36, 189–201. [CrossRef]

49. Lu, D.; Batistella, M.; Li, G.; Moran, E.; Hetrick, S.; Freitas, C.D.C.; Dutra, L.V.; Sant’Anna, S.J.S. Land
use/cover classification in the Brazilian Amazon using satellite images. Pesqui. Agropecu. Bras. 2012, 47,
10–1590. [CrossRef] [PubMed]

50. Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.;
Taylor & Francis: London, UK, 2008.

51. Pontius, R.G., Jr.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement
for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [CrossRef]

52. Gallego, F.J. Remote sensing and land cover area estimation. Int. J. Remote Sens. 2004, 25, 3019–3047.
[CrossRef]

53. Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for
estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [CrossRef]

54. Puertas, O.L.; Brenning, A.; Meza, F.J. Balancing misclassification errors of land cover classification maps
using support vector machines and Landsat imagery in the Maipo river basin (Central Chile, 1975–2010).
Remote Sens. Environ. 2013, 137, 112–123. [CrossRef]

55. Johansen, K.; Erskine, P.D.; McCabe, M.F. Using Unmanned Aerial Vehicles to assess the rehabilitation
performance of open cut coal mines. J. Clean. Prod. 2019, 209, 819–833. [CrossRef]

56. Kimball, S.; Lulow, M.; Sorenson, Q.; Balazs, K.; Fang, Y.-C.; Davis, S.J.; O’Connell, M.; Huxman, T.E.
Cost-effective ecological restoration. Restor. Ecol. 2015, 23, 800–810. [CrossRef]

57. Chazdon, R.L. Tropical forest regeneration. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat 2012, 7, 195–218.
58. Chen, J.; Li, K.; Chang, K.-J.; Sofia, G.; Tarolli, P. Open-pit mining geomorphic feature characterisation. Int. J.

Appl. Earth Obs. Geoinf. 2015, 42, 76–86. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2007.07.026
http://dx.doi.org/10.1371/journal.pone.0211095
http://dx.doi.org/10.1016/j.rse.2011.09.004
http://www.agit.at/papers/2000/baatz_FP_12.pdf
http://dx.doi.org/10.1007/s12524-008-0020-4
http://dx.doi.org/10.1590/S0100-204X2012000900004
http://www.ncbi.nlm.nih.gov/pubmed/24353353
http://dx.doi.org/10.1080/01431161.2011.552923
http://dx.doi.org/10.1080/01431160310001619607
http://dx.doi.org/10.1016/j.rse.2014.02.015
http://dx.doi.org/10.1016/j.rse.2013.06.003
http://dx.doi.org/10.1016/j.jclepro.2018.10.287
http://dx.doi.org/10.1111/rec.12261
http://dx.doi.org/10.1016/j.jag.2015.05.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Site 
	Remote Sensing Data Sources 
	Atmospheric Corrections and Orthorectification 
	Elaboration of Remote Sensing Indices 
	LiDAR Data Processing 
	GEOBIA: Image Segmentation, Multilayer Calibration and Hierarchical Classification 
	Detection of Land Cover and Open-Cast Mine Changes 
	Classification Accuracy Assessment 
	Accuracy Assessment of Land Change 

	Results 
	High-Resolution Satellite Image Accuracy Assessment and Estimated Area of Land Change 
	Analysis of the Spatial-Temporal Distribution of Land Cover and Land Use Classes 

	Discussion 
	Assessment of the High-Resolution Satellite Image Accuracy and the GEOBIA Approach 
	Revegetation Analysis from GEOBIA using High-Resolution Satellite Data 

	Conclusions 
	References

