Sensitivity of Multispectral Imager Liquid Water Cloud Microphysical Retrievals to the Index of Refraction
Abstract
:1. Introduction
2. Datasets and Methodology
2.1. Overview of Satellite Imager Cloud Retrievals
2.2. Index of Refraction Datasets
2.2.1. Index of Refraction Datasets Commonly Used in Cloud Microphysical Retrievals
2.2.2. Discussion of Available Index of Refraction Datasets
3. Results
3.1. Cloud Droplet Single Scattering Properties
3.2. Cloud Effective Radius Retrievals
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dufresne, J.-L.; Bony, S. An assessment of the primary sources of spread of global warming estimates from coupled atmosphere-ocean models. J. Clim. 2008, 21, 5135–5144. [Google Scholar] [CrossRef] [Green Version]
- Zelinka, M.D.; Klein, S.A.; Hartmann, D.L. Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Clim. 2012, 25, 3736–3754. [Google Scholar] [CrossRef] [Green Version]
- Webb, M.J.; Lambert, F.H.; Gregory, J.M. Origins of differences in climate sensitivity, forcing and feedback in climate models. Clim. Dyn. 2012, 40, 677–707. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Klein, S.A.; Taylor, K.E.; Andrews, T.; Webb, M.J.; Gregory, J.M.; Forster, P.M. Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Clim. 2013, 26, 5007–5027. [Google Scholar] [CrossRef] [Green Version]
- Gordon, N.D.; Klein, S.A. Low-cloud optical depth feedback in climate models. J. Geophys. Res. Atmos. 2014, 119, 6052–6065. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Oreopoulos, L.; Platnick, S. Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 2. Global analysis from MODIS. J. Geophys. Res. 2008, 113, D14S21. [Google Scholar] [CrossRef]
- Wilcox, E.M.; Platnick, S. Estimate of the impact of absorbing aerosol over cloud on the MODIS retrievals of cloud optical thickness and effective radius using two independent retrievals of liquid water path. J. Geophys. Res. 2009, 114, D05210. [Google Scholar] [CrossRef]
- Bennartz, R.; Rausch, J. Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations. Atmos. Chem. Phys. 2017, 17, 9815–9836. [Google Scholar] [CrossRef] [Green Version]
- Grosvenor, D.P.; Sourdeval, O.; Zuidema, P.; Ackerman, A.; Alexandrov, M.D.; Bennartz, R.; Boers, R.; Cairns, B.; Chiu, J.C.; Christensen, M.; et al. Remote sensing of droplet number concentration in warm clouds: A review of the current state of knowledge and perspectives. Rev. Geophys. 2018, 56, 409–453. [Google Scholar] [CrossRef]
- Wood, R.; Leon, D.; Lebsock, M.; Snider, J.; Clarke, A.D. Precipitation driving of droplet concentration variability in marine low clouds. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Stephens, G.; Bodas-Salcedo, A.; Wang, M.; Golaz, J.-C.; Yokohata, T.; Koshiro, T. Evaluation of the warm rain formation process in global models with satellite observations. J. Atmos. Sci. 2015, 72, 3996–4014. [Google Scholar] [CrossRef]
- Twomey, S.; Cocks, T. Spectral reflectance of clouds in the near-infrared-comparison of measurements and calculations. J. Meteorol. Soc. Jpn. 1982, 60, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Rawlins, F.; Foot, J.S. Remotely sensed measurements of stratocumulus properties during fire using the C130 aircraft multichannel radiometer. J. Atmos. Sci. 1990, 47, 2488–2503. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.; King, M.D. Determination of the optical-thickness and effective particle radius of clouds from reflected solar-radiation measurements. Part 1. Theory. J. Atmos. Sci. 1990, 47, 1878–1893. [Google Scholar] [CrossRef]
- Han, Q.Y.; Rossow, W.B.; Lacis, A.A. Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Clim. 1994, 7, 465–497. [Google Scholar] [CrossRef] [Green Version]
- Platnick, S.; Twomey, S. Determining the susceptibility of cloud albedo to changes in droplet concentration with the Advanced Very High-Resolution Radiometer. J. Appl. Meteorol. 1994, 33, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Platnick, S.; Meyer, K.G.; King, M.D.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Holz, R.E.; et al. The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens. 2016, 55, 502–525. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Rodier, S.; Xu, K.-M.; Sun, W.; Huang, J.; Lin, B.; Zhai, P.; Josset, D. Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Marchant, B.; Platnick, S.; Meyer, K.; Arnold, G.T.; Riedi, J. MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP. Atmos. Meas. Tech. 2016, 9, 1587–1599. [Google Scholar] [CrossRef] [Green Version]
- Irvine, W.M.; Pollack, J.B. Infrared optical properties of water and ice spheres. Icarus 1968, 8, 324–360. [Google Scholar]
- Hale, G.M.; Querry, M.R. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.F.; Williams, D. Optical-properties of water in near-infrared. J. Opt. Soc. Am. 1974, 64, 1107–1110. [Google Scholar] [CrossRef]
- Downing, H.D.; Williams, D. Optical constants of water in the infrared. J. Geophys. Res. Atmos. 1984–2012 1975, 80, 1656–1661. [Google Scholar] [CrossRef]
- Kou, L.; Labrie, D.; Chylek, P. Refractive-indexes of water and ice in the 0.65- to 2.5-µm spectral range. Appl. Opt. 1993, 32, 3531–3540. [Google Scholar] [CrossRef] [Green Version]
- Wagner, R.; Benz, S.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Schurath, U. Mid-infrared extinction spectra and optical constants of supercooled water droplets. J. Phys. Chem. A 2005, 109, 7099–7112. [Google Scholar] [CrossRef] [PubMed]
- Belward, A.; Bourassa, M.; Dowell, M.; Briggs, S.; Doman, H.; Holmlund, K.; Husband, R.; Quega, S.; Sounders, R.; Simmons, A.; et al. The Global Observing System for Climate: Implementation Needs; World Meteorological Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Werdell, P.J.; Behrenfeld, M.J.; Bontempi, P.S.; Boss, E.; Cairns, B.; Davis, G.T.; Franz, B.A.; Gliese, U.B.; Gorman, E.T.; Hasekamp, O.; et al. The Plankton, Aerosol, Cloud, Ocean Ecosystem Mission: Status, Science, Advances. Bull. Am. Meteorol. Soc. 2019, 100, 1775–1794. [Google Scholar]
- Joint Polar Satellite System (JPSS) Level 1 Requirements Document Supplement (L1RDS); NOAA/NASA, 2019. Available online: https://www.jpss.noaa.gov/assets/pdfs/technical_documents/L1RDS.pdf (accessed on 5 June 2020).
- Meyer, K.; Platnick, S.; Holz, R.; Dutcher, S. Derivation of shortwave radiometric adjustments for SNPP and NOAA-20 VIIRS for the NASA MODIS-VIIRS continuity cloud products. Remote Sens. 2020, 12, 4096. [Google Scholar] [CrossRef]
- Platnick, S.; Meyer, K.; Wind, G.; Holz, R.E.; Amarasinghe, N.; Hubanks, P.A.; Marchant, B.; Dutcher, S.; Veglio, P. The NASA MODIS-VIIRS continuity cloud optical properties products. Remote Sens. 2021, 13, 2. [Google Scholar] [CrossRef]
- Twomey, S.; Bohren, C.F. Simple approximations for calculations of absorption in clouds. J. Atmos. Sci. 1980, 37, 2086–2094. [Google Scholar] [CrossRef] [Green Version]
- Salomonson, V.V.; Barnes, W.L.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. MODIS—Advanced facility instrument for studies of the earth as a system. IEEE Trans. Geosci. Remote Sens. 1989, 27, 145–153. [Google Scholar] [CrossRef]
- Xiong, X.; Angal, A.; Barnes, W.L.; Chen, H.; Chiang, V.; Geng, X.; Li, Y.; Twedt, K.; Wang, Z.; Wilson, T.; et al. Updates of Moderate Resolution Imaging Spectroradiometer on-orbit calibration uncertainty assessments. J. Appl. Remote Sens. 2018, 12, 1–19. [Google Scholar] [CrossRef]
- Cao, C.; Xiong, X.; Wolfe, R.; DeLuccia, F.; Liu, Q.; Blonski, S.; Lin, G.; Nishihama, M.; Pogorzala, D.; Oudrari, H.; et al. Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) User’s Guide; NOAA Technical Report NESDIS 142A; 2017. Available online: ncc.nesdis.noaa.gov/documents/documentation/viirs-users-guide-tech-report-142a-v1.3.pdf (accessed on 5 June 2020).
- Xiong, X.; Butler, J.; Chiang, K.; Efremova, B.; Fulbright, J.; Lei, N.; McIntire, J.; Oudrari, H.; Wang, Z.; Wu, A. Assessment of S-NPP VIIRS on-orbit radiometric calibration and performance. Remote Sens. 2016, 8, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A closer look at the ABI on the GOES-R series. Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- Frey, R.A.; Ackerman, S.A.; Holz, R.E.; Dutcher, S.; Griffith, Z. The continuity MODIS-VIIRS cloud mask. Remote Sens. 2020, 12, 3334. [Google Scholar] [CrossRef]
- Platnick, S.; Ackerman, S.; Wind, G.; Meyer, K.; Heidinger, A.; Frey, R.; Holz, R.; Li, Y.; Arnold, G.T.; Amarasinghe, N.; et al. Continuity atmosphere L2 MODIS cloud product (CLDPROP_L2_MODIS_Aqua). Atmos. SIPS Process. Syst. Univ. Wis. Available online: ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/CLDPROP_L2_MODIS_Aqua/ (accessed on 5 June 2020). [CrossRef]
- Platnick, S.; Ackerman, S.; Wind, G.; Meyer, K.; Heidinger, A.; Frey, R.; Holz, R.; Li, Y.; Arnold, G.T.; Amarasinghe, N.; et al. Continuity atmosphere L2 MODIS cloud product (CLDPROP_L2_VIIRS_SNPP). Atmosphere SIPS Process. Syst. Univ. Wis. Available online: ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/CLDPROP_L2_VIIRS_SNPP/ (accessed on 5 June 2020). [CrossRef]
- LAADS DAAC. Available online: https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 8 August 2020).
- Platnick, S.; Ackerman, S.; King, M.D.; Wind, G.; Meyer, K.; Menzel, W.P.; Frey, R.; Holz, R.; Baum, B.; Yang, P. MODIS atmosphere L2 cloud product (MOD06_L2). NASA MODIS Adapt. Process. Syst. Goddard Space Flight Cent. Available online: ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD06_L2/ (accessed on 5 June 2020). [CrossRef]
- Platnick, S.; Ackerman, S.; King, M.D.; Wind, G.; Meyer, K.; Menzel, W.P.; Frey, R.; Holz, R.; Baum, B.; Yang, P. MODIS atmosphere L2 cloud product (MYD06_L2). NASA MODIS Adapt. Process. Syst. Goddard Space Flight Cent. Available online: ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MYD06_L2/ (accessed on 5 June 2020). [CrossRef]
- Zasetsky, A.Y.; Khalizov, A.F.; Earle, M.E.; Sloan, J.J. Frequency dependent complex refractive indices of supercooled liquid water and ice determined from aerosol extinction spectra. J. Phys. Chem. A 2005, 109, 2760–2764. [Google Scholar] [CrossRef]
- McGarragh, G.R.; Poulsen, C.A.; Thomas, G.E.; Povey, A.C.; Sus, O.; Stapelberg, S.; Schlundt, C.; Proud, S.; Christensen, M.W.; Stengel, M.; et al. The Community Cloud retrieval for CLimate (CC4CL)—Part 2: The optimal estimation approach. Atmospheric Meas. Tech. 2018, 11, 3397–3431. [Google Scholar] [CrossRef] [Green Version]
- Minnis, P.; Sun-Mack, S.; Young, D.F.; Heck, P.W.; Garber, D.P.; Chen, Y.; Spangenberg, D.A.; Arduini, R.F.; Trepte, Q.Z.; Smith, W.L.; et al. CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4374–4400. [Google Scholar] [CrossRef]
- Jacobowitz, H.; Stowe, L.L.; Ohring, G.; Heidinger, A.; Knapp, K.; Nalli, N.R. The Advanced Very High Resolution Radiometer Pathfinder Atmosphere (PATMOS) climate dataset: A resource for climate research. Bull. Am. Meteorol. Soc. 2003, 84, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Heidinger, A.K.; Foster, M.J.; Walther, A.; Zhao, X.T. The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Am. Meteorol. Soc. 2014, 909–922. [Google Scholar] [CrossRef]
- Schulz, J.; Albert, P.; Behr, H.D.; Caprion, D.; Deneke, H.; Dewitte, S.; Durr, B.; Fuchs, P.; Gratzki, A.; Hechler, P.; et al. Operational climate monitoring from space: The EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF). Atmos. Chem. Phys. 2009, 9, 1687–1709. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, K.-G.; Riihelä, A.; Mueller, R.; Meirink, J.F.; Sedlar, J.; Stengel, M.; Lockhoff, M.; Trentmann, J.; Kaspar, F.; Hollmann, R.; et al. CLARA-A1: A cloud, albedo, and radiation dataset from 28 yr of global AVHRR data. Atmos. Chem. Phys. 2013, 13, 5351–5367. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, C.A.; Siddans, R.; Thomas, G.E.; Sayer, A.M.; Grainger, R.G.; Campmany, E.; Dean, S.M.; Arnold, C.; Watts, P.D. Cloud retrievals from satellite data using optimal estimation: Evaluation and application to ATSR. Atmos. Meas. Tech. 2012, 5, 1889–1910. [Google Scholar] [CrossRef] [Green Version]
- Roebeling, R.A.; Feijt, A.J.; Stammes, P. Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Collins, J.R. A new infra-red absorption band of liquid water at 2.52 μ. Phys. Rev. 1939, 55, 470. [Google Scholar] [CrossRef]
- Curcio, J.A.; Petty, C.C. The near infrared absorption spectrum of liquid water. JOSA 1951, 41, 302–304. [Google Scholar] [CrossRef]
- Kondratyev, K.Y. Radiation in the Atmosphere; Academic Press: New York, NY, USA, 1969; ISBN 0-12-419050-2. [Google Scholar]
- Zolotarev, V.M.; Mikhailov, B.A.; Aperovich, L.I.; Popov, S.I. Dispersion and absorption of liquid water in the infrared and radio regions of the spectrum. Opt. Spectrosc. 1969, 27, 430. [Google Scholar]
- Robertson, C.W.; Williams, D. Lambert absorption coefficients of water in the infrared*. JOSA 1971, 61, 1316–1320. [Google Scholar] [CrossRef]
- Rusk, A.N.; Williams, D.; Querry, M.R. Optical constants of water in the infrared*. JOSA 1971, 61, 895–903. [Google Scholar] [CrossRef]
- Bertie, J.E.; Lan, Z.D. Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(1) at 25 degrees C between 15,000 and 1 cm(-1). Appl. Spectrosc. 1996, 50, 1047–1057. [Google Scholar] [CrossRef]
- Hale, G.M.; Williams, D.; Rusk, A.N.; Querry, M.R. Influence of temperature on spectrum of water. J. Opt. Soc. Am. 1972, 62, 1103. [Google Scholar] [CrossRef]
- Pinkley, L.W.; Sethna, P.P.; Williams, D. Optical constants of water in the infrared: Influence of temperature. J. Opt. Soc. Am. 1977, 67, 494–499. [Google Scholar] [CrossRef]
- Maréchal, Y. Infrared spectra of water. I. Effect of temperature and of H/D isotopic dilution. J. Chem. Phys. 1991, 95, 5565–5573. [Google Scholar] [CrossRef]
- Rowe, P.M.; Neshyba, S.; Walden, V.P. Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds. Atmos. Chem. Phys. 2013, 13, 11925–11933. [Google Scholar] [CrossRef] [Green Version]
- Rowe, P.M.; Fergoda, M.; Neshyba, S. Temperature-dependent optical properties of liquid water from 240 to 298 K. J. Geophys. Res. Atmos. 2020, 1–17. [Google Scholar] [CrossRef]
- Thompson, D.R.; Kahn, B.H.; Green, R.O.; Chien, S.A.; Middleton, E.M.; Tran, D.Q. Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005–2015. Atmos. Meas. Tech. 2018, 11, 1019–1030. [Google Scholar] [CrossRef] [Green Version]
- Hubanks, P.; Platnick, S.; Meyer, K.; King, M.D.; Ackerman, S.; Holz, R.; Heidinger, A.; Li, Y.; Frey, R.; Walther, A.; et al. Level-3 Continuity Cloud Properties (CLDPROP_L3) Global Gridded Product User Guide; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2020.
- Oreopoulos, L.; Cho, N.; Lee, D. Using MODIS cloud regimes to sort diagnostic signals of aerosol-cloud-precipitation interactions. J. Geophys. Res. Atmos. 2017, 122, 5416–5440. [Google Scholar] [CrossRef] [Green Version]
- L3 MODIS Daily Imagery. Available online: https://atmosphere-imager.gsfc.nasa.gov/images/l3/daily (accessed on 19 August 2020).
- Justice, C.; Vermote, E.; Privette, J.; Sei, A. The Evolution of U.S. Moderate Resolution Optical Land Remote Sensing from AVHRR to VIIRS. In Land Remote Sensing and Global Environmental Change; Ramachandran, B., Justice, C., Abrams, M., Eds.; Springer: New York, NY, USA, 2011; Volume 11, pp. 781–806. [Google Scholar]
- Holz, R.E.; Ackerman, S.A.; Nagle, F.W.; Frey, R.; Dutcher, S.; Kuehn, R.E.; Vaughan, M.A.; Baum, B. Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Rausch, J.; Meyer, K.; Bennartz, R.; Platnick, S. Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS collections 5.1 and 6 over global oceans. Atmos. Meas. Tech. 2017, 10, 2105–2116. [Google Scholar] [CrossRef] [Green Version]
- Iwabuchi, H.; Yang, P. Temperature dependence of ice optical constants Implications for simulating the single-scattering properties of cold ice clouds. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 2520–2525. [Google Scholar] [CrossRef]
Spectral Region | MODIS | VIIRS (M-Bands 1) | ABI |
---|---|---|---|
VIS | 0.66 (1) | 0.67 (5) | 0.64 (2) |
NIR | 0.86 (2) | 0.87 (7) | 0.86 (3) |
SWIR | 1.24 (5), 1.64 (6), 2.13 (7) | 1.24 (8), 1.61 (10), 2.25 (11) | 1.61 (5), 2.24 (6) |
MWIR | 3.75 (20) | 3.70 (12) | 3.90 (7) |
Dataset Reference | Data Source | Spectral Range Most Relevant to This Study 1 | Liquid Water Temperature (K) |
---|---|---|---|
Hale and Querry, 1973 [22] | compilation review of late 1960s literature | VNIR | 293, 298 (NIR) |
Palmer and Williams, 1974 [23] | transmittance measurements | SWIR | 300 |
Downing and Williams, 1975 [24] | re-analysis of data from the group’s earlier studies | MWIR/IR | 300 |
Kou et al., 1993 [25] | transmittance measurements | SWIR | 265, 295 |
Wagner et al., 2005 [26] | cloud chamber droplet extinction measurements | MWIR/IR | 238, 252, 258, 269 |
Zasetsky et al., 2005 [44] | cryogenic flow tube droplet extinction measurements | MWIR/IR | 240, 253, 263, 273 |
CER Spectral Channel | VIIRS v1.1 | VIIRS v1.1–MODIS v1.1 | VIIRS 1.1–MYD06 |
---|---|---|---|
1.6 µm | |||
land | 13.63 | −0.70 | −1.52 |
ocean | 14.50 | −0.47 | −1.23 |
2.x µm | |||
land | 12.89 | −0.25 | −1.90 |
ocean | 15.13 | 0.01 | −1.45 |
3.7 µm | |||
land | 12.62 | −0.55 | 0.70 |
ocean | 14.65 | −1.22 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Platnick, S.; Meyer, K.; Amarasinghe, N.; Wind, G.; Hubanks, P.A.; Holz, R.E. Sensitivity of Multispectral Imager Liquid Water Cloud Microphysical Retrievals to the Index of Refraction. Remote Sens. 2020, 12, 4165. https://doi.org/10.3390/rs12244165
Platnick S, Meyer K, Amarasinghe N, Wind G, Hubanks PA, Holz RE. Sensitivity of Multispectral Imager Liquid Water Cloud Microphysical Retrievals to the Index of Refraction. Remote Sensing. 2020; 12(24):4165. https://doi.org/10.3390/rs12244165
Chicago/Turabian StylePlatnick, Steven, Kerry Meyer, Nandana Amarasinghe, Galina Wind, Paul A. Hubanks, and Robert E. Holz. 2020. "Sensitivity of Multispectral Imager Liquid Water Cloud Microphysical Retrievals to the Index of Refraction" Remote Sensing 12, no. 24: 4165. https://doi.org/10.3390/rs12244165
APA StylePlatnick, S., Meyer, K., Amarasinghe, N., Wind, G., Hubanks, P. A., & Holz, R. E. (2020). Sensitivity of Multispectral Imager Liquid Water Cloud Microphysical Retrievals to the Index of Refraction. Remote Sensing, 12(24), 4165. https://doi.org/10.3390/rs12244165