The Atmospheric Boundary Layer and Surface Conditions during Katabatic Wind Events over the Terra Nova Bay Polynya
Abstract
:1. Introduction
2. Data and Methods
2.1. UAS Flights
2.2. Manuela AWS
2.3. Satellite Data
2.3.1. Sea Ice Concentration
2.3.2. Ice Surface Temperature
2.4. Numerical Modelling Results
2.4.1. Antarctic Mesoscale Prediction System
2.4.2. MERRA Reanalysis
3. Synoptic Overview of the Ross Sea and Terra Nova Bay Region
Upwind Conditions on Inexpressible Island
4. The Atmosphere–Surface Coupling during Different Stages of Polynya Development
4.1. 18 and 19 September 2012
4.2. 22 and 25 September 2012
5. Validation of AMPS Results
5.1. Manuela AWS and AMPS Model Time Series for Temperature and Wind Speed
5.2. AMPS Results for 18 September 2012
5.3. AMPS Results for 19 September 2012
5.4. AMPS Results for 22 September 2012
5.5. AMPS Results for 25 September 2012
6. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kurtz, D.; Bromwich, D. A Recurring, Atmospherically Forced Polynya in Terra Nova Bay. In Oceanology of the Antarctic Continental Shelf; American Geophysical Union (AGU): Washington, DC, USA, 2013; pp. 177–201. [Google Scholar] [CrossRef]
- VanWoert, M. Wintertime dynamics of the Terra Nova Bay polynya. J. Geophys. Res. Oceans 1999, 104, 7753–7769. [Google Scholar] [CrossRef]
- Ciappa, A.; Pietranera, L.; Budillon, G. Observations of the Terra Nova Bay (Antarctica) polynya by MODIS ice surface temperature imagery from 2005 to 2010. Remote Sens. Environ. 2012, 119, 158–172. [Google Scholar] [CrossRef]
- Parish, T.; Bromwich, D. Reexamination of the Near-Surface Airflow over the Antarctic Continent and Implications on Atmospheric Circulations at High Southern Latitudes. Mon. Weather Rev. 2007, 135, 1961–1973. [Google Scholar] [CrossRef]
- Turner, J.; Chenoli, S.; abu Samah, A.; Marshall, G.; Phillips, T.; Orr, A. Strong wind events in the Antarctic. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Ebner, L.; Heinemann, G.; Haid, V.; Timmermann, R. Katabatic winds and polynya dynamics at Coats Land, Antarctica. Antarct. Sci. 2014, 26, 309–326. [Google Scholar] [CrossRef]
- Petrelli, P.; Bindoff, N.; Bergamasco, A. The sea ice dynamics of Terra Nova Bay and Ross Ice Shelf Polynyas during a spring and winter simulation. J. Geophys. Res. Oceans 2008, 113. [Google Scholar] [CrossRef]
- Bromwich, D. An Extraordinary Katabatic Wind Regime at Terra Nova Bay, Antarctica. Mon. Weather Rev. 1989, 117, 688–695. [Google Scholar] [CrossRef] [Green Version]
- Dale, E.; McDonald, A.; Coggins, J.; Rack, W. Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region. Cryosphere 2017, 11, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Parish, T.; Cassano, J. The Role of Katabatic Winds on the Antarctic Surface Wind Regime. Mon. Weather Rev. 2003, 131, 317–333. [Google Scholar] [CrossRef]
- Knuth, S.; Cassano, J. An Analysis of Near-Surface Winds, Air Temperature, and Cyclone Activity in Terra Nova Bay, Antarctica, from 1993 to 2009. J. Appl. Meteorol. Climatol. 2011, 50, 662–680. [Google Scholar] [CrossRef]
- Parish, T.R.; Bromwich, D.H. Instrumented Aircraft Observations of the Katabatic Wind Regime Near Terra Nova Bay. Mon. Weather Rev. 1989, 117, 1570–1585. [Google Scholar] [CrossRef] [Green Version]
- Nakata, K.; Ohshima, K.; Nihashi, S.; Kimura, N.; Tamura, T. Variability and ice production budget in the Ross Ice Shelf Polynya based on a simplified polynya model and satellite observations. J. Geophys. Res. Oceans 2015, 120, 6234–6252. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Ma, Y.; Chen, F.; Liu, J.; Yao, W.; Qiu, Y.; Zhang, S. Trends in the Stability of Antarctic Coastal Polynyas and the Role of Topographic Forcing Factors. Remote Sens. 2020, 12, 1043. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.; Smith, M.; Thomson, J.; Stammerjohn, S.; Ackley, S.; Loose, B. Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica. Cryosphere 2020, 14, 3329–3347. [Google Scholar] [CrossRef]
- Minnett, P.; Key, E. Chapter 4 Meteorology and Atmosphere–Surface Coupling in and around Polynyas. In Polynyas: Windows to the World; Smith, W., Barber, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 74, pp. 127–161. [Google Scholar] [CrossRef]
- Ohshima, K.; Nihashi, S.; Iwamoto, K. Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation. Geosci. Lett. 2016, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Bromwich, D.; Kurtz, D. Experiences of Scott’s Northern Party: Evidence for a relationship between winter katabatic winds and the Terra Nova Bay polynya. Polar Rec. 1982, 21, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, D.; Bromwich, D. Satellite observed behavior of the Terra Nova Bay Polynya. J. Geophys. Res. Oceans 1983, 88, 9717–9722. [Google Scholar] [CrossRef] [Green Version]
- Morelli, S.; Parmiggiani, F. Wind over Terra Nova Bay (Antarctica) during a polynya event: Eta model simulations and satellite microwave observations. Eur. Phys. J. Plus 2013, 128, 135. [Google Scholar] [CrossRef]
- Sprovieri, F.; Pirrone, N.; Hedgecock, I.; Landis, M.; Stevens, R. Intensive atmospheric mercury measurements at Terra Nova Bay in Antarctica during November and December 2000. J. Geophys. Res. 2002, 107, 4722. [Google Scholar] [CrossRef]
- Vecchiato, M.; Gregoris, E.; Barbaro, E.; Barbante, C.; Piazza, R.; Gambaro, A. Fragrances in the seawater of Terra Nova Bay, Antarctica. Sci. Total Environ. 2017, 593–594, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Pane, L.; Feletti, M.; Francomacaro, B.; Mariottini, G. Summer coastal zooplankton biomass and copepod community structure near the Italian Terra Nova Base (Terra Nova Bay, Ross Sea, Antarctica). J. Plankton Res. 2004, 26, 1479–1488. [Google Scholar] [CrossRef] [Green Version]
- Manzella, G.; Meloni, R.; Picco, P. Current, Temperature and Salinity Observations in the Terra Nova Bay Polynya Area. In Oceanography of the Ross Sea Antarctica; Springer: Milano, Italy, 1999; pp. 165–173. [Google Scholar]
- Knuth, S.; Cassano, J.; Maslanik, J.; Herrmann, P.; Kernebone, P.; Crocker, R.; Logan, N. Unmanned aircraft system measurements of the atmospheric boundary layer over Terra Nova Bay, Antarctica. Earth Syst. Sci. Data 2013, 5. [Google Scholar] [CrossRef] [Green Version]
- Cassano, J.; Seefeldt, M.; Palo, S.; Knuth, S.; Bradley, A.; Herrman, P.; Kernebone, P.; Logan, N. Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica, using unmanned aerial systems. Earth Syst. Sci. Data 2016, 8, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Lazzara, A.; Weidner, G.; Keller, L.; Thom, J.; Cassano, J. Antarctic Automatic Weather Station Program: 30 Years of Polar Observation. Bull. Am. Meteorol. Soc. 2012, 93, 1519–1537. [Google Scholar] [CrossRef]
- Parish, T. A Numerical Study of Strong Katabatic Winds over Antarctica. Mon. Weather Rev. 1984, 112, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Bromwich, D.; Du, Y.; Parish, T. Numerical Simulation of Winter Katabatic Winds from West Antarctica Crossing Siple Coast and the Ross Ice Shelf. Mon. Weather Rev. 1994, 122. [Google Scholar] [CrossRef] [Green Version]
- Gallée, H. Air-sea interactions over Terra Nova Bay during winter: Simulation with a coupled atmosphere-polynya model. J. Geophys. Res. Atmos. 1997, 102, 13835–13849. [Google Scholar] [CrossRef]
- Dare, R.; Atkinson, B. Numerical modeling of atmospheric response to polynyas in the Southern Ocean sea ice zone. J. Geophys. Res. Atmos. 1999, 104, 16691–16708. [Google Scholar] [CrossRef]
- Adams, S.; Willmes, S.; Heinemann, G.; Rozman, P.; Timmermann, R.; Schröder, D. Evaluation of simulated sea-ice concentrations from sea-ice/ocean models using satellite data and polynya classification methods. Polar Res. 2011, 30, 7124. [Google Scholar] [CrossRef]
- Bromwich, D.; Monaghan, A.; Manning, K.; Powers, J. Real-Time Forecasting for the Antarctic: An Evaluation of the Antarctic Mesoscale Prediction System (AMPS). Mon. Weather Rev. 2005, 133, 579–603. [Google Scholar] [CrossRef] [Green Version]
- Bourassa, M.; Gille, S.; Bitz, C.; Carlson, D.; Cerovecki, I.; Clayson, C.; Cronin, M.; Drennan, W.; Fairall, C.; Hoffman, R.; et al. High-Latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research. Bull. Am. Meteorol. Soc. 2013, 94, 403–423. [Google Scholar] [CrossRef]
- Powers, J.; Monaghan, A.; Cayette, A.; Bromwich, D.; Kuo, Y.; Manning, K. Real-Time Mesoscale Modeling Over Antarctica: The Antarctic Mesoscale Prediction System. Bull. Am. Meteorol. Soc. 2003, 84, 1533–1545. [Google Scholar] [CrossRef]
- Melsheimer, C.; Spreen, G. AMSR2 ASI sea ice concentration data, Arctic, version 5.4 (NetCDF) (July 2012–December 2018). PANGAEA 2019. [Google Scholar] [CrossRef]
- Tschudi, M.; Riggs, G.; Hall, D.; Romón, O. VIIRS/NPP Ice Surface Temperature 6-Min L2 Swath 750m; Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Maqueda, M.M.; Willmott, A.; Biggs, N. Polynya Dynamics: A Review of Observations and Modeling. Rev. Geophys. 2004, 42. [Google Scholar] [CrossRef] [Green Version]
- Vignon, É.; Traull, É.O.; Berne, A. On the fine vertical structure of the low troposphere over the coastal margins of East Antarctica. Atmos. Chem. Phys. 2019, 19, 4659–4683. [Google Scholar] [CrossRef] [Green Version]
- Spreen, G.; Kaleschke, L.; Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res. Oceans 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Parmigianni, F. Multi-year measurement of Terra Nova Bay winter polynya extents. Eur. Phys. J. Plus 2011, 126. [Google Scholar] [CrossRef]
- Massom, R.; Harris, P.; Michael, K.; Potter, M. The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann. Glaciol. 1998, 27, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Rothrock, D. Thin ice thickness from satellite thermal imagery. J. Geophys. Res. Oceans 1996, 101, 25753–25766. [Google Scholar] [CrossRef]
- Key, J.; Mahoney, R.; Liu, Y.; Romanov, P.; Tschudi, M.; Appel, I.; Maslanik, J.; Baldwin, D.; Wang, X.; Meade, P. Snow and ice products from Suomi NPP VIIRS. J. Geophys. Res. Atmos. 2013, 118, 12816–12830. [Google Scholar] [CrossRef]
- Powers, J.; Kuo, Y.; Bresch, J.; Cassano, J.; Bromwich, D.; Cayette, A. The Antarctic Mesoscale Prediction System. In Proceedings of the 6th Conference on Polar Meteorology and Oceanography, San Diego, CA, USA, 14–18 May 2001; pp. 506–510. [Google Scholar]
- Center, E.M. The GFS atmospheric model. Natl. Centers Environ. Predict. Off. Note 2003, 442, 14. [Google Scholar]
- Bromwich, D.; Otieno, F.; Hines, K.; Manning, K.; Shilo, E. Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic. J. Geophys. Res. Atmos. 2013, 118, 274–292. [Google Scholar] [CrossRef] [Green Version]
- Rienecker, M.; Suarez, M.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.; Schubert, S.; Takacs, L.; Kim, G.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Carrasco, J.; Bromwich, D. Mesoscale cyclogenesis dynamics over the southwestern Ross Sea, Antarctica. J. Geophys. Res. 1993, 98, 12973–12995. [Google Scholar] [CrossRef]
- Bromwich, D.; Steinhoff, D.; Simmonds, I.; Keay, K.; Fogt, R. Climatological aspects of cyclogenesis near Adélie Land Antarctica. Tellus Dyn. Meteorol. Oceanogr. 2011, 63, 921–938. [Google Scholar] [CrossRef]
- Seefeldt, M.; Cassano, J.; Parish, T. Dominant Regimes of the Ross Ice Shelf Surface Wind Field during Austral Autumn 2005. J. Appl. Meteorol. Climatol. 2007, 46, 1933–1955. [Google Scholar] [CrossRef]
- Renfrew, I.; Anderson, P. The surface climatology of an ordinary katabatic wind regime in Coats Land, Antarctica. Tellus Ser. Dyn. Meteorol. Oceanogr. 2002, 54, 463–484. [Google Scholar] [CrossRef]
- Davolio, S.; Buzzi, A. Mechanisms of Antarctic katabatic currents near Terra Nova Bay. Tellus A 2002, 54, 187–204. [Google Scholar] [CrossRef]
- Bromwich, D. Satellite Analyses of Antarctic Katabatic Wind Behavior. Bull. Am. Meteorol. Soc. 1989, 70, 738–749. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, E.; Lachlan-Cope, T.; Renfrew, I.; King, J. Convective heat transfer over thin ice covered coastal polynyas. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Jolly, B.; McDonald, A.; Coggins, J.; Zawar-Reza, P.; Cassano, J.; Lazzara, M.; Graham, G.; Plank, G.; Petterson, O.; Dale, E. A Validation of the Antarctic Mesoscale Prediction System Using Self-Organizing Maps and High-Density Observations from SNOWWEB. Mon. Weather. Rev. 2016, 144, 3181–3200. [Google Scholar] [CrossRef]
- Parish, T.; Cassano, J. Forcing of the Wintertime Antarctic Boundary Layer Winds from the NCEP–NCAR Global Reanalysis. J. Appl. Meteorol. 2001, 40, 810–821. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Lee, W.; Stevens, C.; Jendersie, S.; Nam, S.; Yun, S.; Hwang, C.; Jang, G.; Lee, J. Variability in high-salinity shelf water production in the Terra Nova Bay polynya, Antarctica. Ocean Sci. 2020, 16, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Bromwich, D.; Kurtz, D. Katabatic wind forcing of the Terra Nova Bay polynya. J. Geophys. Res. Oceans 1984, 89, 3561–3572. [Google Scholar] [CrossRef]
- Heinemann, G. The polar regions: A natural laboratory for boundary layer meteorology—A review. Meteorol. Z. 2008, 17, 589–601. [Google Scholar] [CrossRef]
- Ebner, L.; Schröder, D.; Heinemann, G. Impact of Laptev Sea flaw polynyas on the atmospheric boundary layer and ice production using idealized mesoscale simulations. Polar Res. 2011, 30, 7210. [Google Scholar] [CrossRef]
- Lo, K. On the boundary-layer flow over a Canadian Archipelago polynya. Bound. Layer Meteorol. 1986, 35, 53–71. [Google Scholar] [CrossRef]
Start Time | End Time | Data | Name | Profiles Analyzed |
---|---|---|---|---|
04:30 UTC | 20:37 UTC | 18 September 2020 | Flight 1 | Profiles 1–4 |
05:41 UTC | 20:04 UTC | 18 September 2020 | Flight 2 | Profile 0 |
04:06 UTC | 13:20 UTC | 19 September 2020 | Flight 3 | Profiles 1–4 |
04:34 UTC | 20:04 UTC | 22 September 2020 | Flight 4 | Profiles 1–4 |
03:15 UTC | 21:16 UTC | 25 September 2020 | Flight 5 | Profiles 5–7 |
04:33 UTC | 18:58 UTC | 25 September 2020 | Flight 6 | Profiles 1–4 |
18–25 September 2012 | RMSE (T) (C) | Corr. coef. (T) | MBE (T) (C) | RMSE (WS) (m/s) | Corr. coef. (WS) | MBE(WS) (m/s) |
---|---|---|---|---|---|---|
Manuela AWS | 2.26 | 0.89 | 0.72 | 5.14 | 0.84 | 0.37 |
Date | Profile Number | RMSE (T) (C) | Corr. coef. (T) | p-Value (T) | MBE (T) (C) | RMSE (WS) (m/s) | Corr. coef. (WS) | p-Value (WS) | MBE (WS) (m/s) |
---|---|---|---|---|---|---|---|---|---|
18 September | Profile 0 | 2.04 | 0.94 | 0.000 | 2.03 | 2.10 | −0.62 | 0.000 | −1.29 |
18 September | Profile 1 | 1.62 | −0.95 | 0.000 | 0.09 | 4.81 | 0.85 | 0.000 | 4.12 |
18 September | Profile 2 | 2.20 | −0.95 | 0.000 | −0.29 | 7.55 | 0.86 | 0.000 | 7.37 |
18 September | Profile 3 | 2.28 | −0.89 | 0.000 | 0.55 | 8.78 | 0.89 | 0.000 | 8.58 |
18 September | Profile 4 | 1.86 | 0.96 | 0.000 | 1.77 | 15.58 | −0.71 | 0.000 | −15.54 |
19 September | Profile 1 | 2.46 | 0.78 | 0.000 | 2.22 | 3.76 | 0.87 | 0.000 | −2.97 |
19 September | Profile 2 | 2.05 | 0.70 | 0.000 | 1.85 | 4.62 | 0.80 | 0.000 | −3.55 |
19 September | Profile 3 | 1.17 | 0.70 | 0.000 | 1.11 | 4.39 | 0.94 | 0.000 | −4.03 |
19 September | Profile 4 | 0.93 | 0.76 | 0.000 | 0.76 | 7.43 | 0.98 | 0.000 | −7.25 |
22 September | Profile 1 | 2.37 | −0.98 | 0.000 | −1.64 | 1.27 | 0.94 | 0.000 | −0.97 |
22 September | Profile 2 | 2.92 | −0.45 | 0.019 | 2.68 | 6.60 | 0.38 | 0.048 | 5.83 |
22 September | Profile 3 | 1.14 | −0.47 | 0.011 | 0.46 | 11.52 | −0.68 | 0.000 | 10.87 |
22 September | Profile 4 | 1.26 | −0.62 | 0.001 | −0.44 | 14.93 | −0.78 | 0.000 | 14.20 |
25 September | Profile 1 | 5.08 | 0.72 | 0.000 | −4.99 | 3.21 | −0.53 | 0.000 | −2.08 |
25 September | Profile 2 | 2.55 | 0.99 | 0.000 | −2.52 | 10.30 | −0.70 | 0.000 | 10.13 |
25 September | Profile 3 | 4.01 | 0.98 | 0.000 | −4.00 | 2.70 | 0.41 | 0.118 | 1.18 |
25 September | Profile 4 | 1.13 | 0.99 | 0.000 | −1.12 | 3.00 | −0.51 | 0.006 | −2.92 |
25 September | Profile 5 | 2.01 | 0.95 | 0.000 | −1.94 | 26.80 | 0.07 | 0.695 | 26.78 |
25 September | Profile 6 | 3.59 | 0.98 | 0.000 | −3.58 | 5.63 | 0.64 | 0.000 | 5.35 |
25 September | Profile 7 | 1.07 | 0.97 | 0.000 | −1.02 | 5.32 | 0.58 | 0.003 | −4.50 |
Date | Profile Number | RMSE (T) (C) | Corr. coef. (T) | p-Value (T) | MBE (T) (C) | RMSE (WS) (m/s) | Corr. coef. (WS) | p-Value (WS) | MBE (WS) (m/s) |
---|---|---|---|---|---|---|---|---|---|
18 September | Profile 0 | 1.59 | 0.95 | 0.000 | 1.56 | 1.40 | 0.74 | 0.000 | −0.27 |
18 September | Profile 1 | 3.38 | 0.97 | 0.000 | 3.32 | 4.07 | −0.15 | 0.322 | 2.29 |
18 September | Profile 2 | 3.37 | 0.91 | 0.000 | 3.36 | 4.84 | 0.03 | 0.818 | 1.61 |
18 September | Profile 3 | 3.10 | 0.58 | 0.000 | 3.06 | 1.95 | 0.94 | 0.000 | −1.21 |
18 September | Profile 4 | 2.62 | 0.94 | 0.000 | 2.61 | 7.75 | 0.95 | 0.000 | −6.79 |
19 September | Profile 1 | 2.44 | −0.78 | 0.000 | 2.32 | 5.94 | 0.92 | 0.000 | −5.48 |
19 September | Profile 2 | 2.29 | 0.37 | 0.002 | 2.23 | 8.23 | 0.88 | 0.000 | −7.93 |
19 September | Profile 3 | 1.28 | −0.67 | 0.000 | −0.29 | 5.56 | 0.97 | 0.000 | −5.34 |
19 September | Profile 4 | 0.70 | −0.61 | 0.000 | −0.26 | 7.81 | 0.92 | 0.000 | −7.52 |
22 September | Profile 1 | 1.07 | 0.89 | 0.000 | 0.86 | 3.53 | 0.82 | 0.000 | 2.49 |
22 September | Profile 2 | 0.22 | 0.97 | 0.000 | 0.06 | 3.16 | 0.65 | 0.000 | −0.88 |
22 September | Profile 3 | 0.65 | 0.97 | 0.000 | −0.57 | 2.18 | 0.86 | 0.000 | −0.43 |
22 September | Profile 4 | 0.90 | 0.99 | 0.000 | −0.90 | 1.21 | 0.97 | 0.000 | 0.76 |
25 September | Profile 1 | 4.32 | −0.44 | 0.000 | −4.08 | 3.33 | 0.11 | 0.192 | 0.41 |
25 September | Profile 2 | 2.55 | 0.88 | 0.000 | −2.68 | 6.02 | 0.13 | 0.304 | 4.21 |
25 September | Profile 3 | 4.10 | 0.28 | 0.337 | −3.99 | 5.90 | −0.42 | 0.132 | −4.84 |
25 September | Profile 4 | 1.12 | −0.29 | 0.070 | 0.32 | 11.82 | -0.63 | 0.000 | −10.94 |
25 September | Profile 5 | 1.61 | −0.13 | 0.422 | −1.12 | 20.60 | 0.14 | 0.396 | 20.07 |
25 September | Profile 6 | 3.76 | 0.91 | 0.000 | −3.75 | 4.51 | 0.95 | 0.000 | 4.22 |
25 September | Profile 7 | 0.46 | 0.85 | 0.000 | 0.08 | 3.47 | −0.76 | 0.000 | −2.94 |
Date | Profile Number | RMSE (T) (C) | Corr. coef. (T) | p-Value (T) | MBE (T) (C) | RMSE (WS) (m/s) | Corr. coef. (WS) | p-Value (WS) | MBE (WS) (m/s) |
---|---|---|---|---|---|---|---|---|---|
18 September | Profile 0 | 1.02 | −0.43 | 0.001 | 0.18 | 1.56 | 0.49 | 0.000 | −1.01 |
18 September | Profile 1 | 2.49 | −0.72 | 0.000 | 0.17 | 8.10 | 0.76 | 0.000 | −7.65 |
18 September | Profile 2 | 2.14 | −0.59 | 0.000 | 0.83 | 6.63 | 0.95 | 0.000 | −6.40 |
18 September | Profile 3 | 2.16 | −0.71 | 0.000 | −0.89 | 5.02 | 0.88 | 0.000 | −4.90 |
18 September | Profile 4 | 2.04 | −0.86 | 0.000 | 0.26 | 4.71 | 0.07 | 0.471 | −4.14 |
19 September | Profile 1 | 3.28 | −0.92 | 0.000 | −2.21 | 3.14 | −0.53 | 0.000 | −1.68 |
19 September | Profile 2 | 3.50 | −0.85 | 0.000 | −2.34 | 4.07 | −0.84 | 0.000 | −2.07 |
19 September | Profile 3 | 2.54 | 0.88 | 0.000 | −2.50 | 4.81 | −0.86 | 0.000 | −4.04 |
19 September | Profile 4 | 2.25 | 0.71 | 0.000 | −2.20 | 5.92 | −0.78 | 0.000 | −5.21 |
22 September | Profile 1 | 0.30 | 0.97 | 0.000 | −0.20 | 2.33 | −0.18 | 0.128 | −1.04 |
22 September | Profile 2 | 0.70 | 0.43 | 0.000 | 0.14 | 3.09 | 0.53 | 0.000 | −2.47 |
22 September | Profile 3 | 0.76 | 0.88 | 0.000 | −0.72 | 4.91 | 0.30 | 0.014 | −4.32 |
22 September | Profile 4 | 0.46 | 0.43 | 0.002 | −0.03 | 4.98 | −0.35 | 0.012 | −4.08 |
25 September | Profile 1 | 2.73 | 0.98 | 0.000 | −2.71 | 9.29 | −0.22 | 0.040 | 9.04 |
25 September | Profile 2 | 2.55 | −0.56 | 0.000 | −1.93 | 2.65 | 0.81 | 0.000 | −2.47 |
25 September | Profile 3 | 4.12 | 0.05 | 0.700 | −3.84 | 6.75 | 0.14 | 0.230 | −6.44 |
25 September | Profile 4 | 0.96 | 0.78 | 0.000 | −0.62 | 8.08 | −0.68 | 0.000 | −6.98 |
25 September | Profile 5 | 0.97 | 0.33 | 0.004 | −0.37 | 6.55 | 0.40 | 0.000 | 6.15 |
25 September | Profile 6 | 2.07 | −0.11 | 0.329 | −1.50 | 8.23 | 0.22 | 0.038 | −6.26 |
25 September | Profile 7 | 3.34 | 0.17 | 0.172 | −2.71 | 4.95 | 0.93 | 0.000 | −4.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wenta, M.; Cassano, J.J. The Atmospheric Boundary Layer and Surface Conditions during Katabatic Wind Events over the Terra Nova Bay Polynya. Remote Sens. 2020, 12, 4160. https://doi.org/10.3390/rs12244160
Wenta M, Cassano JJ. The Atmospheric Boundary Layer and Surface Conditions during Katabatic Wind Events over the Terra Nova Bay Polynya. Remote Sensing. 2020; 12(24):4160. https://doi.org/10.3390/rs12244160
Chicago/Turabian StyleWenta, Marta, and John J. Cassano. 2020. "The Atmospheric Boundary Layer and Surface Conditions during Katabatic Wind Events over the Terra Nova Bay Polynya" Remote Sensing 12, no. 24: 4160. https://doi.org/10.3390/rs12244160
APA StyleWenta, M., & Cassano, J. J. (2020). The Atmospheric Boundary Layer and Surface Conditions during Katabatic Wind Events over the Terra Nova Bay Polynya. Remote Sensing, 12(24), 4160. https://doi.org/10.3390/rs12244160