
remote sensing  

Article

Differential Kalman Filter Design for GNSS Open
Loop Tracking

Tian Jin 1,2 , Heliang Yuan 1 , Keck-Voon Ling 3, Honglei Qin 1,* and Jianrong Kang 2,4

1 School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Haidian District,
Beijing 100191, China; jintian@buaa.edu.cn (T.J.); yuanheliang@buaa.edu.cn (H.Y.)

2 Shaanxi Key Laboratory of Integrated and Intelligent Navigation, Xi’an 710068, China; 13772138621@163.com
3 School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue,

Singapore 639798, Singapore; ekvling@ntu.edu.sg
4 Xi’an Research Institute of Navigation Technology, Xi’an 710068, China
* Correspondence: ateqhl@buaa.edu.cn

Received: 21 January 2020; Accepted: 24 February 2020; Published: 3 March 2020
����������
�������

Abstract: Global navigation satellite system (GNSS) positioning in an urban environment is in need
for accurate, reliable and robust positioning. Unfortunately, conventional closed-loop tracking fails
to meet the demand. The open loop tracking shows improved robustness, however, the precision
is unsatisfactory. We propose a differential Kalman filter for open loop, of which the measurement
vector contains the differential values of open loop navigation results between adjacent epochs.
The differential Kalman filter makes use of the satellite geometry (i.e., spatial domain) and motion
relationship (i.e., temporal domain) to filter frequency and code phase estimations of conventional
open loop tracking. The improved performances of this architecture have been analyzed theoretically
and demonstrated by road tests in an urban environment. The proposed architecture shows more
than 50% accuracy improvement than the conventional open-loop tracking architecture.
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1. Introduction

Global navigation satellite system (GNSS) has been widely used over the past several decades,
and demand for GNSS receivers to operate in a challenging environment is increasing. The traditional
GNSS receivers usually employ 8–12 scalar tracking loops, processing each channel independently.
However, the performances of the traditional receiver will deteriorate in low signal-to-noise ratio
(SNR) or high dynamic environments, and it will even completely lose lock in the worst case.

To improve the reliability and robustness of scalar tracking loops, some optimization methods are
proposed. Curran [1] analyzed design and performance of discrete-time frequency-locked loop (FLL).
Unambiguous frequency aided (UFA) phase-locked loop (PLL) was presented to combine frequency
and phase tracking together without ambiguity [2]. Optimized carrier tracking loop design for real-time
high-dynamics GNSS receivers was introduced [3]. Yang [4,5] introduced a generalized theoretical
and optimal framework for PLL and FLL. On the other hand, a Kalman filter (KF) is introduced to
scalar tracking loops to substitute conventional filter. Psiaki [6] analyzed the performances of the KF in
a weak signal, while Ziedan [7] offered a more comprehensive analysis. Omidi et al. [8] and Gazor
et al. [9] analyzed the structure and performance of the differential Kalman filter. Another method to
improve position accuracy is differential position. Zhao [10] introduced using KF to estimate ambiguity
in RTK under multi-constellation condition, enhancing positioning precision and availability.

A closed-loop architecture with negative feedback could easily lose lock in challenging
environments. To improve the robustness, an open loop tracking (OL) [11] that precisely acquires a
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signal parameter as the tracking result is presented. The feed-forward estimation technique employed
by open loop tracking can effectively overcome the limitation of traditional closed-loop sequential
architecture [12]. At the same time, the open loop combines acquisition and tracking together, making
it possible to track signal in dynamic environment [13]. An open loop tracking aided by the Kalman
filter (OL-KF) achieves a better tracking accuracy performance [14]. Han et al. [15] combined open loop
with an unscented Kalman filter (UKF) for high dynamic carrier tracking. Tahir et al. [16] combined
open loop with smooth filters for carrier recovery. These architectures were named “quasi-open-loop”.

The pseudorange and pseudorange rate estimated by open loop tracking approaches are affected
by different kinds of propagation errors. Considering these common errors can be eliminated by
differential methods between adjacent epochs, we propose an open loop with a differential Kalman
filter (OL-DKF). The proposed architecture focuses on combining the tracking result from all channels
as input and the position solution as output.

First, the architecture of OL-DKF is introduced. Second, the performance of OL-DKF is analyzed
theoretically. Third, theoretical performance comparison among open loop, open loop with Kalman
filter and the proposed open loop with a differential Kalman filter is presented. Finally, data
collected from road tests in different urban test cases are used to demonstrate improvement of the
proposed architecture.

2. Structure of OL-DKF

The architecture of the open loop (OL) is presented in Figure 1. First, an initial position, velocity
and time (PVT) solution is obtained from the conventional receiver. Second, a two-step procedure is
carried out to obtain a navigation solution. The code phase and Doppler frequency are first estimated
from a two-dimensional correlation function for each tracking channel. The second step is that
pseudoranges and pseudorange rates are calculated by code phases and frequencies, assisted with the
initialization results. Finally, the calculation of the position, velocity and time (PVT) is performed. This
approach does not exploit the geometrical relationships between the satellites and the receiver, as well
as the motion relationships between different epochs.

To improve the accuracy of open loop tracking, the architecture of OL-KF is proposed in
Figure 2 [14]. The initial receiver PVT is also obtained at first. Then, a two-step procedure is also
carried out to obtain the subsequent PVT solutions. In the first step, the code phase and Doppler
frequency are obtained in each channel, which is similar to the first step of the open loop. Then, the
Doppler frequency is filtered by the Kalman filter and the code phase is smoothed by the filtered
Doppler frequency. In the second step, pseudoranges and pseudorange rates are obtained to calculate
PVT, which is also similar to second step of open loop. The tracking accuracy of this model is higher
than that of open loop because the model exploits the motion relationship between pseudorange
and pseudorange rate of each channel in filter procedure. However, it does not take account of the
geometrical relationships because the Kalman filter in each channel is independent with the others.

To utilize the geometrical relationship, a new architecture, open loop with a differential Kalman
filter, was proposed and shown in Figure 3. The receiver makes an initial PVT solution based on the
conventional receiver architecture. Then, a two-step procedure is carried out. In the first step, the
differential values of the code phase and Doppler frequency between adjacent epochs for all tracking
channels are obtained. The benefits of using the differential values include (a) exploiting temporal
correlation of tracking result and (b) mitigating common propagation errors in the estimations of code
phase and Doppler frequency. In the second step, the differential values are used as the measurement
for the differential Kalman filter to compute the navigation solution. The advantages of the proposed
approach are: (a) All channels are combined by the differential Kalman filter. (b)‘The differential
position and velocity as state vector exploit the motion relationship. (c) OL-KF filters independently
tracking result of each channel and separates tracking filter and position procedures. However,
OL-DKF utilizes the geometrical relationships between the receiver and the satellites to filter jointly all
the tracking results with one filter and combines filter with position procedures. (d) Different from
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using pseudoranges and pseudorange rates to calculate PVT in OL and OL-KF, the OL-DKF utilizes
differential code phases and Doppler frequencies to position. Thus, the OL-DKF can achieve better
positioning accuracy. In the OL search step, different correlation time can be selected according to the
different carrier-to-noise ratio of signal [17]. The acquisition search will be carried out in the bins near
the predicted values at the previous epoch. It will shorten the search dwell time. In Figures, it should
be noted that

[
τ1

k , . . . , τN
k

]
and

[
f 1
k , . . . , f N

k

]
are code phase and Doppler frequency,

[
ρ1

k , . . . ,ρN
k

]
and[ .

ρ
1
k , . . . ,

.
ρ

N
k

]
are pseudoranges and pseudorange rates of 1th to Nth satellite in the epoch K, respectively.
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2.1. State Model of the Proposed OL-DKF

In general, the state vector of a traditional receiver is shown as

Xk= [xk, yk, zk, bk,
.
xk,

.
yk,

.
zk, dk]

T (1)

where xk, yk and zk is the 3D position of the receiver in the Earth-Centered Earth-Fixed (ECEF)
coordinate,

.
xk,

.
yk and

.
zk is the 3D velocity of the receiver in the ECEF coordinate, bk is the receiver’s

clock bias and dk is the clock drift of receiver. The subscripts k denote k-th epoch.
The state model of OL-DKF is based on the differential state between adjacent epochs. The state

vector is the differential result of the traditional state vector, shown as:

Xk = Xk −Xk−1 = [ xk, yk, zk, bk,
.
xk,

.
yk,

.
zk, dk]

T (2)

where (−)k means the differential value between epoch k and k − 1. Xk contains the differential position,
differential clock bias, differential velocity and differential clock drift of the receiver.

The state transition equation is given by:

Xk = ΦXk−1 + Wk−1 (3)

where Φ is the state transition matrix from epoch k − 1 to k:
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Φ =



1 0 0 0 T 0 0 0
0 1 0 0 0 T 0 0
0 0 1 0 0 0 T 0
0 0 0 1 0 0 0 T
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(4)

T is the time interval between epoch k − 1 and k, W is process noise which is the Gaussian white
noise with zero mean, with covariance matrix Q, given by [18]

Q = E[Wk−1Wk−1
T]

=



T3σ2
x/3 0 0 0 T2σ2

x/2 0 0 0
0 T3σ2

y/3 0 0 0 T2σ2
y/2 0 0

0 0 T3σ2
z/3 0 0 0 T2σ2

z/2 0
0 0 0 Tσ2

b + T3σ2
d/3 0 0 0 T2σ2

d/2
T2σ2

x/2 0 0 0 Tσ2
x 0 0 0

0 T2σ2
y/2 0 0 0 Tσ2

y 0 0
0 0 T2σ2

z/2 0 0 0 Tσ2
z 0

0 0 0 T2σ2
d/2 0 0 0 Tσ2

d



(5)

Here, σ2
x, σ2

y and σ2
z are variances of process noise in the ECEF coordinate, σ2

b is the variance of the
oscillator phase noise and σ2

d is the variance of the oscillator frequency noise.

2.2. Measurement Model of the Proposed OL-DKF

The measurement model of OL-DKF is based on the differential open loop tracking result between
adjacent epochs, which is:

Zk = HkXk + Nk (6)

where zk = zk − zk−1 =
[
τ1

k , · · · , τN
k , f

1
k , · · · , f

N
k

]T
and zk =

[
τ1

k , · · · , τN
k , f 1

k , · · · , f N
k

]T
. τi

k and f
i
k are the

differential code phase and differential Doppler frequency, which are equal to τi
k − τ

i
k−1 and f i

k − f i
k−1,

the superscripts i denote ith satellite. Nk is the measurement noise, of which the covariance matrix is R.
Hk is transition matrix, given by:

Hk =



α1
k β1

k γ1
k 1 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

αN
k βN

k γN
k 1 0 0 0 0

0
· · ·

0
· · ·

0
· · ·

0
· · ·

α1
k
· · ·

β1
k
· · ·

γ1
k
· · ·

1
· · ·

0 0 0 0 αN
k βN

k γN
k 1


(7)

where
[
αi

k, βi
k,γi

k

]
is the line-of-sight unit vector between the ith satellite and the receiver in

ECEF coordinates.
The measurements, code phase τi

k and Doppler frequency f i
k, have relationships with the state

vector of the receiver Xk and the state vector of ith satellite, shown as:
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τ
i

k =
− fcode

c (
[
αi

k, βi
k,γi

k

]
xk − xi

k
yk − yi

k
zk − zi

k

+ (bk − bi
k))

f
i

k =
− fcarr

c (
[
αi

k, βi
k,γi

k

]
.
xk −

.
xi

k
.
yk −

.
yi

k
.
zk −

.
zi

k

+ (dk − di
k))

[
αi

k, βi
k,γi

k

]
=

[xk−xi
k,yk−yi

k,zk−zi
k]√

(xk−xi
k)

2
+(yk−yi

k)
2
+(zk−zi

k)
2

(8)

where xi
k, yi

k, zi
k, bi

k,
.
xi

k,
.
yi

k,
.
zi

k, and di
k are the position, clock bias, velocity and clock drift of ith satellite.

fcode is code rate, fcarr is carrier frequency. c is the speed of light.

3. Parameters Setting

In this chapter, performance analyses of OL-DKF, OL and OL-KF were carried out. OL-DKF
combines the tracking filter and position procedures. Its outputs (PVT) are the position and the tracking
result at same time. So, performance analyses among three methods mainly focus on the standard
deviation of the 3D position and velocity. Considering the simplified assumptions of noise contributions
(uncorrelated and identically distributed noise contributions), pseudoranges and pseudorange rates
were employed to calculate PVT in OL and OL-KF so that we used the position dilution of precision
(PDOP) factor to evaluate the position accuracy of OL and OL-KF. On the other hand, differential code
phases and Doppler frequencies were employed to calculate PVT in OL-DKF so that Ricatti function
was used to evaluate accuracy of OL-DKF.

3.1. Performance Analysis of OL-DKF

The performance analysis of the tracking loop was divided into the analysis on the input and
output of the filter. In OL-DKF model, the input performance depends on the accuracies of the code
phases and the Doppler frequencies from the OL tracking. The output performance depends on filter
accuracy of the differential Kalman filter.

3.1.1. Input Performance of OL-DKF

Based on the detection probability, we could analyze the input performances of OL-DKF. In the
OL, the integration result Vk at epoch k is obtained by coherent and non-coherent integration. The
in-phase branch coherent integration result I(k) and quadrature branch coherent integration result
Q(k) in epoch k can be expressed as [19]:{

I(k) = AkD(k)Rk(∆τk)sin c(π∆ fkT) cos(∆φk) + nI,k
Q(k) = AkD(k)Rk(∆τk)sin c(π∆ fkT) sin(∆φk) + nQ,k

(9)

where Ak is the signal amplitude, D(k) is the navigation message, Rk(∆τk) is the code autocorrelation
function, ∆τk is the code phase error, ∆ fk is the Doppler frequency error and ∆φk is the carrier phase
error. nI,k and nQ,k are the uncorrelated Gaussian white noise.

The magnitude of the complex coherent integration I(k) + jQ(k) without noise is:

Vk =
√

I2(k) + Q2(k) = AkRk(∆τk)
∣∣∣sin c(π∆ fkTcoh)

∣∣∣ (10)

Assuming the variances of nI,k and nQ,k are σ2
n, Vk obeys Rayleigh distribution in the absence of

satellite signal and Rice distribution in the presence of satellite signal. Based on the threshold and the
probability density function of the Rice distribution p(V), the detection probability PD is:
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PD =

∞∫
Th

p(V)dV (11)

We could analyze the input accuracy of OL-DKF by the detection probabilities of the code phase
and Doppler frequency in each search grid.

• Accuracy of the code phase measurement

The correlation peak between the local replica and incoming signal may occur in any of the search
grids due to the presence of noise. Assuming the maximum amplitude occurs in jth ( j = 0, 1, . . . , M)
search grid, and M is the total number of the search grids, the detection probability of jth the search

grid is
∞∫
0

p(V, ∆τ( j))dV. The probability that the amplitudes, except jth search grid, of all the search

grids are less than the maximum amplitude is
M∏

k=0
k, j

[1− PD(V, ∆τ(k))] [20]. The detection probability of

the code error ∆τ( j) in jth the search grid is

PD(∆τ( j)) =

∞∫
0

p(V, ∆τ( j)) ·
∏

∆τ(i)∈τrange
i, j

[1− PD(V, ∆τ(i))]dV (12)

where p(V, ∆τ( j)) = V · e−
V2+a2

τ
2 I0(aτV), aτ =

√
(1−

∣∣∣∆τ( j)
∣∣∣)2
· Tcoh ·C/N0 · 2 and τrange = [−1,−1 +

τstep,−1 + 2τstep, . . . , 1] is the code search range, τstep is code search step and I0(·) is first kind zero-order
modified Bessel’s function.

Based on Equation (12), Figure 4 shows the detection probabilities of code phase error with
a different carrier to noise ratio (C/N0) when Tcoh= 40 ms. The detection probability curves are
approximately a normal distribution under high C/N0 and tend to be uniformly distributed under low
C/N0 such as 16 dB-Hz. The standard deviation of code phase error στ is:

στ =

√√ ∑
∆τ( j)∈τrange

(∆τ( j))2
· PD(∆τ( j)) (13)Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 24 
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Figure 5 depicts the standard deviation of code phase error based on Equation (13). The standard
deviation of code phase error was lower when the search step was smaller or C/N0 was higher. So, the
standard deviation of code phase error was related to C/N0 and the length of the code search step.
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• Accuracy of the Doppler frequency measurement

The Doppler frequency detection probability can be similarly analyzed as above. When the
maximum amplitude point corresponds to jth the search grid with the Doppler frequency error ∆ f ( j),
the detection probability is:

PD(∆ f ( j)) =

∞∫
0

p(V, ∆ f ( j)) ·
∏

∆ f (i)∈ frange
i, j

[1− PD(V, ∆ f (i))]dV (14)

where p(V, ∆ f ( j)) = V · e−
v2+a2

f
2 I0(a f V), a f =

√
sin c2(∆ f ( j) · Tcoh) · Tcoh ·C/N0 · 2 and frange =

[− f ,− f + fstep,− f + 2 fstep, . . . , f ] is the frequency search range and fstep is carrier Doppler frequency
search step.

Based on Equation (14), Figure 6 shows the detection probabilities of the Doppler frequency error
with different C/N0 and Tcoh = 40 ms. The curves are an approximately normal distribution under high
C/N0 and tend to be uniformly distributed under low C/N0. The standard deviation of the Doppler
frequency error σ f is shown as:

σ f =

√√ ∑
∆ f ( j)∈ frange

(∆ f ( j))2
· PD(∆ f ( j)) (15)

According to Equations (14) and (15), the Doppler frequency error is related to the thermal noise
and not related to the dynamic. Figure 7 shows the standard deviation of the Doppler frequency error
when the frequency search step is 2.5 Hz and 5 Hz. The standard deviation of the Doppler frequency
error was lower when the search step was smaller or C/N0 was higher. It was related to C/N0 and the
length of frequency search step.
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3.1.2. Output Performance of OL-DKF

The tracking accuracy of OL-DKF under the thermal noise can be calculated by the prior
steady-state covariance matrix P−ss via the Ricatti function:

ΦP−ssΦ
T
−ΦP−ssH

T(HP−ssH
T + R)

−1
HP−ssΦ

T + Q− P−ss = 0 (16)

The posterior steady-state covariance matrix P+
ss contains processing noise and observation noise,

which is given by:
P+

ss = (I −KssH)P−ss(I −KssH)T + KssRKT
ss (17)

where the variances of measurement noise for each channel are 2σ2
τ and 2σ2

f , which can be derived

from Equations (13) and (15). Kss = P−ssHT(HP−ssHT + R)−1 is the steady-state gain of OL-DKF. So, the
estimate accuracies of position and velocity (σOL−DKF

Pos ,σOL−DKF
Vel ) are given by

σOL−DKF
Pos =

√
P+

ss(1, 1) + P+
ss(2, 2) + P+

ss(3, 3)

σOL−DKF
Vel =

√
P+

ss(5, 5) + P+
ss(6, 6) + P+

ss(7, 7)
(18)

where P+
ss(i, j) represents the ith row and jth column element of P+

ss .
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3.2. Accuracy of OL Outputs

The tracking accuracy of the receiver will directly affect positioning accuracy. Usually, the position
dilution of precision (PDOP) is used to describe the relationship between tracking accuracy and
positioning accuracy, which is related to the geometric location of the receiver and satellites. The
positioning and velocity accuracies of OL are shown as [19]:

σOL
Pos = PDOP× στ/ fcode × c
σOL

Vel = PDOP× σ f / fcarr × c (19)

where σOL
Pos is the standard deviation of 3D position of OL, σOL

Vel is the standard deviation of 3D velocity
of OL.

3.3. Accuracy of OL-KF Outputs

In the OL-KF architecture, the state vector contains carrier phase error and Doppler frequency
error. The accuracy of Doppler frequency ε f can be obtained from the Kalman filter output. The
accuracy of the original code phase is ετ, which can be calculated based on the non-coherent early
minus later power discriminator [14]. According to [21], the accuracy of smoothed pseudo-code εs−τ is
shown as:

ε2
s−τ =

√√
ε2
τ

L
+

(c/ fcarr)
2T2

cohε
2
f

4L2

(
2L(L− 1)(2L− 1)

3
+ (L− 1)2

)
(20)

where L is the smoothing depth. Appendix A provides detailed deduction steps.
Similar to Equation (19), the position and velocity accuracies of OL-KF can also be derived as:

σOL−KF
Pos = PDOP× εs−τ/ fcode × c
σOL−KF

Vel = PDOP× ε f / fcarr × c (21)

where σOL−KF
Pos is the standard deviation of 3D position of OL-KF and σOL−KF

Vel is the standard deviation
of 3D velocity of OL-KF.

4. Numerical Simulations and Comparisons Between OL, OL-KF and the Proposed OL-DKF

In this chapter, numerical simulations were conducted. The accuracy comparisons of position
and velocity among three architectures were carried out based on the above chapter with simplified
assumptions of noise contributions and no errors condition. There were two constellations used in the
analysis. One constellation had 10 satellites, while the other had 6 satellites, shown in Figure 8. The 6
satellites were picked out from the 10 satellites. Performance comparisons under more comprehensive
error conditions and bad geometry in the real city environment are shown in the next chapter.

4.1. Comparison of Velocity Accuracy

The velocity accuracies of OL-DKF, OL and OL-KF can be obtained from Equations (18), (19)
and (21). Note that the process noise variance of the proposed OL-DKF in the three-dimensional
directions σ2

x, σ2
y and σ2

z are set to the same value σ2. In the comparison between OL-KF and OL-DKF,
an equivalent processing noise should be set. The process noise variance in OL-KF is q2

los, which is
caused by the acceleration along the line-of-sight (LOS) vector from the satellite to the receiver. The
relationship between σ2 and q2

los is σ2 = PDOP2
· q2

los/3.
Figures 9 and 10 show the velocity accuracies of the three architectures with different processing

noises and satellite numbers. We could find that (a) velocity errors of three architectures were lower
with increasing satellite number in view and C/N0. (b) Velocity errors of OL-KF and OL-DKF were
smaller than those of OL. (c) The proposed OL-DKF show the performance improvement compared to
the OL-KF under the equivalent noise setting.
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4.2. Comparison of Position Accuracy

The position accuracies of OL-DKF, OL and OL-KF could be obtained from Equations (18), (19) and
(21). Figures 11 and 12 show the position accuracies of the three architectures with different processing
noise and satellite numbers when L is set 15. The conclusion of the position accuracy analysis was
similar to that of the velocity accuracy analysis.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 24 
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5. Experiments and Results

Actual road tests were conducted to evaluate the performance of OL-DKF, OL-KF and OL in
different urban test cases. Coherent time was set 40 ms. Road test cases included unblocked roads,
roads blocked by light railway and roads in the city canyon. The GPS signal was collected by down
conversion, filtering and analogue to digital sampling. Then, the digital intermediate frequency signal
was processed by receivers. Figure 13 shows the actual route where experimental data were collected.
The high precision inertial navigation system (IMU-FSAS) was used to record the vehicle trajectory,
which is shown as the red line in Figure 13.
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5.1. First Test Case: Unblocked Roads

Figure 14 shows the 3D map of the section of the route where the road environment is open and
SNR is high, but there are still a few high buildings that may cause interference to the receiver.
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The experimental results of this experiment are shown in Figures 15–19. It can be seen from
Figure 15 that there was good satellite visibility in this section of the route. Figures 16 and 17 show that
the position estimated by the proposed OL-DKF was less noisy and matched the data collected by the
IMU-FSAS better than the OL and OL-KF. Figure 18 shows the probability distribution of position error
where it can be observed that the position errors of OL-DKF were less than 2 m, while only 85% and
35% position errors of OL-KF and OL reached the same accuracy. Figure 19 shows three-dimensional
errors in East-North-Up(ENU) coordinate. The standard deviations of horizontal errors of OL-DKF,
OL-KF and OL were 0.4 m, 0.7 m and 1.5 m. The standard deviations of vertical errors of the above
architectures were 9.1 m, 8.8 m and 12.1 m.

5.2. Second Test Case: Roads Blocked by Light Railway

Figure 20 shows the 3D road map of the section of the route where roads blocked by a light railway.
Vehicle traversed the light railway from below. The yellow circle marks the light railway blockage area,
which made the receiver fail to view satellite in a short period. OL-DKF took a reasonable prediction
under this condition.
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The experimental results of this experiment are shown in Figures 21–25. It can be seen from
Figure 21 that satellite numbers were stable, except for about 2 s when no satellite was in view.
Figures 22 and 23 show that the position estimated by the proposed OL-DKF was less noisy and
matched the data collected by the IMU-FSAS better than the open loop algorithm. The prediction of
OL-DKF in the blocked area produced a satisfied result. Figure 24 shows the probability distribution
of the position error and we can observe that 85% position errors of OL-DKF were less than 3 m,
while 74% and 38% position errors of OL-KF and OL reached the same precision. Figure 25 shows
three-dimensional errors in ENU coordinate. The standard deviations of horizontal errors of OL-DKF,
OL-KF and OL were 0.9 m, 1.6 m and 2.1 m. The standard deviations of vertical errors of the above
architectures were 10.7 m, 10.5 m and 22.2 m.
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5.3. Third Test Case: Roads in City Canyon

Figure 26 shows the 3D road map of roads in city canyon where many tall buildings along both
sides of the roads affected the receiver considerably. The yellow circle marks the blocked area where
visible satellites change rapidly, and even frequently drops below 4. Moreover, poor SNR and PDOP
cause interference to the receiver. OL-DKF made reasonable predictions and constraints.
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The experimental results of this experiment are shown in Figures 27–31. It can be seen from
Figure 27 that satellite numbers were unstable and less than four frequently. Figures 28 and 29 shows
that the position estimated by the proposed OL-DKF was less noisy and much better than that by
the open loop algorithm. Figure 30 is the probability distribution of the position error. It can be
observed that 85% position errors of OL-DKF were within 10 m, while 51% and 45% of the position
errors of OL-KF and OL reached the same precision. Figure 31 shows three-dimensional errors in ENU
coordinate. The standard deviations of horizontal errors of OL-DKF, OL-KF and OL were 3.3 m, 5.1 m
and 7.8 m. The standard deviations of vertical errors of the above architectures were 15.3 m, 20.5 m
and 51.1 m.
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6. Conclusions

We proposed an open loop algorithm based on the differential Kalman filter, with a detailed
theoretical model. This architecture takes the differential values of open loop tracking results between
adjacent epochs, unlike the traditional open loop, which uses code phase and frequency estimates as
input. It reduces the influence of common errors in open loop tracking and obtains more accurate PVT
solutions. We theoretically analyzed the input and output performance of the OL-DKF, and compared
it with the traditional open loop and open loop with a Kalman filter. The performance of OL-DKF was
better than the other algorithms because it utilized the motion relationship from the temporal domain
and the geometry relationship from the spatial domain by a differential Kalman filter. Three typical
road tests in the city canyon environment were carried out. The results of theory and experiments
show that the proposed architecture had a better position and velocity accuracy. There were many
existing techniques used in the challenged environment. Compared with inertial navigation system
assist, the proposed method did not need additional sensor-assisted. Compared with open loop, the
OL-DKF could achieve much accuracy improvements in the city canyon environment.
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Appendix A. Derivation of Accuracy of the OL-KF Output

In OL-KF architecture, the state vector contains the carrier phase error and Doppler frequency error.

The state transition matrix Λ =

[
1 T
0 1

]
and the measurement matrix H = [0 1]. The variance of



Remote Sens. 2020, 12, 812 21 of 22

processing noise is Qa =
q2

los

(c/ fcarr)
2

[
T3/6 T2/2
T2/2 T

]
. The variance of measurement noise is the accuracy

of the differential power frequency discriminator output [14], shown as:

R f =
µ0

4 · Tcoh ·C/N0
(1 +

µ1

Tcoh ·C/N0
) (A1)

where θ = π fstepTcoh, µ0 =
f 2
step[1−cos(2θ)]

(sinc(θ)−cos(θ))3 , µ1 =
1−sinc2(2θ)

2sinc2(θ)[1−cos(2θ)] .

The tracking accuracy of OL-KF can be indicated by the posterior covariance matrix POL−KF, which
can be calculated by the Ricatti equation. The frequency estimation accuracy is given by:

ε f =
√

POL−KF(2, 2) (A2)

The accuracy of the original code phase ετ of OL-KF can be calculated based on the non-coherent
early minus later power discriminator, shown as [14]:

ετ =

√
τstep

2 · Tcoh ·C/N0

(
1 +

1
(1− τstep) · Tcoh ·C/N0

)
(A3)

In Equation (20), the accuracy of smoothed pseudo-code εs−τ can be calculated by Equations (A2)
and (A3).
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