Detecting Vegetation Change in the Pearl River Delta Region Based on Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND) and MODIS NDVI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. NDVI Data and Its Preprocessing
2.2.2. Climatic Data and its Preprocessing
2.2.3. Human Drivers of NDVI Change
2.2.4. Auxiliary Data
2.3. RESTREND
2.4. TSS-RESTREND and its Validation
2.5. CTSS-RESTREND and its Validation
2.6. Geographical Detector
2.7. Net Change
2.8. The Process for Choosing Suitable MODIS NDVI
3. Results
3.1. GIMMS NDVI and MODIS NDVI Break Year Comparison in the PRD
3.2. A1-TR and Q1-TR Comparison in the PRD
3.3. A1-CTR and Q1-CTR Comparison in the PRD
3.4. City-Scale Vegetation Change Detected by CTSS-RESTREND, TSS-RESTREND, and RESTREND in the PRD
3.4.1. Comparison of Significant Pixel Numbers between CTSS-RESTREND, TSS-RESTREND, and RESTREND
3.4.2. Comparison of NDVI Net Change between CTSS-RESTREND, TSS-RESTREND, and RESTREND
3.5. Human-Driven Factor Analysis of Vegetation Change in the PRD
4. Discussion
4.1. Validation of the MOD-TR in PRD
4.2. Validation of the CTSS-RESTREND in PRD
4.3. Limitations of MOD-TR Applied to Small Areas
4.4. Advantages and Limitations of CTSS-RESTREND
4.5. Human Factors Have a Double Effect on Vegetation Change in the PRD
5. Conclusions
- In MODIS NDVI data (i.e., MOD13Q1, MOD13A1, and MOD13A2), MOD12A2 NDVI was too coarse to depict vegetation change, MOD13Q1, and MOD13A1 two NDVI were suitable for combination with TSS-RESTREND to demonstrate more accurate vegetation change in the PRD, but MOD13Q1 would be a better choice, when considering the accuracy of local detailed vegetation change.
- CTSS-RESTREND could detect fewer pixels with insignificant change trends and detect more pixels with a significant change trend than those of TSS-RESTREND and RESTREND. In addition, its effectiveness could be verified by Landsat data.
- At the city-scale, Q1-CTR demonstrated that reduction of vegetation was higher than its increment in Shenzhen, Foshan, Dongguan, and Zhongshan only. However, significant vegetation changes (significant decreases and increases) were mainly present in the cities of Huizhou, Zhaoqing, Jiangmen, and Guangzhou.
- GDP and population were the primary causes enabling vegetation change; their impact on vegetation had both a positive and negative effect.
- Although MOD-TR could detect more detail, it takes more time to detect vegetation change; meanwhile, MODIS NDVI is available for a short period. Thus, faster methods for breakpoint detection should be developed for MOD-TR to detect detailed vegetation change; an intra-ensemble of MODIS NDVI and GIMMS NDVI should be conducted in future studies to do a longer-term study.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Carvalho, R.M.; Szlafsztein, C.F. Urban vegetation loss and ecosystem services: The influence on climate regulation and noise and air pollution. Environ. Pollut. 2019, 245, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Z.; Piao, S.; Li, L.Z.X.; Tao, W.; Myneni, R.B. Impact of earth greening on the terrestrial water cycle. J. Clim. 2018, 31, 2633–2650. [Google Scholar] [CrossRef]
- Xie, X.; He, B.; Guo, L.; Miao, C.; Zhang, Y. Detecting hotspots of interactions between vegetation greenness and terrestrial water storage using satellite observations. Remote. Sens. Environ. 2019, 231, 111259. [Google Scholar] [CrossRef]
- Casagrande, E.; Recanati, F.; Melià, P. Assessing the Influence of Vegetation on the Water Budget of Tropical Areas. Ifac-Pap. 2018, 51, 1–6. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An earth observing satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Z.; Liu, Y.; Wu, J.; Han, Y. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Li, A.; Wu, J.; Huang, J. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in inner Mongolia. Landsc. Ecol. 2012, 27, 969–982. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Balzter, H.; Kaduk, J.; Tucker, C. Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, C.M.; Páscoa, P.; Russo, A.; Trigo, R.M. Land degradation trend assessment over Iberia during 1982–2012. Cuad. Investig. Geográfica 2016, 42, 89. [Google Scholar] [CrossRef] [Green Version]
- Wingate, V.; Phinn, S.; Kuhn, N. Mapping precipitation-corrected NDVI trends across Namibia. Sci. Total Environ. 2019, 684, 96–112. [Google Scholar] [CrossRef] [PubMed]
- Wessels, K.J.; van den Bergh, F.; Scholes, R.J. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens. Environ. 2012, 125, 10–22. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Schaepman, M.E.; de Bruin, S. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Glob. Chang. Biol. 2012, 18, 642–655. [Google Scholar] [CrossRef]
- Jamali, S.; Seaquist, J.; Eklundh, L.; Ardö, J. Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote Sens. Environ. 2014, 141, 79–89. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; Liu, Y. Detecting dryland degradation using Time Series Segmentation and Residual Trend analysis (TSS-RESTREND). Remote Sens. Environ. 2017, 197, 43–57. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef] [Green Version]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Burrell, A.; Evans, J.; Liu, Y. The addition of temperature to the TSS-RESTREND methodology significantly improves the detection of dryland degradation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2342–2348. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; De Kauwe, M.G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 2020, 11, 3853. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Melack, J.; Tian, Y.; Huang, H.; Jiang, J.; Fu, X.; Zhang, Z. Detecting land degradation in eastern China grasslands with time series segmentation and residual trend analysis (TSS-RESTREND) and GIMMS NDVI3g data. Remote Sens. 2019, 11, 1014. [Google Scholar] [CrossRef] [Green Version]
- Munawar, S.; Udelhoven, T. Land change syndromes identification in temperate forests of Hindukush Himalaya Karakorum (HHK) mountain ranges. Int. J. Remote Sens. 2020, 41, 7735–7756. [Google Scholar] [CrossRef]
- Cui, C.; Zhang, W.; Hong, Z.; Meng, L. Forecasting NDVI in multiple complex areas using neural network techniques combined feature engineering. Int. J. Digit. Earth 2020, 1733–1749. [Google Scholar] [CrossRef]
- Nyamekye, C.; Schönbrodt-Stitt, S.; Amekudzi, L.K.; Zoungrana, B.J.B.; Thiel, M. Usage of MODIS NDVI to evaluate the effect of soil and water conservation measures on vegetation in Burkina Faso. Land Degrad. Dev. 2020, 1–13. [Google Scholar] [CrossRef]
- Hamunyela, E.; Rosca, S.; Mirt, A.; Engle, E.; Herold, M.; Gieseke, F.; Verbesselt, J. Implementation of BFASTmonitor Algorithm on Google Earth Engine to Support Large-Area and Sub-Annual Change Monitoring Using Earth Observation Data. Remote Sens. 2020, 12, 2953. [Google Scholar] [CrossRef]
- Burrell, A. TSS.RESTREND: Time Series Segmentation of Residual Trends. Available online: https://rdrr.io/cran/TSS.RESTREND/man/TSSRESTREND.html (accessed on 5 October 2020).
- Detsch, F. gimms: Download and Process GIMMS NDVI3g Data. Available online: https://github.com/environmentalinformatics-marburg/gimms (accessed on 5 October 2020).
- Hijmans, R.J. raster: Geographic Data Analysis and Modeling. Available online: https://rspatial.org/raster (accessed on 5 October 2020).
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Zhang, Q.; Kong, D.; Shi, P.; Singh, V.P.; Sun, P. Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013). Agric. and Forest Meteorology 2018, 248, 408–417. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Fisher, F.M. Tests of Equality Between Sets of Coefficients in Two Linear Regressions: An Expository Note. Econometrica 1970, 38, 361–366. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, X.; Xu, X.; Zhang, H.; Wu, Z.; Pang, J. Quantifying influences of physiographic factors on temperate dryland vegetation, Northwest China. Sci. Rep. 2017, 7, 40092. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Hu, M.; Xia, B. A significant increase in the normalized difference vegetation index during the rapid economic development in the Pearl River Delta of China. Land Degrad. Dev. 2019, 30, 359–370. [Google Scholar] [CrossRef]
Variable | Q Value | Sig |
---|---|---|
Pop | 0.041646 | <0.0001 |
GDP | 0.041599 | <0.0001 |
Land | 0.035532 | <0.0001 |
Urban | 0.034328 | <0.0001 |
Tree | 0.001457 | <0.0001 |
Crop | 0.006932 | <0.0001 |
City | SI | SD | PNC | NNC | TNC |
---|---|---|---|---|---|
Guangzhou | 9246 | 9108 | 6.76 | −10.91 | −4.14 |
Shenzhen | 6390 | 5722 | 5.01 | −7.81 | −2.80 |
Zhuhai | 1520 | 734 | 1.32 | −1.20 | 0.11 |
Foshan | 7124 | 9971 | 4.52 | −9.91 | −5.38 |
Dongguan | 5723 | 11,266 | 3.57 | −17.84 | −14.28 |
Zhongshan | 3030 | 4547 | 1.96 | −6.30 | −4.34 |
Jiangmen | 3455 | 2787 | 2.43 | −3.31 | −0.88 |
Zhaoqing | 1755 | 1514 | 1.39 | −1.38 | 0.01 |
Huizhou | 2792 | 3673 | 2.22 | −4.51 | −2.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, Z.; Kuang, Y.; He, Y.; Zhen, W.; Ding, S. Detecting Vegetation Change in the Pearl River Delta Region Based on Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND) and MODIS NDVI. Remote Sens. 2020, 12, 4049. https://doi.org/10.3390/rs12244049
Ruan Z, Kuang Y, He Y, Zhen W, Ding S. Detecting Vegetation Change in the Pearl River Delta Region Based on Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND) and MODIS NDVI. Remote Sensing. 2020; 12(24):4049. https://doi.org/10.3390/rs12244049
Chicago/Turabian StyleRuan, Zhu, Yaoqiu Kuang, Yeyu He, Wei Zhen, and Song Ding. 2020. "Detecting Vegetation Change in the Pearl River Delta Region Based on Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND) and MODIS NDVI" Remote Sensing 12, no. 24: 4049. https://doi.org/10.3390/rs12244049
APA StyleRuan, Z., Kuang, Y., He, Y., Zhen, W., & Ding, S. (2020). Detecting Vegetation Change in the Pearl River Delta Region Based on Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND) and MODIS NDVI. Remote Sensing, 12(24), 4049. https://doi.org/10.3390/rs12244049