Over 150 Years of Change: Object-Oriented Analysis of Historical Land Cover in the Main River Catchment, Bavaria/Germany
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data Used
- Cropland: Arable land for crop production (Ackerland, Streuobstacker, Hopfen, and Gartenland)
- Meadow: Pastures and grasslands (Grünland and Streuobstwiese)
- Forest: Standing trees that serve for timber production (Wald)
- Urban: Human settlements, e.g., cities, houses, historical buildings, transportation lines, and recreational areas (Siedlung)
2.3. Classification of Historical Maps Using eCognition
- Cropland: Arable land for crop production
- Meadow: Pastures and grasslands
- Forest: Standing trees that serve for timber production
- Urban: Human settlements such as cities or houses
- Letters & lines: topography lines, boundaries, urban areas, and letters
- Non-urban: Temporary class created to differentiate some objects from letters & lines and urban classes; this category was used in few images
2.4. Accuracy Assessment
3. Results
3.1. Historical Land Cover Maps Classified
3.2. Change Analysis
3.3. Accuracy Assessment
4. Discussion
4.1. Land Cover Change in the Main Catchment
4.2. Remote Sensing of Historical Maps Using eCognition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lambin, E.; Geist, H.J. Land-Use and Land-Cover Change: Local Processes and Global Impacts; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Petit, C.C.; Lambin, E.F. Impact of data integration technique on historical land-use/land-cover change: Comparing historical maps with remote sensing data in the Belgian Ardennes. Landsc. Ecol. 2002, 17, 117–132. [Google Scholar] [CrossRef]
- Al-Fares, W. Historical Land Use/Land Cover Classification Using Remote Sensing; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-319-00623-9. [Google Scholar]
- Bender, O.; Boehmer, H.J.; Jens, D.; Schumacher, K.P. Analysis of land-use change in a sector of Upper Franconia (Bavaria, Germany) since 1850 using land register records. Landsc. Ecol 2005, 20, 149–163. [Google Scholar] [CrossRef]
- Sohl, T.; Sleeter, B. Role of Remote Sensing for Land-Use and Land-Cover Change Modeling. In Remote Sensing of Land Use and Land Cover: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2012; pp. 225–239. ISBN 978-1-4200-7075-0. [Google Scholar]
- Dallimer, M.; Davies, Z.G.; Diaz-Porras, D.F.; Irvine, K.N.; Maltby, L.; Warren, P.H.; Armsworth, P.R.; Gaston, K.J. Historical influences on the current provision of multiple ecosystem services. Glob. Environ. Chang. 2015, 31, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Talich, M. Classification of digitised old maps and possibilities of its utilization. ePerimetron 2012, 7, 11. [Google Scholar]
- Herrault, P.-A.; Sheeren, D.; Fauvel, M.; Paegelow, M. Automatic Extraction of Forests from Historical Maps Based on Unsupervised Classification in the CIELab Color Space. In Geographic Information Science at the Heart of Europe; Vandenbroucke, D., Bucher, B., Crompvoets, J., Eds.; Springer International Publishing: Cham, Switzerland, 2013; pp. 95–112. ISBN 978-3-319-00614-7. [Google Scholar]
- Gobbi, S.; Ciolli, M.; La Porta, N.; Rocchini, D.; Tattoni, C.; Zatelli, P. New Tools for the Classification and Filtering of Historical Maps. Int. J. Geo-Inf. 2019, 8, 455. [Google Scholar] [CrossRef] [Green Version]
- Lautenbach, S.; Kugel, C.; Lausch, A.; Seppelt, R. Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol. Indic. 2011, 11, 676–687. [Google Scholar] [CrossRef]
- Bieling, C.; Plieninger, T.; Schaich, H. Patterns and causes of land change: Empirical results and conceptual considerations derived from a case study in the Swabian Alb, Germany. Land Use Policy 2013, 35, 192–203. [Google Scholar] [CrossRef]
- Früh-Müller, A.; Wegmann, M.; Koellner, T. Flood exposure and settlement expansion since pre-industrial times in 1850 until 2011 in north Bavaria, Germany. Reg Env. Chang. 2015, 15, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Bender, O.; Boehmer, H.J.; Jens, D.; Schumacher, K.P. Using GIS to analyse long-term cultural landscape change in Southern Germany. Landsc. Urban Plan. 2005, 70, 111–125. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auffret, A.G.; Kimberley, A.; Plue, J.; Skånes, H.; Jakobsson, S.; Waldén, E.; Wennbom, M.; Wood, H.; Bullock, J.M.; Cousins, S.A.O.; et al. HistMapR: Rapid digitization of historical land-use maps in R. Methods Ecol. Evol 2017, 8, 1453–1457. [Google Scholar] [CrossRef] [Green Version]
- Chiang, Y.-Y.; Leyk, S.; Knoblock, C.A. A Survey of Digital Map Processing Techniques. ACM Comput. Surv. 2014, 47, 1–44. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Liu, D.; Toman, E.; Fuller, Z.; Chen, G.; Londo, A.; Zhang, X.; Zhao, K. Integration of historical map and aerial imagery to characterize long-term land-use change and landscape dynamics: An object-based analysis via Random Forests. Ecol. Indic. 2018, 95, 595–605. [Google Scholar] [CrossRef]
- Chiang, Y.-Y.; Leyk, S.; Knoblock, C.A. Efficient and Robust Graphics Recognition from Historical Maps. In Graphics Recognition—New Trends and Challenges; Kwon, Y.-B., Ogier, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 25–35. [Google Scholar]
- Definiens. Definiens Developer 7: User Guide; Definiens: München, Germany, 2007. [Google Scholar]
- Nussbaum, S.; Menz, G. Object-Based Image Analysis and Treaty Verification; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Bayerisches Landesamt für Umwelt 15. Bayreuther und Kulmbacher Land. In Entwurf Einer Kulturlandschaftlichen Gliederung Bayerns als Beitrag zur Biodiversität; Bayerisches Landesamt für Umwelt: Augsburg, Germany, 2011; p. 6. [Google Scholar]
- Wissing, J. A Hydrological Framework for Geo-referenced Steady-state Exposure Assessment in Surface Water on the Catchment Scale. Ph.D. Thesis, Osnabrück University, Osnabrück, Germany, 2010. [Google Scholar]
- Bayerisches Landesamt für Umwelt 12. Frankenwald mit Vorland. In Entwurf Einer Kulturlandschaftlichen Gliederung Bayerns als Beitrag zur Biodiversität; Bayerisches Landesamt für Umwelt: Augsburg, Germany, 2011; p. 9. [Google Scholar]
- Bayerisches Landesamt für Umwelt 13. Münchberger Land und Vogtland. In Entwurf Einer Kulturlandschaftlichen Gliederung Bayerns als Beitrag zur Biodiversität; Bayerisches Landesamt für Umwelt: Augsburg, Germany, 2011; p. 6. [Google Scholar]
- Bayerisches Landesamt für Umwelt 14. Fichtelgebirge mit Sechsaemterland. In Entwurf einer kulturlandschaftlichen Gliederung Bayerns als Beitrag zur Biodiversität; Bayerisches Landesamt für Umwelt: Augsburg, Germany, 2011; p. 8. [Google Scholar]
- Ziegler, T. Die Entstehung des Bayerischen Katasterwerks; Deutschen Vereins für Vermessungswesen (DVW) Landesverein Bayern e.V.: Munich, Germany, 1976. [Google Scholar]
- Seeberger, M. Wie Bayern Vermessen Wurde; Hefte zur Bayerischen Geschichte und Kultur; Haus der Bayerischen Geschichte: Augsburg, Germany, 2001. [Google Scholar]
- Lang, H. Charte vom Königreich Bayern nach den vorzüglichsten Hilfsmitteln neu gezeichnet von H. Lang. Nürnberg. 1853. Available online: http://gateway-bayern.de/BV011519761 (accessed on 31 October 2018).
- Algermissen, J.L.; Arendts, C. Spezialkarte des Königreiches Bayern in seiner neuen Gerichts- und Verwaltungs-Eintheilung vom 1 October 1879. Metz. 1888. Available online: http://gateway-bayern.de/BV011580694 (accessed on 31 October 2018).
- Von Hermann, F.B.W. Anbau und Ertrag, Besitzverhältnisse und Stückelung des Bodens, dann Lohn der Landbau-Arbeiter im Königreiche Bayern, nach dem Stande eines Mitteljahres aus amtlichen Quellen; Beiträge zur Statistik des Königreichs Bayern: München, Germany, 1857. [Google Scholar]
- Horning, N.; Leutner, B.; Wegmann, M. Land cover or image classification approaches. In Remote Sensing and GIS for Ecologists. Data in the Wild; Pelagic Publishing: Exeter, UK, 2016; pp. 166–196. [Google Scholar]
- Darwish, A.; Leukert, K.; Reinhardt, W. Image segmentation for the purpose of object-based classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 3, pp. 2039–2041. [Google Scholar]
- Samet, H. The quadtree and related hierarchical data structures. Comput. Surv. 1984, 16, 187–260. [Google Scholar] [CrossRef] [Green Version]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 978-0-470-05245-7. [Google Scholar]
- Baatz, M.; Schäpe, A. Multiresolution Segmentation: An optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung XII—Beitrage zum AGIT-Symposium, Salzburg 2000; Wichmann: Heidelberg, Germany, 2000; pp. 12–23. [Google Scholar]
- Lawrence, R.L.; Means, J.; Ripple, W. An Automated Method for Digitizing Color Thematic Maps. Am. Soc. Photogramm. Remote Sens. 1996, 62, 1245–1248. [Google Scholar]
- Stehman, S.V. Estimating the Kappa Coefficient and its Variance under Stratified Random Sampling. Am. Soc. Photogramm. Remote Sens. 1996, 62, 401–407. [Google Scholar]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
HSI Variable | Red | Green | Blue |
---|---|---|---|
Hue1 | Blue-H | Red-H | Red |
Hue2 | Blue-L | Red-L | Green-L |
Hue3 | Green-L | Green-H | Blue-H |
Hue4 | Red-H | Red | Green |
Hue5 | Red-L | Green-L | Green-H |
Hue6 | Green | Red | Blue |
Intensity1 | Green-H | Blue-H | Red-H |
Intensity2 | Green-L | Green-H | Blue-H |
Intensity3 | Red-H | Red | Green |
Intensity4 | Blue-L | Red-L | Red |
Saturation1 | Blue | Blue-L | Red-L |
Saturation2 | Blue-H | Red-L | Red |
Category | Algorithm | Description |
---|---|---|
Basic Classification | Assign class | Assign a class to all objects of another class with a membership of 1 |
Classification | Classifies object according their membership to a list of selected classes | |
Advanced Classification | Find Enclosed by Class | Finds and classifies objects that are totally enclosed or surrounded by the target class |
Basic Object Reshaping | Merge Region | Fusions all the objects of the indicated domain or class |
Grow Region | Expands image objects incorporating neighboring objects | |
Convert to Sub-Objects | Splits an object into the smaller objects in a level underneath | |
Advanced Object Reshaping | Border Optimization | Changes the shapes of the objects by either adding (Dilatation) or removing (Erosion) sub-objects from the outer or inner border respectively |
Morphology | Smooths the border of objects using a mask created by the user. This mask either removes (Opening) or adds (Closing) pixels | |
Pixel-Based Object Reshaping | Pixel-Based Object Resizing | Grows or shrinks objects based on a relative area defined by the user. Operates at the pixel level |
Interactive Operation | Manual Classification | Allows object classification with a click |
Export | Export Vector Layers | Exports the selected classes and specifies format and attributes |
Cropland | Forests | Meadows | Urban | Streets | Water Bodies | Rocks and Barren Land | NO DATA | Sum | |
---|---|---|---|---|---|---|---|---|---|
[%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | |
(a) Automatic classification | |||||||||
Bayreuth (City) | 53.7 | 9.6 | 34.4 | 2.4 | NA | NA | NA | 0.0 | 100.0 |
Bayreuth | 42.1 | 30.7 | 23.9 | 0.3 | NA | NA | NA | 3.0 | 100.0 |
Berneck | 32.2 | 47.4 | 20.0 | 0.3 | NA | NA | NA | 0.0 | 100.0 |
Culmbach | 42.2 | 34.3 | 23.2 | 0.3 | NA | NA | NA | 0.0 | 100.0 |
Münchberg | 30.5 | 24.4 | 25.8 | 0.3 | NA | NA | NA | 19.0 | 100.0 |
Pegnitz | 36.6 | 40.5 | 22.5 | 0.3 | NA | NA | NA | 0.0 | 100.0 |
Stadtsteinach | 45.8 | 36.6 | 17.4 | 0.2 | NA | NA | NA | 0.0 | 100.0 |
Thurnau | 46.1 | 38.6 | 13.8 | 0.4 | NA | NA | NA | 1.1 | 100.0 |
Weidenberg | 27.5 | 52.1 | 20.1 | 0.3 | NA | NA | NA | 0.0 | 100.0 |
Total area | 39.6 | 34.9 | 22.3 | 0.5 | NA | NA | NA | 2.6 | 100.0 |
(b) Statistics 1853 | |||||||||
Bayreuth (City) | 47.5 | 10.7 | 33.7 | 2.8 | 3.6 | 1.7 | 0.0 | NA | 100.0 |
Bayreuth | 44.2 | 27.2 | 24.8 | 0.5 | 2.1 | 0.5 | 0.6 | NA | 100.0 |
Berneck | 32.6 | 43.2 | 21.0 | 0.4 | 1.6 | 0.6 | 0.6 | NA | 100.0 |
Culmbach | 50.4 | 23.6 | 20.4 | 0.6 | 2.2 | 0.7 | 2.1 | NA | 100.0 |
Münchberg | 37.4 | 20.6 | 26.0 | 1.7 | 5.0 | 2.9 | 6.5 | NA | 100.0 |
Pegnitz | 36.2 | 42.2 | 15.8 | 0.3 | 1.9 | 0.5 | 3.0 | NA | 100.0 |
Stadtsteinach | 45.6 | 34.0 | 14.6 | 0.5 | 1.8 | 0.4 | 3.1 | NA | 100.0 |
Thurnau | 55.0 | 28.1 | 13.5 | 0.4 | 1.8 | 0.4 | 0.8 | NA | 100.0 |
Weidenberg | 33.6 | 40.3 | 22.0 | 0.4 | 1.8 | 0.5 | 1.4 | NA | 100.0 |
Total area | 42.2 | 31.8 | 19.8 | 0.7 | 2.3 | 0.8 | 2.3 | NA | 100.0 |
Land Cover Type | 1850 [km2] | 2015 [km2] | ∆ [km2] | 1850 [%] | 2015 [%] | Difference [%] | Relative Change [%] |
---|---|---|---|---|---|---|---|
Cropland | 565 | 431 | −134 | 38.4 | 29.3 | −9.1 | −23.7 |
Forest | 588 | 610 | 22 | 39.9 | 41.4 | 1.5 | 3.7 |
Meadow | 309 | 296 | −13 | 21.0 | 20.1 | −0.9 | −4.1 |
Urban | 5 | 129 | 125 | 0.3 | 8.8 | 8.5 | 2626.8 |
Land Cover [%] 2015 | 1850 | Cropland | Forest | Meadow | Urban | Sum |
---|---|---|---|---|---|---|
Cropland | 75.9 | 9.4 | 14.6 | 0 | 100 | |
Forest | 10.6 | 79.5 | 9.9 | 0 | 100 | |
Meadow | 38.7 | 15.8 | 45.4 | 0.1 | 100 | |
Urban | 45.2 | 12 | 39.6 | 3.1 | 100 |
Cropland | Forest | Meadow | Urban | |
---|---|---|---|---|
Producer accuracy | 0.94 ± 0.17 | 0.98 ± 0.03 | 0.98 ± 0.03 | 0.82 ± 0.16 |
User accuracy | 0.99 ± 0.01 | 0.97 ± 0.05 | 0.98 ± 0.02 | 0.95 ± 0.07 |
Hellden | 0.95 ± 0.17 | 0.98 ± 0.04 | 0.98 ± 0.02 | 0.87 ± 0.12 |
Short | 0.94 ± 0.18 | 0.95 ± 0.06 | 0.96 ± 0.04 | 0.79 ± 0.16 |
Kappa per class | 0.94 ± 0.19 | 0.97 ± 0.04 | 0.97 ± 0.04 | 0.82 ± 0.17 |
Overall Accuracy | 0.98 ± 0.04 | |||
Kappa | 0.97 ± 0.06 |
Ground Truth (Manual Classification) | User Accuracy | |||||||
---|---|---|---|---|---|---|---|---|
Class Value | Cropland | Forest | Meadow | Urban | Water | Total | ||
Classified (eCognition) | Cropland | 839,445 | 33,233 | 149,683 | 4000 | 96 | 1,026,457 | 0.82 |
Forest | 98,932 | 823,255 | 77,441 | 1214 | 181 | 1,001,023 | 0.82 | |
Meadow | 33,609 | 55,751 | 554,515 | 14,450 | 12,700 | 671,025 | 0.83 | |
Urban | 183 | 111 | 1193 | 4872 | 38 | 6397 | 0.76 | |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | |
Total | 972,169 | 912,350 | 782,832 | 24,536 | 13,015 | 2,704,902 | ||
Producer accuracy | 0.86 | 0.90 | 0.71 | 0.20 | 0.00 | 0.82 | ||
Kappa | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulloa-Torrealba, Y.; Stahlmann, R.; Wegmann, M.; Koellner, T. Over 150 Years of Change: Object-Oriented Analysis of Historical Land Cover in the Main River Catchment, Bavaria/Germany. Remote Sens. 2020, 12, 4048. https://doi.org/10.3390/rs12244048
Ulloa-Torrealba Y, Stahlmann R, Wegmann M, Koellner T. Over 150 Years of Change: Object-Oriented Analysis of Historical Land Cover in the Main River Catchment, Bavaria/Germany. Remote Sensing. 2020; 12(24):4048. https://doi.org/10.3390/rs12244048
Chicago/Turabian StyleUlloa-Torrealba, Yrneh, Reinhold Stahlmann, Martin Wegmann, and Thomas Koellner. 2020. "Over 150 Years of Change: Object-Oriented Analysis of Historical Land Cover in the Main River Catchment, Bavaria/Germany" Remote Sensing 12, no. 24: 4048. https://doi.org/10.3390/rs12244048
APA StyleUlloa-Torrealba, Y., Stahlmann, R., Wegmann, M., & Koellner, T. (2020). Over 150 Years of Change: Object-Oriented Analysis of Historical Land Cover in the Main River Catchment, Bavaria/Germany. Remote Sensing, 12(24), 4048. https://doi.org/10.3390/rs12244048