Mapping Soil Degradation on Arable Land with Aerial Photography and Erosion Models, Case Study from Danube Lowland, Slovakia
Abstract
:1. Introduction
- Erosion risk assessment;
- Support of erosion modelling-assessment of model input parameters, most commonly vegetation factors, or model verification;
- Indirect erosion mapping (mostly through the assessment of vegetation as an indirect indicator of land degradation status);
- Investigation of how remote sensing media reflect particular soil properties, which may indicate erosion status, mainly involving soil colour, iron oxides, clay minerals, and organic matter;
- Support for soil conservation;
- Direct mapping of linear erosion features, such as rills and gullies; and
- Direct mapping of areal erosion phenomena (so-called erosion patterns).
2. Materials and Methods
2.1. Study Site
2.2. Methods
2.2.1. Field Survey
2.2.2. Detection of Erosion Patterns from Remote Sensing Orthoimagery
2.2.3. Geomorphometric Analysis
3. Results and Discussion
3.1. Verification of Erosion Patterns by Soil Characteristics
3.2. Interpretation of Orthoimagery
3.3. The Influence of Terrain Morphology
4. Conclusions
- Visual interpretation can benefit from the experience of an operator who can assess the erosion features in a more comprehensive way than can a mathematical algorithm. It is important, especially in processing historical aerial photographs, as their land-use structure can be too complex for image classification methods. The major advantage of this approach is that the resulting erosion patterns are smoother and less scattered than those of image classification methods, so the resulting maps are more suitable for practical as applications in land management and conservation. The disadvantages comprise a high labour demand and subjectivity of interpretation, which typically distinguish up to three categories.
- Image classification is less subjective. If quantitative classification criteria are used, the results can be more quickly compared to those of other studies. Quantitative classes allow for distinguishing several levels of soil degradation.
- Contrary to improved accuracy, a disadvantage of the pixel-based classification is the scattered pattern of the resulting class of eroded soils.
- Object-based classification results in more realistic, larger, and smoother patterns and it also distinguishes the transitional categories of moderately-eroded soils more precisely.
Author Contributions
Funding
Conflicts of Interest
References
- De Vente, J.; Posen, J.; Verstraeten, G.; Govers, G.; Vanmaercke, M.; Van Rompaey, A.; Arabkhedri, M.; Boix-Fayos, C. Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth Sci. Rev. 2013, 127, 16–29. [Google Scholar] [CrossRef]
- Bosco, C.; de Rigo, D.; Dewitte, O.; Poesen, J.; Panagos, P.; Arabkhedri, M.; Boix-Fayos, C. Modelling soil erosion at European scale: Towards harmonization and reproducibility. Nat. Hazards Earth Syst. Sci. 2015, 15, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Paustian, K.; Panagos, P.; Jones, A.; Schütt, B.; Lugato, E. Effect of Good Agricultural And Environmental Conditions on erosion and soil organic carbon balance: A national case. Land Use Policy 2016, 50, 408–421. [Google Scholar] [CrossRef]
- Vrieling, A. Satellite remote sensing for water erosion assessment: A review. Catena 2006, 65, 2–18. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Inbar, Y.; Chen, Y. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition proces. Remote Sens. Environ. 1997, 61, 1–15. [Google Scholar] [CrossRef]
- Boardman, J. The value of Google EarthTM for erosion mapping. Catena 2016, 143, 123–127. [Google Scholar] [CrossRef]
- Pereira, P.; Brevik, E.C.; Munoz-Royas, M.; Miller, B.A. Soil Mapping and Process Modeling for Sustainable Land Use Management; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Wulf, H.; Mulder, T.; Schaepman, M.E.; Keller, A.; Jörg, P. Remote Sensing of Soils, NPOC/INRA; University of Zurich, Remote Sensing Laboratories: Zurich, Switzerland, 2015. [Google Scholar]
- Li, M.; Zang, S.; Zhang, B.; Li, S.; Wu, C. A review of remote sensing image classification techniques: The role of spatio-contextual information. Eur. J. Remote Sens. 2014, 47, 389–411. [Google Scholar] [CrossRef]
- Liu, H.; Hormann, G.; Qi, B.; Yue, Q. Using high-resolution aerial images to study gully development at the regional scale in southern China. Int. Soil Water Conserv. Res. 2020, 8, 173–184. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Z.; Wang, X.; Zhao, X.; Yi, L.; Hu, S. Object-based mapping of gullies using optical images: A case study in the black soil region, Northeast of China. Remote Sens. 2020, 12, 487. [Google Scholar] [CrossRef] [Green Version]
- Bouaziz, M.; Wijaya, A.; Gloaguen, R. Remote gully erosion mapping using ASTER data and geomorphologic analysis in the Main Ethiopian Rift. Geo Spat. Inf. Sci. 2011, 14, 246–254. [Google Scholar] [CrossRef]
- Shruthi, R.B.V.; Kerle, N.; Jetten, V. Object-based gully feature extraction using high spatial resolution imagery. Geomorphology 2011, 134, 260–268. [Google Scholar] [CrossRef]
- D’Oleire-Oltmanns, S.; Marzolff, I.; Tiede, D.; Blaschke, T. Detection of gully-affected areas by applying object-based image analysis (obia) in the region of Taroudannt, Morocco. Remote Sens. 2014, 6, 8287–8309. [Google Scholar] [CrossRef] [Green Version]
- Shahabi, H.; Jarihani, B.; Piralilou, S.T.; Chittleborough, D.; Avand, M.; Ghorbanzadeh, O. A semi-automated object-based gully networksdetection using different machine learning models: A case study of Bowen catchment, Queensland, Australia. Sensors 2019, 19, 4893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karami, A.; Khoorani, A.; Nuhegar, A.; Shamsi, S.R.F.; Moosavi, V. Gully erosion mapping using object-based and pixel-based image classification methods. Environ. Eng. Geosci. 2015, 21, 101–110. [Google Scholar] [CrossRef]
- Brodský, L.; Vašát, R.; Klement, A.; Zádorová, T.; Jakšík, O. Uncertainty propagation in VNIR reflectance spectroscopy soil organic carbon mapping. Geoderma 2013, 199, 54–63. [Google Scholar] [CrossRef]
- Mirzaee, S.; Ghorbani-Dashtaki, S.; Mohammadi, J.; Asadi, H.; Asadzadeh, F. Spatial variability of soil organic matter using remote sensing data. Catena 2016, 145, 118–127. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Kung, H.; Johnson, V.C. New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China. Remote Sens. Environ. 2018, 218, 104–118. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote sensing techniques for soil organic carbon estimation: A review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef] [Green Version]
- Luleva, M.I.; Van Der Werff, H.; Van Der Meer, F.; Jetten, V. Gaps and opportunities in the use of remote sensing for soil erosion. Chem. Bulg. J. Sci. Educ. 2012, 21, 748–764. [Google Scholar]
- Meusburger, K.; Konz, N.; Schaub, M.; Alewell, C. Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 208–215. [Google Scholar] [CrossRef]
- Chabrillat, S.; Milewski, R.; Schmid, T.; Rodriguez, M.; Escribano, P.; Pelayo, M.; Palacios-Orueta, A. Potential of hyperspectral imagery for the spatial assessment of soil erosion stages in agricultural semi-arid Spain at different scales. In Proceedeings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec, QC, Canada, 13–18 July 2014; pp. 2918–2921. [Google Scholar]
- Mathieu, R.; Cervelle, B.; Rémy, D.; Pouget, M. Field-based and spectral indicators for soil erosion mapping in semi-arid mediterranean environments (Coastal Cordillera of central Chile). Earth Surf. Process. Landf. 2006, 32, 13–31. [Google Scholar] [CrossRef]
- Zhang, X.; Dou, X.; Xie, Y.; Liu, H.; Wang, N.; Wang, X.; Pan, Y. Remote sensing inversion model of soil organic matter in farmland by introducing temporal information. Trans. Chin. Soc. Agric. Eng. 2018, 34, 143–150. [Google Scholar]
- Lin, C.; Zhou, S.; Wu, S.; Zhu, Q.; Dang, Q. Spectral response of different eroded soils in subtropical China: A case study in Changting county, China. J. Mt. Sci. 2014, 11, 697–707. [Google Scholar] [CrossRef]
- Sepuru, T.K.; Dube, T. An appraisal on the progress of remote sensing applications in soil erosion mapping and monitoring. Remote Sens. Appl. Soc. Environ. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Žížala, D.; Zádorová, T.; Kapička, J. Assessment of soil degradation by erosion based on analysis of soil properties using aerial hyperspectral images and ancillary data, Czech Republic. Remote Sens. 2017, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Žížala, D.; Juřicová, A.; Zádorová, T.; Zelenková, K.; Minařík, R. Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic. Eur. J. Remote Sens. 2019, 52 (Suppl. 1), 108–122. [Google Scholar] [CrossRef] [Green Version]
- Fulajtár, E. Identification of severely eroded soils from remote sensing data tested in Rišňovce, Slovakia. In Sustaining the Global Farm. Proceedings of the 10th International Soil Conservation Organization Meeting held May 24–29, 1999, West Lafayette, IN, USA; Stott, D.E., Mohtar, R.H., Steinardt, G.C., Eds.; International Soil Conservation Organization in cooperation with USDA and Purdue University: West Lafayette, IN, USA, 2001; pp. 1075–1082. [Google Scholar]
- Smetanová, A.; Kožuch, M.; Čerňanský, J. The land use changes in 20th century and their geomorphological implications in a lowland agricultural area (Voderady, Trnavská tabuľa Table Plain, Slovakia). Geomorphol. Slovaca Bohem. 2009, 9, 57–63. [Google Scholar]
- Smetanová, A. Bright patches on chernozems and their relationship to the relief. Geogr. Cas. 2009, 61, 215–227. [Google Scholar]
- Fulajtár, E.; Jenčo, M.; Saksa, M. Soil erosion mapping with the aid of aerial photographs tested at Pastovce, Ipe’ská pahorkatina. In Interdisciplinary Studies of River Channels and UAV Mapping in the V4 Region; Šulc Michalková, M., Miřijovský, J., Eds.; Comenius University: Bratislava, Slovakia, 2016; pp. 247–268. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Report No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Stankoviansky, M.; Fulajtár, E.; Jambor, P. Slovakia. In Soil Erosion in Europe; Boardman, J., Poesen, J., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 117–138. [Google Scholar]
- Fiala, K.; Barančíková, G.; Brečková, V.; Búrik, V.; Houšková, B.; Chomaničová, A.; Kobza, J.; Litavec, T.; Makovníková, J.; Matúšková, L.; et al. Záväzné metódy rozborov pôd. Čiastkový monitorovací systém-Pôda. (Binding Methods of Soil Analysis. Partial Monitoring System-Soil); Výskumný ústav pôdoznalectva a ochrany pôdy: Bratislava, Slovakia, 1999. [Google Scholar]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2015. [Google Scholar]
- Blaschke, T.; Lang, S.; Hay, G. Object-Based Image Analysis; Springer: Berlin, Germany, 2008. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting rainfall erosion losses—A guide to conservation planning. In USA Agriculture Handbook No. 537; U.S. Department of Agriculture: Washington, DC, USA, 1978. [Google Scholar]
- Mitasova, H.; Mitas, L. Multiscale soil erosion simulations for land use management. In Landscape Erosion and Landscape Evolution Modelling; Harmon, R.S., Doe, W.W., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2001; pp. 321–347. [Google Scholar]
- Alewell, C.; Meusburger, K.; Brodbeck, M.; Bänninger, D. Methods to describe and predict soil erosion in mountain regions. Landsc. Urban Plan. 2008, 88, 46–53. [Google Scholar] [CrossRef]
- Fadul, H.M.; Salih, A.A.; Ali, I.A.; Inanaga, S. Use of remote sensing to map gully erosion along the Atbara River, Sudan. Int. J. Appl. Earth Obs. Geoinf. 1999, 1, 175–180. [Google Scholar] [CrossRef]
- Servenay, A.; Prat, C. Erosion extension of indurated volcanic soils of Mexico by aerial photographs and remote sensing analysis. Geoderma 2003, 117, 367–375. [Google Scholar] [CrossRef]
- Bouaziz, M.; Leidig, M.; Gloaguen, R. Optimal parameter selection for qualitative regional erosion risk monitoring: A remote sensing study of SE Ethiopia. Geosci. Front. 2011, 2, 237–245. [Google Scholar] [CrossRef] [Green Version]
- De Jong, S.M.; Paracchini, M.L.; Bertolo, F.; Folving, S.; Megier, J.; de Roo, A.P.J. Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data. Catena 1999, 37, 291–308. [Google Scholar] [CrossRef]
- Báčová, M.; Krása, J. Application of historical and recent aerial imagery in monitoring water erosion occurrences in Czech highlands. Soil Water Res. 2016, 11, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Šarapatka, B.; Netopil, P. Erosion processes on intensively farmed land in the Czech Republic: Comparison of alternative research methods. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Vigiak, O.; van Loon, E.; Sterk, G. Modelling spatial scales of water erosion in the West Usambara Mountains of Tanzania. Geomorphology 2006, 76, 26–42. [Google Scholar] [CrossRef]
- Govers, G.; Vandaele, K.; Desmet, P.; Poesen, J.; Bunte, K. The role of tillage in soil redistribution on hillslopes. Eur. J. Soil Sci. 1994, 45, 469–478. [Google Scholar] [CrossRef]
- Mitasova, H.; Hofierka, J.; Zlocha, M.; Iverson, L.R. Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Syst. 1996, 10, 629–641. [Google Scholar] [CrossRef]
- Chappell, A. Modelling the spatial variation of processes in the redistribution of soil: Digital terrain models and 137Cs in southwest Niger. Geomorphology 1996, 17, 249–261. [Google Scholar] [CrossRef]
- Zádorová, T.; Žížala, D.; Penížek, V.; Čejková, Š. Relating extent of colluvial soils to topographic derivatives and soil variables in a Luvisol sub-catchment, Central Bohemia, Czech Republic. Soil Water Res. 2014, 9, 47–57. [Google Scholar] [CrossRef] [Green Version]
Image Object Level 1-Orthophoto 2011 | |||
Step | Source Class | Threshold Condition | Target Class |
1 | unclassified | brightness ≥ 170 | eroded soils |
2 | unclassified | brightness < 170 | non-eroded soils |
3 | non-eroded soils | ratio green > 0.36 | vegetation |
4 | eroded soils | hue < 0.093 | non-eroded soils |
Image Object Level 1-Orthophoto 2002 | |||
Step | Source Class | Threshold Condition | Target Class |
1 | unclassified | brightness ≥ 154 | eroded soils |
2 | unclassified | brightness < 154 | non-eroded soils |
3 | non-eroded soils | ratio green > 0.36 | vegetation |
4 | eroded soils | brightness < 162 and hue < 0.137 | non-eroded soils |
Image Object Level 2-orthophoto 2011 | |||
Step | Source Class | Threshold Condition | Target Class |
1 | eroded soils | brightness < 180 | slightly eroded soils |
2 | eroded soils | brightness < 190 | moderately eroded soils |
3 | eroded soils | brightness < 195 | strongly eroded soils |
4 | eroded soils | brightness ≥ 195 | very strongly eroded soils |
Input Y Range | Lightness of Topsoil Material | ||||
---|---|---|---|---|---|
Input X Range | CaCO3 | Cox | pHKCl | Humic Acids | Fulvid Acids |
Observations | 85 | 85 | 77 | 77 | 77 |
Multiple R | 0.81347 | 0.23349 | 0.4072 | 0.44678 | 0.34898 |
R2 | 0.66174 | 0.05451 | 0.16581 | 0.19961 | 0.12179 |
Adjusted R2 | 0.65766 | 0.04312 | 0.15469 | 0.18894 | 0.11008 |
Standard Error | 2.63945 | 0.35895 | 0.0632 | 0.06191 | 0.0649 |
Intercept | 0.24646 | 0.23197 | −0.1219 | 0.37986 | 0.35711 |
X Variable (regression slope) | 0.01260 | 0.04449 | 0.05763 | −0.6619 | −0.2849 |
p-value for Intercept | 1.03 × 10−51 | 5.45 × 10−8 | 0.28026 | 8.06 × 10−5 | 3.82 × 10−34 |
p-value for X Variable | 3.11 × 10−21 | 0.03151 | 0.00024 | 4.64 × 10−5 | 0.0019 |
Input Y Range | Topsoil Colour from Figure 1e | |||||
---|---|---|---|---|---|---|
Input X Range | First-Order Directional Derivative (Abs Value) | Second-Order Directional Derivative | USLE | USPED | USLE + First-Order Derivative (Abs Value) | USPED + First-Order Derivative (Abs Value) |
Observations | 4310 | 4310 | 4310 | 4310 | 4310 | 4310 |
Multiple R | 0.53477 | 0.14684 | 0.39073 | 0.22613 | 0.57902 | 0.57584 |
R2 | 0.28597 | 0.02156 | 0.15267 | 0.05113 | 0.33527 | 0.33159 |
Adjusted R2 | 0.28581 | 0.02134 | 0.15247 | 0.05091 | 0.33511 | 0.33144 |
Standard Error | 0.03343 | 0.00071 | 4.28632 | 0.08132 | 6.43471 | 0.11692 |
Intercept | −0.20524 | 0.00102 | −16.045 | 0.09825 | −42.726 | −0.714 |
X Variable | 0.38731 | −0.00192 | 33.3083 | −0.34559 | 83.6585 | 1.50752 |
p-value for Intercept | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
p-value for X Variable | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenčo, M.; Fulajtár, E.; Bobáľová, H.; Matečný, I.; Saksa, M.; Kožuch, M.; Gallay, M.; Kaňuk, J.; Píš, V.; Oršulová, V. Mapping Soil Degradation on Arable Land with Aerial Photography and Erosion Models, Case Study from Danube Lowland, Slovakia. Remote Sens. 2020, 12, 4047. https://doi.org/10.3390/rs12244047
Jenčo M, Fulajtár E, Bobáľová H, Matečný I, Saksa M, Kožuch M, Gallay M, Kaňuk J, Píš V, Oršulová V. Mapping Soil Degradation on Arable Land with Aerial Photography and Erosion Models, Case Study from Danube Lowland, Slovakia. Remote Sensing. 2020; 12(24):4047. https://doi.org/10.3390/rs12244047
Chicago/Turabian StyleJenčo, Marián, Emil Fulajtár, Hana Bobáľová, Igor Matečný, Martin Saksa, Miroslav Kožuch, Michal Gallay, Ján Kaňuk, Vladimír Píš, and Veronika Oršulová. 2020. "Mapping Soil Degradation on Arable Land with Aerial Photography and Erosion Models, Case Study from Danube Lowland, Slovakia" Remote Sensing 12, no. 24: 4047. https://doi.org/10.3390/rs12244047
APA StyleJenčo, M., Fulajtár, E., Bobáľová, H., Matečný, I., Saksa, M., Kožuch, M., Gallay, M., Kaňuk, J., Píš, V., & Oršulová, V. (2020). Mapping Soil Degradation on Arable Land with Aerial Photography and Erosion Models, Case Study from Danube Lowland, Slovakia. Remote Sensing, 12(24), 4047. https://doi.org/10.3390/rs12244047