High Resolution Digital Terrain Models of Mercury
Abstract
:1. Introduction
Related Work
2. Data and Methods
2.1. Instruments and Image Dataset
2.2. Reflectance Model
2.3. Shape from Shading
2.4. Mosaic Shading
2.5. Compensation of Albedo Effects
2.6. Summary of the Process
2.7. Complexity of the Algorithm
2.8. Evaluation Methods
3. Results
3.1. Evaluation Method 1: Praxiteles Crater
3.2. Evaluation Method 1: Ghost Crater
3.3. Evaluation Method 2: Rachmaninoff Basin
3.4. Evaluation Method 2: Tectonic Fault
3.5. Nathair Facula
3.6. Hollows
4. Discussion
4.1. Results of SfS
4.2. Viability of the Novel Methods
4.3. Limitations of the Evaluation Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Solomon, S.C.; Anderson, B.J. The MESSENGER Mission: Science and Implementation Overview. In Mercury: The View after MESSENGER; Cambridge Planetary Science, Cambridge University Press: Cambridge, UK, 2018; pp. 1–29. [Google Scholar] [CrossRef]
- McNutt, R.L., Jr.; Benkhoff, J.; Fujimoto, M.; Anderson, B.J. Future Missions: Mercury after MESSENGER. In Mercury: The View after MESSENGER; Cambridge Planetary Science, Cambridge University Press: Cambridge, UK, 2018; pp. 544–569. [Google Scholar] [CrossRef]
- Solomon, S.C.; Nittler, L.R.; Anderson, B.J. Mercury: The View after MESSENGER; Cambridge Planetary Science, Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Steiger, C.; Montagnon, E.; Accomazzo, A.; Ferri, P. BepiColombo mission to Mercury: First year of flight. Acta Astronaut. 2020, 170, 472–479. [Google Scholar] [CrossRef]
- Byrne, P.K.; Klimczak, C.; Sengör, C. The Tectonic Character of Mercury. In Mercury: The View after MESSENGER; Cambridge Planetary Science, Cambridge University Press: Cambridge, UK, 2018; pp. 249–286. [Google Scholar] [CrossRef]
- Thomas, R.J.; Rothery, D.A. Volcanism on Mercury. Elements 2019, 15, 27–32. [Google Scholar] [CrossRef]
- Hiesinger, H.; Helbert, J.; Team, M.C.I. The Mercury radiometer and thermal infrared spectrometer (MERTIS) for the BepiColombo mission. Planet. Space Sci. 2010, 58, 144–165. [Google Scholar] [CrossRef]
- Hawkins, S.E.; Boldt, J.D.; Darlington, E.H.; Espiritu, R.; Gold, R.E.; Gotwols, B.; Grey, M.P.; Hash, C.D.; Hayes, J.R.; Jaskulek, S.E.; et al. The Mercury dual imaging system on the MESSENGER spacecraft. Space Sci. Rev. 2007, 131, 247–338. [Google Scholar] [CrossRef]
- Flamini, E.; Capaccioni, F.; Colangeli, L.; Cremonese, G.; Doressoundiram, A.; Josset, J.; Langevin, Y.; Debei, S.; Capria, M.; De Sanctis, M.; et al. SIMBIO-SYS: The spectrometer and imagers integrated observatory system for the BepiColombo planetary orbiter. Planet. Space Sci. 2010, 58, 125–143. [Google Scholar] [CrossRef]
- Grumpe, A.; Wöhler, C. Recovery of elevation from estimated gradient fields constrained by digital elevation maps of lower lateral resolution. ISPRS J. Photogramm. Remote Sens. 2014, 94, 37–54. [Google Scholar] [CrossRef]
- Hess, M.; Wohlfarth, K.; Grumpe, A.; Wöhler, C.; Ruesch, O.; Wu, B. Atmospherically compensated Shape from Shading on the Martian surface: Towards the perfect digital terrain model of Mars. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 1405–1411. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, O.; Beyer, R.A. Multiview Shape-From-Shading for Planetary Images. Earth Space Sci. 2018, 5, 652–666. [Google Scholar] [CrossRef]
- Gehrig, S.; Franke, U. Stereovision for ADAS. In Handbook of Driver Assistance Systems; Winner, H., Hakuli, S., Lotz, F., Singer, C., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 495–524. [Google Scholar]
- Horn, B.K. Height and gradient from shading. Int. J. Comput. Vis. 1990, 5, 37–75. [Google Scholar] [CrossRef]
- Wu, B.; Liu, W.C.; Grumpe, A.; Wöhler, C. Construction of pixel-level resolution DEMs from monocular images by shape and albedo from shading constrained with low-resolution DEM. ISPRS J. Photogramm. Remote Sens. 2018, 140, 3–19. [Google Scholar] [CrossRef]
- Jiang, C.; Douté, S.; Luo, B.; Zhang, L. Fusion of photogrammetric and photoclinometric information for high-resolution DEMs from Mars in-orbit imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 418–430. [Google Scholar] [CrossRef]
- Hapke, B. Theory of Reflectance and Emittance Spectroscopy; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Van Diggelen, J. A photometric investigation of the slopes and the heights of the ranges of hills in the Maria of the moon. Bull. Astron. Institutes Neth. 1951, 11, 283. [Google Scholar]
- Rindfleisch, T. A photometric method for deriving lunar topographic information. In JPL Technical Report N. 32–786; Jet Propulsion Laboratory: Pasadena, CA, USA, 1965. [Google Scholar]
- Hapke, B.; Danielson, G.E.; Klaasen, K.; Wilson, L. Photometric observations of Mercury from Mariner 10. J. Geophys. Res. 1975, 80, 2431–2443. [Google Scholar] [CrossRef]
- Mouginis-Mark, P.J.; Wilson, L. Photoclinometric measurements of Mercurian landforms. Lunar Planet. Sci. Conf. 1979, 10, 873–875. [Google Scholar]
- Mouginis-Mark, P.J.; Wilson, L. MERC: A FORTRAN IV program for the production of topographic data for the planet Mercury. Comput. Geosci. 1981, 7, 35–45. [Google Scholar] [CrossRef]
- Watters, T.; Robinson, M.; Cook, A. Topographic models for Discovery Rupes, Mercury using digital stereophotogrammetry and photoclinometry. Lunar Planet. Sci. Conf. 1997, 28, 509. [Google Scholar]
- Becker, K.; Robinson, M.; Becker, T.; Weller, L.; Edmundson, K.; Neumann, G.; Perry, M.; Solomon, S. First global digital elevation model of Mercury. Lunar Planet. Sci. Conf. 2016, 47, 2959. [Google Scholar]
- Becker, K.; Berry, K.; Mapel, J.; Walldren, J. A new approach to create image control networks in ISIS. In Proceedings of the Third Planetary Data Workshop and The Planetary Geologic Mappers Annual Meeting, Flagstaff, AZ, USA, 12–15 June 2017; Volume 1986. [Google Scholar]
- Denevi, B.W.; Chabot, N.L.; Murchie, S.L.; Becker, K.J.; Blewett, D.T.; Domingue, D.L.; Ernst, C.M.; Hash, C.D.; Hawkins, S.E.; Keller, M.R.; et al. Calibration, projection, and final image products of MESSENGER’s Mercury Dual Imaging System. Space Sci. Rev. 2018, 214, 2. [Google Scholar] [CrossRef]
- Preusker, F.; Oberst, J.; Stark, A.; Burmeister, S. Mercury stereo topographic mapping using data from the MESSENGER orbital mission. In Planetary Remote Sensing and Mapping; CRC Press: Boca Raton, FL, USA, 2018; pp. 167–180. [Google Scholar]
- Batson, R.M.; Greeley, R. Planetary Mapping; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Fassett, C.I. Ames stereo pipeline-derived digital terrain models of Mercury from MESSENGER stereo imaging. Planet. Space Sci. 2016, 134, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Beyer, R.A.; Alexandrov, O.; McMichael, S. The Ames Stereo Pipeline: NASA’s open source software for deriving and processing terrain data. Earth Space Sci. 2018, 5, 537–548. [Google Scholar] [CrossRef]
- Henriksen, M.; Manheim, M.; Becker, K.; Howington-Kraus, E.; Robinson, M. High Resolution Regional Digital Terrain Models and Derived Products from MESSENGER MDIS Images. In Proceedings of the Second Planetary Data Workshop, Flagstaff, AZ, USA, 8–11 June 2015; Volume 1846. [Google Scholar]
- Manheim, M.; Henriksen, M.; Robinson, M.; Team, M. High-resolution local-area digital elevation models and derived products for Mercury from MESSENGER images. In Proceedings of the Third Planetary Data Workshop and The Planetary Geologic Mappers Annual Meeting, Flagstaff, AZ, USA, 12–15 June 2017; Volume 1986. [Google Scholar]
- Zuber, M.T.; Smith, D.E.; Phillips, R.J.; Solomon, S.C.; Neumann, G.A.; Hauck, S.A.; Peale, S.J.; Barnouin, O.S.; Head, J.W.; Johnson, C.L.; et al. Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry. Science 2012, 336, 217–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirk, R. A Fast Finite-Element Algorithm for Two-Dimensional Photoclinometry. Ph. D. Thesis, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA, 1987. [Google Scholar]
- Kirk, R.L.; Howington-Kraus, E.; Redding, B.; Galuszka, D.; Hare, T.M.; Archinal, B.A.; Soderblom, L.A.; Barrett, J.M. High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef]
- Shao, M.; Chellappa, R.; Simchony, T. Reconstructing a 3-D depth map from one or more images. Image Underst. 1991, 53, 219–226. [Google Scholar] [CrossRef]
- Liu, W.C.; Wu, B. An integrated photogrammetric and photoclinometric approach for illumination-invariant pixel-resolution 3D mapping of the lunar surface. ISPRS J. Photogramm. Remote Sens. 2020, 159, 153–168. [Google Scholar] [CrossRef]
- Douté, S.; Jiang, C. Small-Scale Topographical Characterization of the Martian Surface With In-Orbit Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 58, 447–460. [Google Scholar] [CrossRef]
- Shkuratov, Y.; Starukhina, L.; Hoffmann, H.; Arnold, G. A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon. Icarus 1999, 137, 235–246. [Google Scholar] [CrossRef]
- McEwen, A.S. Photometric functions for photoclinometry and other applications. Icarus 1991, 92, 298–311. [Google Scholar] [CrossRef]
- Ceamanos, X.; Douté, S.; Fernando, J.; Schmidt, F.; Pinet, P.; Lyapustin, A. Surface reflectance of Mars observed by CRISM/MRO: 1. Multi-angle Approach for Retrieval of Surface Reflectance from CRISM observations (MARS-ReCO). J. Geophys. Res. Planets 2013, 118, 514–533. [Google Scholar] [CrossRef] [Green Version]
- Kirk, R.L.; Barrett, J.M.; Soderblom, L.A. Photoclinometry made simple...? In Proceedings of the ISPRS Working Group IV/9 Workshop “Advances in Planetary Mapping 2003”, Houston, TX, USA, 22 March 2003. [Google Scholar]
- Grumpe, A.; Belkhir, F.; Wöhler, C. Construction of lunar DEMs based on reflectance modelling. Adv. Space Res. 2014, 53, 1735–1767. [Google Scholar] [CrossRef]
- Warell, J. Properties of the Hermean regolith: IV. Photometric parameters of Mercury and the Moon contrasted with Hapke modelling. Icarus 2004, 167, 271–286. [Google Scholar] [CrossRef]
- Hapke, B. Bidirectional reflectance spectroscopy: 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 2002, 157, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Gold, R.E.; Solomon, S.C.; McNutt, R.L., Jr.; Santo, A.G.; Abshire, J.B.; Acu na, M.H.; Afzal, R.S.; Anderson, B.J.; Andrews, G.B.; Bedini, P.D.; et al. The MESSENGER mission to Mercury: Scientific payload. Planet. Space Sci. 2001, 49, 1467–1479. [Google Scholar] [CrossRef]
- Gaddis, L.; Anderson, J.; Becker, K.; Becker, T.; Cook, D.; Edwards, K.; Eliason, E.; Hare, T.; Kieffer, H.; Lee, E.; et al. An overview of the integrated software for imaging spectrometers (ISIS). Lunar Planet. Sci. Conf. 1997, 28, 387. [Google Scholar]
- Anderson, J.; Sides, S.; Soltesz, D.; Sucharski, T.; Becker, K. Modernization of the Integrated Software for Imagers and Spectrometers. In Proceedings of the 35th Lunar and Planetary Science Conference, League City, TX, USA, 15–19 March 2004. [Google Scholar]
- Becker, K.J.; Anderson, J.A.; Weller, L.A.; Becker, T.L. ISIS support for NASA mission instrument ground data processing systems. Lunar Planet. Sci. Conf. 2013, 44, 2829. [Google Scholar]
- Neumann, G. MESSENGER: Software Interface Specification For The Mercury Laser Altimeter Calibrated, Reduced and Gridded Data Records; Code 698; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2017.
- McAdams, J.V.; Bryan, C.G.; Moessner, D.P.; Page, B.R.; Stanbridge, D.R.; Williams, K.E. Orbit design and navigation through the end of MESSENGER’s extended mission at Mercury. In Proceedings of the 24th Space Flight Mechanics Meeting, American Astronautical Society/American Institute of Aeronautics and Astronautics, Santa Fe, NM, USA, 26–30 January 2014; pp. 14–369. [Google Scholar]
- Cavanaugh, J.F.; Smith, J.C.; Sun, X.; Bartels, A.E.; Ramos-Izquierdo, L.; Krebs, D.J.; McGarry, J.F.; Trunzo, R.; Novo-Gradac, A.M.; Britt, J.L.; et al. The Mercury Laser Altimeter instrument for the MESSENGER mission. Space Sci. Rev. 2007, 131, 451–479. [Google Scholar] [CrossRef] [Green Version]
- Domingue, D.L.; Denevi, B.W.; Murchie, S.L.; Hash, C.D. Application of multiple photometric models to disk-resolved measurements of Mercury’s surface: Insights into Mercury’s regolith characteristics. Icarus 2016, 268, 172–203. [Google Scholar] [CrossRef] [Green Version]
- Shkuratov, Y.; Kaydash, V.; Korokhin, V.; Velikodsky, Y.; Opanasenko, N.; Videen, G. Optical measurements of the Moon as a tool to study its surface. Planet. Space Sci. 2011, 59, 1326–1371. [Google Scholar] [CrossRef]
- Blewett, D.T.; Ernst, C.M.; Murchie, S.L.; Vilas, F. Mercury’s Hollows. In Mercury: The View after MESSENGER; Cambridge Planetary Science, Cambridge University Press: Cambridge, UK, 2018; pp. 324–345. [Google Scholar] [CrossRef]
- Zuber, M.T.; Smith, D.E.; Solomon, S.C.; Muhleman, D.O.; Head, J.W.; Garvin, J.B.; Abshire, J.B.; Bufton, J.L. The Mars Observer laser altimeter investigation. J. Geophys. Res. Planets 1992, 97, 7781–7797. [Google Scholar] [CrossRef]
- Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G. The Lunar Orbiter Laser Altimeter (LOLA) on NASA’s Lunar Reconnaissance Orbiter (LRO) mission. In Proceedings of the International Conference on Space Optics, Rhodes, Greece, 4–8 October 2010; Armandillo, E., Cugny, B., Karafolas, N., Eds.; International Society for Optics and Photonics. SPIE: Bellingham, WA, USA, 2010; Volume 10565, pp. 93–98. [Google Scholar]
- Byrne, P.K.; Whitten, J.L.; Klimczak, C.; Mccubbin, F.M.; Ostrach, L.R. The Volcanic Character of Mercury. In Mercury: The View after MESSENGER; Cambridge Planetary Science, Cambridge University Press: Cambridge, UK, 2018; pp. 287–323. [Google Scholar] [CrossRef]
- Gillis-Davis, J.J.; Blewett, D.T.; Gaskell, R.W.; Denevi, B.W.; Robinson, M.S.; Strom, R.G.; Solomon, S.C.; Sprague, A.L. Pit-floor craters on Mercury: Evidence of near-surface igneous activity. Earth Planet. Sci. Lett. 2009, 285, 243–250. [Google Scholar] [CrossRef]
- Ostrach, L.R.; Robinson, M.S.; Whitten, J.L.; Fassett, C.I.; Strom, R.G.; Head, J.W.; Solomon, S.C. Extent, age, and resurfacing history of the northern smooth plains on Mercury from MESSENGER observations. Icarus 2015, 250, 602–622. [Google Scholar] [CrossRef]
- Chapman, C.R.; Baker, D.M.H.; Barnouin, O.S.; Fasset, C.I.; Marchi, S.; Merline, W.J.; Ostrach, L.R.; Prockter, L.M.; Strom, R.G. Impact Cratering of Mercury. In Mercury: The View after MESSENGER; Cambridge Planetary Science, Cambridge University Press: Cambridge, UK, 2018; pp. 217–248. [Google Scholar] [CrossRef]
- Murchie, S.L.; Klima, R.L.; Izenberg, N.R.; Domingue, D.L.; Blewett, D.T.; Helbert, J. Spectral Reflectance Constraints on the Composition and Evolution of Mercury’s Surface. In Mercury: The View after MESSENGER; Cambridge Planetary Science, Cambridge University Press: Cambridge, UK, 2018; pp. 191–216. [Google Scholar] [CrossRef]
- Watters, T.R.; Solomon, S.C.; Klimczak, C.; Freed, A.M.; Head, J.W.; Ernst, C.M.; Blair, D.M.; Goudge, T.A.; Byrne, P.K. Extension and contraction within volcanically buried impact craters and basins on Mercury. Geology 2012, 40, 1123–1126. [Google Scholar] [CrossRef]
- Klimczak, C.; Watters, T.R.; Ernst, C.M.; Freed, A.M.; Byrne, P.K.; Solomon, S.C.; Blair, D.M.; Head, J.W. Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: Strain analysis and implications for plains evolution. J. Geophys. Res. Planets 2012, 117. [Google Scholar] [CrossRef]
- Stark, A.; Preusker, F.; Oberst, J.; Matz, K.D.; Gwinner, K.; Roatsch, T. High-Resolution Topography from MESSENGER Orbital Stereo Imaging—The H5 Quadrangle “Hokusai”. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 20–24 March 2017; Volume 48. [Google Scholar]
- Prockter, L.M.; Ernst, C.M.; Denevi, B.W.; Chapman, C.R.; Head, J.W.; Fassett, C.I.; Merline, W.J.; Solomon, S.C.; Watters, T.R.; Strom, R.G.; et al. Evidence for young volcanism on Mercury from the third MESSENGER flyby. Science 2010, 329, 668–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, J. MESSENGER Observations of Volcanism on Mercury: From Hokusai Quadrangle Down to Small Cones. Ph.D. Thesis, The Open University, Milton Keynes, UK, 2019. [Google Scholar]
- Blair, D.M.; Freed, A.M.; Byrne, P.K.; Klimczak, C.; Prockter, L.M.; Ernst, C.M.; Solomon, S.C.; Melosh, H.J.; Zuber, M.T. The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury. J. Geophys. Res. Planets 2013, 118, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Rothery, D.A. Volcanism on Mercury. In Oxford Research Encyclopedia of Planetary Science; Oxford University Press: Oxford, UK, 2018. [Google Scholar] [CrossRef]
- Pegg, D.; Rothery, D.; Balme, M.; Conway, S. Explosive Vents on Mercury: Commonplace Multiple Eruptions and Their Implications. In Proceedings of the 50th Lunar and Planetary Science Conference 2019, Houston, TX, USA, 18–22 March 2019. [Google Scholar]
- Marchi, S.; Massironi, M.; Cremonese, G.; Martellato, E.; Giacomini, L.; Prockter, L. The effects of the target material properties and layering on the crater chronology: The case of Raditladi and Rachmaninoff basins on Mercury. Planet. Space Sci. 2011, 59, 1968–1980. [Google Scholar] [CrossRef] [Green Version]
- Watters, T.R.; Solomon, S.C.; Robinson, M.S.; Head, J.W.; André, S.L.; Hauck, S.A., II; Murchie, S.L. The tectonics of Mercury: The view after MESSENGER’s first flyby. Earth Planet. Sci. Lett. 2009, 285, 283–296. [Google Scholar] [CrossRef]
- Byrne, P.K.; Klimczak, C.; Şengör, A.C.; Solomon, S.C.; Watters, T.R.; Hauck, S.A. Mercury’s global contraction much greater than earlier estimates. Nat. Geosci. 2014, 7, 301. [Google Scholar] [CrossRef]
- Malliband, C.; Conway, S.; Rothery, D.; Balme, M. Potential Identification of Downslope Mass Movements on Mercury Driven by Volatile-Loss. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019; Volume 50. [Google Scholar]
- Xiao, Z.; Strom, R.G.; Blewett, D.T.; Byrne, P.K.; Solomon, S.C.; Murchie, S.L.; Sprague, A.L.; Domingue, D.L.; Helbert, J. Dark spots on Mercury: A distinctive low-reflectance material and its relation to hollows. J. Geophys. Res. Planets 2013, 118, 1752–1765. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.J.; Rothery, D.A.; Conway, S.J.; Anand, M. Hollows on Mercury: Materials and mechanisms involved in their formation. Icarus 2014, 229, 221–235. [Google Scholar] [CrossRef] [Green Version]
- Blewett, D.T.; Stadermann, A.C.; Susorney, H.C.; Ernst, C.M.; Xiao, Z.; Chabot, N.L.; Denevi, B.W.; Murchie, S.L.; McCubbin, F.M.; Kinczyk, M.J.; et al. Analysis of MESSENGER high-resolution images of Mercury’s hollows and implications for hollow formation. J. Geophys. Res. Planets 2016, 121, 1798–1813. [Google Scholar] [CrossRef]
Publication | Year | Method | Dataset | m/Pixel | Coverage |
---|---|---|---|---|---|
Hapke et al. [20] | 1975 | Photoclinometry | Mariner 10 | 20,000 | Profiles |
Mouginis-Mark and Wilson [21], Mouginis-Mark and Wilson [22] | 1979 | Photoclinometry | Mariner 10 | n.a. | Profiles, topographic maps |
Watters et al. [23] | 1997 | Stereo, Photoclinometry | Mariner 10 | 500 | Local DTM of Discovery Rupes |
Zuber et al. [33] | 2012 | Laser Altimetry | MLA | 250 | Northern hemisphere DTM |
Fassett [29] | 2016 | Stereo | MDIS | >45 | Local DTMs |
Becker et al. [24] | 2016 | Stereo | MDIS | 665 | Global DTM |
Preusker et al. [27] | 2018 | Stereo | MDIS | 222 | Quadrangle DTMs |
This work | 2020 | SfS | MDIS | >3.3 | Local DTMs |
Publication | Year | Reflectance Model | Constraint | Albedo Estimation | ||
---|---|---|---|---|---|---|
Absolute Depth | Relative Depth | Smooth- Ness | ||||
Horn [14] | 1990 | Lambert | no | no | yes | no |
Shao et al. [36] | 1991 | Lambert | yes | no | yes | no |
Kirk [34], Kirk et al. [42] | 1987 2003 | Minnaert, Lunar- Lambert | no | no | n.a. | no |
Grumpe and Wöhler [10], Hess et al. [11] | 2014 2019 | Hapke | yes | yes | no | yes |
Wu et al. [15], Liu and Wu [37] | 2018 2020 | Lunar-Lambert | no | yes | no | yes |
Alexandrov and Beyer [12] | 2018 | Lunar-Lambert | yes | no | yes | yes |
Jiang et al. [16], Douté and Jiang [38] | 2019 | Ross-Thick Li-Sparse kernels | yes | no | no | no |
This work | 2020 | Hapke | yes | yes | no | yes |
Parameter | Symbol | Value |
---|---|---|
DHG parameter | b | |
c | ||
SHOE amplitude | ||
SHOE width | ||
Mean surface roughness angle |
Property | Praxiteles Crater | Ghost Crater |
---|---|---|
Resolution of the image | 250 m/pixel | 155 m/pixel |
Initial stereo DTM | Global (665 m/pixel) [24] | DLR Quadrangle H05 (220 m/pixel) [27] |
Stereo reference DTM | 301E27N_0 (65 m/pixel) [29] | 36E60N_0 (55 m/pixel) [29] |
MAD reference DTM to MLA [29] | ||
Latitude | 24.5N to 29N | 58.4 N to 61.7N |
Longitude | 299.5E to 302.5E | 33.95 E to 39.3E |
Central meridian | 300.98 | 36.18 |
Profile | RMSE | |
---|---|---|
Elevation [m] | Along Profile Derivative | |
Northern | 120.00 | 0.061 |
Central | 24.14 | 0.025 |
Southern | 69.22 | 0.046 |
Profile | RMSE | |
---|---|---|
Elevation [m] | Along Profile Derivative | |
Northern | 34.88 | 0.053 |
Southern | 20.05 | 0.062 |
Track | RMSE Elevation [m] | RMSE along Track Derivative | ||
---|---|---|---|---|
SfS | Initial Stereo | SfS | Initial Stereo | |
Outer west | 269.76 | 318.57 | 0.117 | 0.114 |
Inner west | 236.81 | 291.35 | 0.092 | 0.111 |
Inner east | 229.94 | 252.46 | 0.072 | 0.074 |
Outer east | 172.52 | 305.22 | 0.078 | 0.093 |
Track | RMSE Elevation [m] | RMSE along Track Derivative | ||
---|---|---|---|---|
SfS | Initial Stereo | SfS | Initial Stereo | |
Outer west | 89.82 | 82.73 | 0.077 | 0.077 |
Inner west | 68.81 | 96.29 | 0.069 | 0.092 |
Inner east | 77.06 | 74.39 | 0.065 | 0.073 |
Outer east | 77.00 | 60.00 | 0.056 | 0.060 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenthoff, M.; Wohlfarth, K.; Wöhler, C. High Resolution Digital Terrain Models of Mercury. Remote Sens. 2020, 12, 3989. https://doi.org/10.3390/rs12233989
Tenthoff M, Wohlfarth K, Wöhler C. High Resolution Digital Terrain Models of Mercury. Remote Sensing. 2020; 12(23):3989. https://doi.org/10.3390/rs12233989
Chicago/Turabian StyleTenthoff, Moritz, Kay Wohlfarth, and Christian Wöhler. 2020. "High Resolution Digital Terrain Models of Mercury" Remote Sensing 12, no. 23: 3989. https://doi.org/10.3390/rs12233989
APA StyleTenthoff, M., Wohlfarth, K., & Wöhler, C. (2020). High Resolution Digital Terrain Models of Mercury. Remote Sensing, 12(23), 3989. https://doi.org/10.3390/rs12233989