Analysing the Driving Forces and Environmental Effects of Urban Expansion by Mapping the Speed and Acceleration of Built-Up Areas in China between 1978 and 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Methods
2.2.1. Mapping Built-Up Area Expansion
2.2.2. Analysis of the Spatial Autocorrelation and Strata of Built-Up Area
2.2.3. Characterising Expansion Types Based on Speed and Acceleration
2.2.4. Estimation of the Driving Factors
2.2.5. Relationship between Environmental Factors and Built-Up Area Expansion Indicators
3. Results
3.1. Mapping Results of the Speed and Acceleration of Built-Up Area Expansion
3.2. Temporal Variation of Built-Up Area Expansion at the National Scale
3.3. Comparison among Regions and Urban Sizes
3.4. Type of Built-Up Area Expansion
3.5. Socioeconomic Drivers behind Built-Up Expansion
3.6. The Environmental Effects of Built-Up Area Expansion
4. Discussion
4.1. Mapping Results of the Speed and Acceleration of Built-Up Area Expansion
4.2. New Perspectives from the Mapping Results
4.2.1. Built-Up Area Expansion Dynamics on the National Scale and in Subgroups
4.2.2. Relationship between Speed and Acceleration
4.3. Temporal Change in Driving Factors and Its Spatial Heterogeneity
4.4. Application of Built-Up Area Expansion Indicators to Environment Change
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, 23777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- European Environment Agency. Urban Sprawl in Europe: The Ignored Challenge; European Environment Agency, European Commission, Eds.; European Environment Agency: Copenhagen, Denmark, 2006; ISBN 978-92-9167-887-7. [Google Scholar]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Güneralp, B.; Reba, M.; Hales, B.; Wentz, E.A.; Seto, K.C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Xie, H.; Lu, C. Urban land expansion and arable land loss in China—A case study of Beijing–Tianjin–Hebei region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Van Vliet, J.; Eitelberg, D.A.; Verburg, P.H. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Chang. 2017, 43, 107–115. [Google Scholar] [CrossRef]
- Kramer, R.; Herrera, J.; Fitzgerald, R.; Moody, J.; Owens, A.; Pender, M.; Ravelomanantsoa, N.A.F.; Regula, L.; Tortosa, P.; Nunn, C. Biodiversity, land use change, and human health in northeastern Madagascar: An interdisciplinary study. Lancet Planet. Health 2019, 3, S7. [Google Scholar] [CrossRef]
- Patz, J.A.; Daszak, P.; Tabor, G.M.; Aguirre, A.A.; Pearl, M.; Epstein, J.; Wolfe, N.D.; Kilpatrick, A.M.; Foufopoulos, J.; Molyneux, D.; et al. Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious Disease Emergence. Environ. Health Perspect. 2004, 112, 1092–1098. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Dong, J.; Cui, Y.; Liu, J.; Zhai, J.; He, T.; Zhou, Y.; Xiao, X. Evapotranspiration-dominated biogeophysical warming effect of urbanization in the Beijing-Tianjin-Hebei region, China. Clim. Dyn. 2018, 52, 1231–1245. [Google Scholar] [CrossRef]
- Stone, B.; Hess, J.J.; Frumkin, H. Urban Form and Extreme Heat Events: Are Sprawling Cities More Vulnerable to Climate Change Than Compact Cities? Environ. Health Perspect. 2010, 118, 1425–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, K.; Li, X.; Liu, X.; Seto, K.C. Projecting global urban land expansion and heat island intensification through 2050. Environ. Res. Lett. 2019, 14, 114037. [Google Scholar] [CrossRef] [Green Version]
- Hien, P.; Men, N.; Tan, P.; Hangartner, M. Impact of urban expansion on the air pollution landscape: A case study of Hanoi, Vietnam. Sci. Total Environ. 2020, 702, 134635. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Fu, J.; Jiang, D.; Hu, W.; Dong, D.; Huang, Y.; Zhao, M. Spatio-Temporal Variation of PM2.5 Concentrations and Their Relationship with Geographic and Socioeconomic Factors in China. Int. J. Environ. Res. Public Health 2013, 11, 173–186. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Landscapes in Transition: An Account of 25 Years of Land Cover Change in Europe; Publications Office: Luxembourg, 2017. [Google Scholar]
- Li, H.; Wei, Y.D.; Zhou, Y. Spatiotemporal analysis of land development in transitional China. Habitat Int. 2017, 67, 79–95. [Google Scholar] [CrossRef]
- Li, M.; Lo Seen, D.; Zhang, Z. Temporal-spatial patterns of land use change in coastal China from 1980’s to 2010. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 4535–4538. [Google Scholar]
- Kuang, W.; Liu, J.; Dong, J.; Chi, W.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; He, C.; Liu, Z.; Dou, Y. How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis. PLoS ONE 2016, 11, 0154839. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.H.; Miao, C.; Zhang, W.; Chen, X. Spatiotemporal patterns of urban sprawl and its relationship with economic development in China during 1990–2010. Habitat Int. 2018, 79, 51–60. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Z.; Shi, L.; Zhao, X.; Xu, J.; Yi, L.; Liu, B.; Wen, Q.; Hu, S.; Wang, X.; et al. Urban expansion in China and its spatial-temporal differences over the past four decades. J. Geogr. Sci. 2016, 26, 1477–1496. [Google Scholar] [CrossRef]
- Huang, X.; Xia, J.; Xiao, R.; He, T. Urban expansion patterns of 291 Chinese cities, 1990–2015. Int. J. Digit. Earth 2017, 12, 62–77. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Ma, Q. Dynamics of Urbanization Levels in China from 1992 to 2012: Perspective from DMSP/OLS Nighttime Light Data. Remote Sens. 2015, 7, 1721–1735. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Weng, Q. Spatiotemporally enhancing time-series DMSP/OLS nighttime light imagery for assessing large-scale urban dynamics. ISPRS J. Photogramm. Remote Sens. 2017, 128, 1–15. [Google Scholar] [CrossRef]
- Xu, P.; Jin, P.; Cheng, Q. Mapping urbanization dynamic of mainland china using dmsp/ols night time light data. IOP Conf. Ser. Earth Environ. Sci. 2020, 569, 012063. [Google Scholar] [CrossRef]
- Yi, K.; Zeng, Y.; Wu, B. Mapping and evaluation the process, pattern and potential of urban growth in China. Appl. Geogr. 2016, 71, 44–55. [Google Scholar] [CrossRef]
- Tan, M. Urban Growth and Rural Transition in China Based on DMSP/OLS Nighttime Light Data. Sustainability 2015, 7, 8768–8781. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.; Kuang, W. A comparative analysis of urban impervious surface and green space and their dynamics among 318 different size cities in China in the past 25 years. Sci. Total Environ. 2020, 706, 135828. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, X.; Kong, X.; Wang, R.; Chen, L. Identifying the relationship between urban land expansion and human activities in the Yangtze River Economic Belt, China. Appl. Geogr. 2018, 94, 163–177. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J.; et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 2020, 15, 094044. [Google Scholar] [CrossRef]
- China’s State Council Notice on the Adjustment of Standards for the Division of Urban Scale. Available online: http://www.gov.cn/zhengce/content/2014-11/20/content_9225.htm (accessed on 11 September 2020).
- Zhang, Y.; Xie, H. Interactive Relationship among Urban Expansion, Economic Development, and Population Growth since the Reform and Opening up in China: An Analysis Based on a Vector Error Correction Model. Land 2019, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yue, W.; Liu, Y.; Fan, P.; Wei, Y.D. Suburban industrial land development in transitional China: Spatial restructuring and determinants. Cities 2018, 78, 96–107. [Google Scholar] [CrossRef]
- He, C.; Huang, Z.; Wang, R. Land use change and economic growth in urban China: A structural equation analysis. Urban Stud. 2014, 51, 2880–2898. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Y.; Wang, S.; Wang, D. Spatial differences and driving forces of land urbanization in China. J. Geogr. Sci. 2015, 25, 545–558. [Google Scholar] [CrossRef]
- Wanfu, J.; Zhou, C.; Liu, T.; Zhang, G. Exploring the factors affecting regional land development patterns at different developmental stages: Evidence from 289 Chinese cities. Cities 2019, 91, 193–201. [Google Scholar] [CrossRef]
- Wang, X.; Ding, S.; Cao, W.; Fan, D.; Tang, B. Research on Network Patterns and Influencing Factors of Population Flow and Migration in the Yangtze River Delta Urban Agglomeration, China. Sustainability 2020, 12, 6803. [Google Scholar] [CrossRef]
- Silva, P.; Li, L. Mapping Urban Expansion and Exploring Its Driving Forces in the City of Praia, Cape Verde, from 1969 to 2015. Sustainability 2017, 9, 1434. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Wei, Y.D.; Chen, W.; Yenneti, K. Urban Land Expansion and Structural Change in the Yangtze River Delta, China. Sustainability 2015, 7, 10281–10307. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Tan, R. Will the land supply structure affect the urban expansion form? Habitat Int. 2018, 75, 25–37. [Google Scholar] [CrossRef]
- Jiang, G.; Ma, W.; Yanbo, Q.; Zhang, R.; Dingyang, Z. How does sprawl differ across urban built-up land types in China? A spatial-temporal analysis of the Beijing metropolitan area using granted land parcel data. Cities 2016, 58, 1–9. [Google Scholar] [CrossRef]
- Cao, S.; Li, S.; Ma, H.; Sun, Y. Escaping the resource curse in China. Ambio 2014, 44, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, M.; Liu, Y.; Lieske, S.N.; Chen, T. Public policy change and its impact on urban expansion: An evaluation of 265 cities in China. Land Use Policy 2020, 97, 104754. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Fang, C. The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landsc. Urban Plan. 2018, 174, 63–77. [Google Scholar] [CrossRef]
- Huang, X.; Huang, X.; Liu, M.; Wang, B.; Zhao, Y. Spatial-temporal Dynamics and Driving Forces of Land Development Intensity in the Western China from 2000 to 2015. Chin. Geogr. Sci. 2020, 30, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Ren, C.; Zhang, B.; Wang, Z.; Liu, M. Quantifying Urban Land Sprawl and its Driving Forces in Northeast China from 1990 to 2015. Sustainability 2018, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- McDonald, R.I.; Mansur, A.V.; Ascensão, F.; Colbert, M.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Güneralp, B.; Haase, D.; Hamann, M.; et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 2019, 3, 16–24. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. Urban Land Expansion and Air Pollution: Evidence from China. J. Urban Plan. Dev. 2018, 144, 05018017. [Google Scholar] [CrossRef]
- Larkin, A.; Van Donkelaar, A.; Geddes, J.A.; Martin, R.V.; Hystad, P. Relationships between Changes in Urban Characteristics and Air Quality in East Asia from 2000 to 2010. Environ. Sci. Technol. 2016, 50, 9142–9149. [Google Scholar] [CrossRef] [Green Version]
- Jingyong, Z.; Wenjie, D.; Lingyun, W.; Jiangfeng, W.; Peiyan, C.; Lee, D.-K. Impact of land use changes on surface warming in China. Adv. Atmos. Sci. 2005, 22, 343–348. [Google Scholar] [CrossRef]
- Tan, M.; Li, X. Quantifying the effects of settlement size on urban heat islands in fairly uniform geographic areas. Habitat Int. 2015, 49, 100–106. [Google Scholar] [CrossRef]
- Zhao, S.; Da, L.; Tang, Z.; Fang, H.; Song, K.; Fang, J. Ecological consequences of rapid urban expansion: Shanghai, China. Front. Ecol. Environ. 2006, 4, 341–346. [Google Scholar] [CrossRef]
- Zhang, J.; Pu, L.; Peng, B.; Gao, Z. The impact of urban land expansion on soil quality in rapidly urbanizing regions in China: Kunshan as a case study. Environ. Geochem. Health 2010, 33, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Mou, Y.; Song, Y.; Xu, Q.; He, Q.; Hu, A. Influence of Urban-Growth Pattern on Air Quality in China: A Study of 338 Cities. Int. J. Environ. Res. Public Health 2018, 15, 1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Factors | Level | Acquisition Date | Source |
---|---|---|---|
Built-up area data | National | 1978, 1985–2017 | GAIA project http://data.ess.tsinghua.edu.cn |
Socioeconomic statistics data | Prefectural | 1978, 1990, 2000, 2010, 2017 | Provincial and prefectural statistical yearbooks |
GDP | |||
GDP2 | |||
FAI | |||
Population | |||
Environmental data | National | China Environmental Statistical Yearbook; China Statistical Yearbook | |
Area and number of natural reserves | 1998–2017 | ||
Wastewater discharge | 1990–2017 (absent in 1996, 1998, and 1999) | ||
Total volume of industrial gas emission | 1990–2017 |
No. | Min (10 Million) | Avg (10 Million) | Max (10 Million) | No. | Min (10 Million) | Avg (10 Million) | Max (10 Million) | ||
---|---|---|---|---|---|---|---|---|---|
Eastern region | 103 | 0.05 | 343.75 | 2121 | Small cities | 60 | 0.05 | 21.43 | 49.94 |
Central region | 86 | 3.75 | 228.36 | 871.87 | Medium cities | 61 | 50.6 | 76.21 | 98.20 |
Western region | 141 | 2.39 | 139.85 | 1971 | Large cities | 215 | 100.8 | 225.06 | 498.03 |
Northeast region | 36 | 39.20 | 152.31 | 593.62 | Megacities | 30 | 524.34 | 859.13 | 2121 |
Speed | Acceleration | ||||||
---|---|---|---|---|---|---|---|
Period 1 | Period 2 | Period 3 | Period 4 | Period 1–2 | Period 2–3 | Period 3–4 | |
Moran’s I | 0.566 | 0.667 | 0.603 | 0.617 | 0.293 | 0.454 | 0.543 |
p-value | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Area (km2) | Speed (m2 × (yr × km2)−1) | Acceleration (m2 × (yr2 × km2)−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1978 | 1990 | 2000 | 2010 | 2017 | P1 (1978–1990) | P2 (1990–2000) | P3 (2000–2010) | P4 (2010–2017) | P1–P2 | P2–P3 | P3–P4 | |
Regions | ||||||||||||
Eastern region | 10,177.3 | 30,016.6 | 51,372.6 | 84,573.5 | 134,082.4 | 1653.3 | 2135.6 | 3320.1 | 7072.7 | 43.8 | 118.4 | 441.5 |
Central region | 4145.7 | 16,159.0 | 24,030.3 | 35,210.0 | 59,130.8 | 1001.1 | 787.1 | 1118.0 | 3417.3 | −19.5 | 33.1 | 270.5 |
Western region | 421.8 | 1094.7 | 1508.2 | 2349.6 | 3982.1 | 56.1 | 41.4 | 84.1 | 233.2 | −1.3 | 4.3 | 17.5 |
Northeast region | 2551.9 | 8121.1 | 12,019.3 | 17,663.5 | 33,996.6 | 464.1 | 389.8 | 564.4 | 2333.3 | −6.8 | 17.5 | 208.1 |
Urban sizes | ||||||||||||
Small cities | 173.6 | 341.7 | 487.5 | 677.8 | 1157.0 | 14.0 | 14.6 | 19.0 | 68.5 | 0.1 | 0.4 | 5.8 |
Medium cities | 528.2 | 1693.5 | 2387.5 | 3455.9 | 5893.9 | 97.1 | 69.4 | 106.8 | 348.3 | −2.5 | 3.7 | 28.4 |
Large cities | 3094.2 | 10,424.0 | 16,046.6 | 24,399.0 | 41,204.8 | 610.8 | 562.3 | 835.2 | 2400.8 | −4.4 | 27.3 | 184.2 |
Megacities | 14,013.3 | 37,311.5 | 65,753.5 | 114,781.9 | 179,060.5 | 1941.5 | 2844.2 | 4902.8 | 9182.7 | 82.1 | 205.9 | 503.5 |
National | Regions | Urban Sizes | |||||||
---|---|---|---|---|---|---|---|---|---|
Eastern Region | Central Region | Western Region | Northeast Region | Small Cities | Medium Cities | Large Cities | Megacities | ||
Model 0 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | |
GDP | 0.015 | −0.014 | −0.087 | −0.052 ** | 0.093 | −0.272 | −0.079 | 0.066 * | 0.044 ** |
GDP2*GDP | −0.005 | 0.105 *** | 0.055 | 0.077 * | −0.290 ** | 0.241 | 0.000 | −0.147 ** | 0.009 |
POP | 0.073 | 0.253 ** | -0.161 | −0.037 | −0.389 | −3.277 *** | -0.096 | 0.113 | 0.095 |
FAI | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 | 0.000 *** | 0.000 *** | 0.000 *** |
Constant | 120.415 | 179.009 *** | 137.950 *** | 42.559 *** | 120.404 *** | 49.815 *** | 45.201 *** | 113.722 *** | 280.1982 *** |
Sigma_μ | 151.621 | 160.290 | 131.032 | 48.541 | 97.480 | 34.299 | 53.905 | 147.723 | 209.169 |
Sigma_ϵ | 119.443 | 138.013 | 112.645 | 48.291 | 111.380 | 24.336 | 42.205 | 114.121 | 188.464 |
Rho | 0.632 | 0.274 | 0.575 | 0.503 | 0.434 | 0.665 | 0.620 | 0.626 | 0.552 |
F-test | 196.75 *** | 522.15 *** | 42.08 *** | 66.03 *** | 41.34 *** | 7.17 *** | 12.12 *** | 128.44 *** | 159.82 *** |
R2 | 0.29 | 0.547 | 0.230 | 0.493 | 0.627 | 0.066 | 0.093 | 0.335 | 0.433 |
Modified Hausman test | 43.81 *** | 4.95 | 47.44 *** | 26.22 *** | 16.26 *** | 17.18 *** | 10.11 ** | 41.37 *** | 1.54 |
Obs. | 1129 | 334 | 307 | 368 | 120 | 57 | 179 | 214 | 115 |
Periods | ||||
---|---|---|---|---|
1978–1990 | 1990–2000 | 2000–2010 | 2010–2014 | |
Model 1 | Model 2 | Model 3 | Model 4 | |
GDP | 1.085 | 0.141 | 0.055 *** | 0.027 |
GDP2*GDP | 0.254 | 0.203 | 0.073 ** | −0.117 ** |
POP | 1.265 *** | 0.111 | 0.151 | −0.070 |
FAI | 0.000 | −0.000 | 0.000 ** | 0.000 *** |
Constant | 40.299 ** | 50.565 *** | 22.909 ** | 94.723 *** |
Adjusted R2 | 0.221 | 0.394 | 0.677 | 0.433 |
Obs. | 235 | 291 | 318 | 285 |
Model 1 | Model 2 | Model 3 | Model 4 | |
---|---|---|---|---|
RMSE | 168.29 | 116.33 | 140.80 | 278.00 |
MAE | 106.71 | 79.06 | 82.85 | 180.98 |
Pseudo-R2 | 0.16 | 0.34 | 0.59 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Jia, Y.; Li, X.; Gong, P. Analysing the Driving Forces and Environmental Effects of Urban Expansion by Mapping the Speed and Acceleration of Built-Up Areas in China between 1978 and 2017. Remote Sens. 2020, 12, 3929. https://doi.org/10.3390/rs12233929
Wang L, Jia Y, Li X, Gong P. Analysing the Driving Forces and Environmental Effects of Urban Expansion by Mapping the Speed and Acceleration of Built-Up Areas in China between 1978 and 2017. Remote Sensing. 2020; 12(23):3929. https://doi.org/10.3390/rs12233929
Chicago/Turabian StyleWang, Lan, Yinghui Jia, Xinhu Li, and Peng Gong. 2020. "Analysing the Driving Forces and Environmental Effects of Urban Expansion by Mapping the Speed and Acceleration of Built-Up Areas in China between 1978 and 2017" Remote Sensing 12, no. 23: 3929. https://doi.org/10.3390/rs12233929
APA StyleWang, L., Jia, Y., Li, X., & Gong, P. (2020). Analysing the Driving Forces and Environmental Effects of Urban Expansion by Mapping the Speed and Acceleration of Built-Up Areas in China between 1978 and 2017. Remote Sensing, 12(23), 3929. https://doi.org/10.3390/rs12233929