Variational Retrievals of High Winds Using Uncalibrated CyGNSS Observables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Retrieval Approach
- To reject data according to the criteria in Table 1.
- To compute the signal peak to noise levels from the raw_counts DDM variables in CyGNSS data.
- To run the simulated values of the DDM, using ’wavpy’ fed with the ERA5 wind speed values interpolated to the CyGNSS observations: .
- To compute the individual ratios r between modelled and observed S.
- To fit a polynomial (linear) fit to .
- To calibrate the observables multiplying with their corresponding polynomial value: .
- To compute the numerical derivative of the model around the ERA5 wind speed value, .
3. Results
3.1. Illustrative Cases: Typhoon Trami
3.2. Statistical Analysis: Comparison with the Background Model
3.3. Statistical Analysis: Comparison with Other Spaceborne Sensors
3.4. Statistical Analysis: Comparison with Other CyGNSS Wind Retrievals
4. Discussion
- It uses uncalibrated observables obtained from a single pixel (the peak) of the signal-to-noise DDM, of slightly finer spatial resolution than the combination of pixels used in other CyGNSS retrieval approaches.
- The retrieval is based on a physical forward model instead of empirical or semi-empirical GMF. The physical model has the potential to adjust to different parameters and scenarios, here reduced to wind speed solely. The other set of retrieval studies based on physical models used a large portion of the DDM [30,31,32], putting strong requirements on absolute and inter-pixel calibration, platform attitude control, and potential problems with delay-Doppler pixels that come from two cells on the surface (delay-Doppler ambiguity). For example, Huang et al. assessed that the assimilation of these DDM observables in hurricane models had to be restricted to ambiguity-free pixels [31].
- The calibration is done with respect to a background model, ERA5 in our case. It consists of adjusting a polynomial (the linear trend obtained the best results) between the CyGNSS measured observables and those that result of feeding the forward model with ERA5 wind fields where it takes values between 5 and 25 m/s (to avoid the problems within the low wind regime in our physical model, and problems within strong winds in ERA5). Only long tracks of data are used to guarantee that wind anomalies (of shorter scale) can be separated from calibration issues (of much longer scale).
- The retrieval scheme is compatible with a simplified example of the procedure of assimilation of low level observables in NWP models, in which the calibration could also be implemented. Therefore, the calibration would be consistent with the background model and independent from third parties’ NWP models (unlike assimilating CyGNSS retrievals calibrated with the data provider’s NWP model).
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ASCAT | EUMETSAT Advanced Scatterometer on board METOP |
CDR | CYGNSS Climate Data Record |
CLS | Collecte Localisation Satellites, France |
CYGNSS | NASA Cyclone Global Navigation Satellite System |
DDM | Delay Doppler Map |
ECMWF | European Centre for Medium-range Weather Forecast |
ERA5 | ECMWF Reanalysis 5th Generation |
ECMWF/C3S | ECMWF/Copernicus Climate Change Service |
FDS | Fully Developed Seas |
GMF | Geophysical Model Functions |
GNSS | Global Navigation Satellite System |
GNSS-R | GNSS Reflectometry |
GPS | USA Global Positioning System |
IBTrACS | International Best Track Archive for Climate Stewardship |
IFREMER | Institut Français de Recherche pour l’Exploitation de la Mer |
IMERG | Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission |
L1X21 | CYGNSS Level 1 Science Data Record Version 2.1 |
LEO | Low Earth Orbiter |
MEBEX | Mediterranean Balloon Experiment |
NASA | USA National Aeronautics and Space Administration |
NOAA | USA National Oceanic and Atmospheric Administration |
NWP | Numerical Weather Prediction |
PODAAC | NASA’s Physical Oceanography Distributed Active Archive Center |
SAR | Synthetic Aperture Radar |
SFMR | NOAA Stepped Frequency Microwave Radiometer |
SMAP | NASA Soil Moisture Active Passive |
SMOS | ESA Soil Moisture and Ocean Salinity |
TDS-1 | UK TechDemoSat-1 |
YSLF | Young Seas Limited Fetch |
Appendix A. Symbols in Section 2.2
Symbol | Description | In This Study |
---|---|---|
Generic symbol for the observable being assimilated or inverted | ||
x | Generic symbol for the unknowns to be retrieved | wind speed |
Values of the unknowns according to the background model | ERA5 | |
H | Forward model or operator to synthesize a simulated observable from a model that depends on x | Bistatic radar equation for GNSS in [2] as implemented in ‘wavpy’ [48] |
B | Covariance matrix of the background model | not used |
E | Covariance matrix of the measurements | Identity matrix |
F | Covariance matrix of the forward operator | not used |
S | Generic symbol for signal peak to noise level | |
S modelled using the forward operator fed with the background model | ||
S extracted from CyGNSS level-1 data | with variable raw_counts ‘DDM bin raw counts’ | |
after the calibration step | ||
p | Polynomial fit of the ratios r | liner fit better performance |
r | inverse ratio between a given observation and its modelled value | |
Derivative or the forward operator with respect to the unknowns, evaluated at | Numerical derivative |
Appendix B. Trami Figures
References
- Ruf, C.S.; Atlas, R.; Chang, P.S.; Clarizia, M.P.; Garrison, J.L.; Gleason, S.; Katzberg, S.J.; Jelenak, Z.; Johnson, J.T.; Majumdar, S.J.; et al. New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Am. Meteorol. Soc. 2016, 97, 385–395. [Google Scholar] [CrossRef]
- Zavorotny, V.U.; Voronovich, A.G. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans. Geosci. Remote. Sens. 2000, 38, 951–964. [Google Scholar] [CrossRef] [Green Version]
- Zavorotny, V.U.; Gleason, S.; Cardellach, E.; Camps, A. Tutorial on Remote Sensing Using GNSS Bistatic Radar of Opportunity. IEEE Geosci. Remote. Sens. Mag. 2014, 2, 8–45. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Cardellach, E.; Xie, F. GNSS Remote Sensing: Theory, Methods and Applications; Springer: Dordrecht, The Netherlands, 2014; ISBN 978-94-007-7481-0. [Google Scholar] [CrossRef]
- Rius, A.; Cardellach, E. Reflectometry. In Springer Handbook of Global Navigation Satellite Systems; Teunissen, P., Montenbruck, O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1163–1186. ISBN 978-3-319-42928-1. [Google Scholar] [CrossRef]
- Katzberg, S.J.; Walker, R.A.; Roles, J.H.; Lynch, T.; Black, P.G. First GPS signals reflected from the interior of a tropical storm: Preliminary results from Hurricane Michael. Geophys. Res. Lett. 2001, 28, 1981–1984. [Google Scholar] [CrossRef] [Green Version]
- Cardellach, E.; Ruffini, G.; Pino, D.; Rius, A.; Komjathy, A.; Garrison, J.L. Mediterranean Balloon Experiment: Ocean wind speed sensing from the stratosphere using GPS reflections. Remote. Sens. Environ. 2003, 88, 351–362. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Ruf, C.; Cipollini, P.; Zuffada, C. First spaceborne observation of sea surface height using GPS-reflectometry. Geophys. Res. Lett. 2016, 43, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Cardellach, E.; Li, W.; Rius, A.; Semmling, M.; Wickert, J.; Zus, F.; Ruf, C.; Buontempo, C. First Precise Spaceborne Sea Surface Altimetry With GNSS Reflected Signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 102–112. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; Fabra, F.; Rius, A.; Ribó, S.; Martín-Neira, M. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals. Geophys. Res. Lett. 2017, 44, 8369–8376. [Google Scholar] [CrossRef]
- Rius, A.; Cardellach, E.; Fabra, F.; Li, W.; Ribó, S.; Hernández-Pajares, M. Feasibility of GNSS-R Ice Sheet Altimetry in Greenland Using TDS-1. Remote. Sens. 2017, 9, 742. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, R.; Banks, C.J.; Srokosz, M. Improved GNSS-R bi-static altimetry and independent digital elevation models of Greenland and Antarctica from TechDemoSat-1. Cryosphere 2020, 14, 1909–1917. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; Fabra, F.; Ribó, S.; Rius, A. Lake Level and Surface Topography Measured With Spaceborne GNSS-Reflectometry From CYGNSS Mission: Example for the Lake Qinghai. Geophys. Res. Lett. 2018, 45, 13332–13341. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Spaceborne GNSS-R Sea Ice Detection Using Delay-Doppler Maps: First Results From the U.K. TechDemoSat-1 Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2016, 9, 4795–4801. [Google Scholar] [CrossRef]
- Alonso-Arroyo, A.; Zavorotny, V.U.; Camps, A. Sea Ice Detection Using U.K. TDS-1 GNSS-R Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4989–5001. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cardellach, E.; Fabra, F.; Ribó, S.; Rius, A. Measuring Greenland Ice Sheet Melt Using Spaceborne GNSS Reflectometry From TechDemoSat-1. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Chew, C.; Shah, R.; Zuffada, C.; Hajj, G.; Masters, D.; Mannucci, A.J. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission. Geophys. Res. Lett. 2016, 43, 3317–3324. [Google Scholar] [CrossRef] [Green Version]
- Santi, E.; Paloscia, S.; Pettinato, S.; Fontanelli, G.; Clarizia, M.P.; Comite, D.; Dente, L.; Guerriero, L.; Pierdicca, N.; Floury, N. Remote Sensing of Forest Biomass Using GNSS Reflectometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2351–2368. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Podest, E.; Jensen, K.; McDonald, K.C. Classifying Inundation in a Tropical Wetlands Complex with GNSS-R. Remote Sens. 2019, 11, 1053. [Google Scholar] [CrossRef] [Green Version]
- Comite, D.; Cenci, L.; Colliander, A.; Pierdicca, N. Monitoring Freeze-Thaw State by Means of GNSS Reflectometry: An Analysis of TechDemoSat-1 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2996–3005. [Google Scholar] [CrossRef]
- Unwin, M.; Jales, P.; Tye, J.; Gommenginger, C.; Foti, G.; Rosello, J. Spaceborne GNSS-Reflectometry on TechDemoSat-1: Early Mission Operations and Exploitation. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2016, 9, 4525–4539. [Google Scholar] [CrossRef]
- Foti, G.; Gommenginger, C.; Jales, P.; Unwin, M.; Shaw, A.; Robertson, C.; Roselló, J. Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission. Geophys. Res. Lett. 2015, 42, 5435–5441. [Google Scholar] [CrossRef] [Green Version]
- Foti, G.; Gommenginger, C.; Srokosz, M. First Spaceborne GNSS-Reflectometry Observations of Hurricanes From the UK TechDemoSat-1 Mission. Geophys. Res. Lett. 2017, 44, 12358–12366. [Google Scholar] [CrossRef] [Green Version]
- Foti, G.; Gommenginger, C.; Unwin, M.; Jales, P.; Tye, J.; Rosello, J. An Assessment of Non-geophysical Effects in Spaceborne GNSS Reflectometry Data From the UK TechDemoSat-1 Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2017, 10, 3418–3429. [Google Scholar] [CrossRef] [Green Version]
- Said, F.; Jelenak, Z.; Chang, P.S.; Soisuvarn, S. An Assessment of CYGNSS Normalized Bistatic Radar Cross Section Calibration. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2019, 12, 50–65. [Google Scholar] [CrossRef]
- Ruf, C.S.; Balasubramaniam, R. Development of the CYGNSS Geophysical Model Function for Wind Speed. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2019, 12, 66–77. [Google Scholar] [CrossRef]
- Ruf, C.S.; Gleason, S.; McKague, D.S. Assessment of CYGNSS Wind Speed Retrieval Uncertainty. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2019, 12, 87–97. [Google Scholar] [CrossRef]
- Ruf, C.; Asharaf, S.; Balasubramaniam, R.; Gleason, S.; Lang, T.; McKague, D.; Twigg, D.; Waliser, D. In-Orbit Performance of the Constellation of CYGNSS Hurricane Satellites. Bull. Am. Meteorol. Soc. 2019, 100, 2009–2023. [Google Scholar] [CrossRef]
- Said, F.; Jelenak, Z.; Park, J.; Soisuvarn, S.; Chang, P.S. A ‘Track-Wise’ Wind Retrieval Algorithm for the CYGNSS Mission. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8711–8714. [Google Scholar] [CrossRef]
- Huang, F.; Garrison, J.L.; Rodriguez-Alvarez, N.; O’Brien, A.J.; Schoenfeldt, K.M.; Ho, S.C.; Zhang, H. Sequential Processing of GNSS-R Delay-Doppler Maps to Estimate the Ocean Surface Wind Field. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10202–10217. [Google Scholar] [CrossRef]
- Huang, F.; Grieco, G.; Stoffelen, A.; GNSS-R Processing and NWP Assimilation. EUMETSAT OSI SAF Visiting Scientist Activity Scientific Report V.1 2019. Available online: http://www.osi-saf.org/sites/default/files/dynamic/page_with_files/file/osisaf_vs19_01_Huang_Report_v1.0.pdf (accessed on 30 November 2020).
- Huang, F.; Garrison, J.L.; Leidner, S.M.; Annane, B.; Hoffman, R.N.; Grieco, G.; Stoffelen, A. A Forward Model for Data Assimilation of GNSS Ocean Reflectometry Delay-Doppler Maps. IEEE Trans. Geosci. Remote. Sens. 2020, 1–14. [Google Scholar] [CrossRef]
- Al-Khaldi, M.M.; Johnson, J.T.; Kang, Y.; Katzberg, S.J.; Bringer, A.; Kubatko, E.; Wood, D. Track-Based Cyclone Maximum Wind Retrievals Using the Cyclone Global Navigation Satellite System (CYGNSS) Mission Full DDMs. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Wang, Z.; Wang, H.; Zhang, Z.; Zhang, L.; Yang, Q. Assessment of Sea Surface Wind from NWP Reanalyses and Satellites in the Southern Ocean. J. Atmos. Oceanic Technol. 2013, 30, 1842–1853. [Google Scholar] [CrossRef]
- Whelan, E.; Gleeson, E.; Hanley, J. An Evaluation of MÉRA, a High-Resolution Mesoscale Regional Reanalysis. J. Appl. Meteorol. Climatol. 2018, 57, 2179–2196. [Google Scholar] [CrossRef]
- McNoldy, B.; Annane, B.; Majumdar, S.; Delgado, J.; Bucci, L.; Atlas, R. Impact of Assimilating CYGNSS Data on Tropical Cyclone Analyses and Forecasts in a Regional OSSE Framework. Mar. Technol. Soc. J. 2017, 51, 7–15. [Google Scholar] [CrossRef]
- Annane, B.; McNoldy, B.; Leidner, S.M.; Hoffman, R.; Atlas, R.; Majumdar, S.J. A Study of the HWRF Analysis and Forecast Impact of Realistically Simulated CYGNSS Observations Assimilated as Scalar Wind Speeds and as VAM Wind Vectors. Mon. Weather. Rev. 2018, 146, 2221–2236. [Google Scholar] [CrossRef]
- Li, X.; Mecikalski, J.R.; Lang, T.J. A Study on Assimilation of CYGNSS Wind Speed Data for Tropical Convection during 2018 January MJO. Remote Sens. 2020, 12, 1243. [Google Scholar] [CrossRef] [Green Version]
- Cotton, J.; Eyre, J.; Forsythe, M. Evaluation of TDS-1 winds in Numerical Weather Prediction. In GNSS-R Workshop; NOC Southampton: Southampton, UK, 2018; Available online: Http://merrbys.co.uk/wpcontent/uploads/2018/07/NOCWorkshop_JCotton_201805_share.pdf (accessed on 30 November 2020).
- University of Michigan. CYGNSS Handbook; Michigan Publishing: Ann Arbor, MI, USA, 2016; ISBN 978-1-60785-380-0. Available online: https://clasp-research.engin.umich.edu/missions/cygnss/reference/cygnss-mission/CYGNSS_Handbook_April2016.pdf (accessed on 30 November 2020).
- European Centre for Medium-range Weather Forecast (ECMWF) Copernicus Climate Change (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. On-Line Documentation, Last Version August 5. 2020. Available online: Https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation (accessed on 30 November 2020).
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Verspeek, J.A.; Stoffelen, A.; Portabella, M.; Bonekamp, H.; Anderson, C.; Figa, J. Validation and calibration of ASCAT using CMOD5.n. IEEE Trans. Geosci. Remote Sens. 2010, 48, 386–395. [Google Scholar] [CrossRef]
- Reul, N.; Tenerelli, J.; Chapron, B.; Vandemark, D.; Quilfen, Y.; Kerr, Y. SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes. J. Geophys. Res. 2012, 117, C02006. [Google Scholar] [CrossRef] [Green Version]
- Meissner, T.; Ricciardulli, L.; Wentz, F.J. Capability of the SMAP Mission to Measure Ocean Surface Winds in Storms. Bull. Am. Meteorol. Soc. 2017, 98, 1660–1677. [Google Scholar] [CrossRef]
- Mouche, A.; Chapron, B.; Knaff, J.; Zhao, Y.; Zhang, B.; Combot, C. Copolarized and Cross-Polarized SAR Measurements for High-Resolution Description of Major Hurricane Wind Structures: Application to Irma Category 5 Hurricane. J. Geophys. Res. Ocean. 2019, 124, 3905–3922. [Google Scholar] [CrossRef]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 Half Hourly 0.1 Degree × 0.1 Degree V06; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Fabra, F.; Cardellach, E.; Li, W.; Rius, A. WAVPY: A GNSS-R open source software library for data analysis and simulation. In Proceedings of the IGARSS 2017—IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 4125–4128. [Google Scholar] [CrossRef]
- Voronovich, A.G.; Zavorotny, V.U. Bistatic Radar Equation for Signals of Opportunity Revisited. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1959–1968. [Google Scholar] [CrossRef]
- Asgarimehr, M.; Wickert, J.; Reich, S. Evaluating Impact of Rain Attenuation on Space-borne GNSS Reflectometry Wind Speeds. Remote Sens. 2019, 11, 1048. [Google Scholar] [CrossRef] [Green Version]
- Laxague, N.J.M.; Zappa, C.J. The impact of rain on ocean surface waves and currents. Geophys. Res. Lett. 2020, 47, e2020GL087287. [Google Scholar] [CrossRef] [Green Version]
- Asgarimehr, M.; Zavorotny, V.; Wickert, J.; Reich, S. Can GNSS Reflectometry detect precipitation over oceans? Geophys. Res. Lett. 2018, 45, 12585–12592. [Google Scholar] [CrossRef] [Green Version]
- Portabella, M.; Stoffelen, A.; Lin, W.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera-Poy, J. Rain Effects on ASCAT-Retrieved Winds: Toward an Improved Quality Control. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2495–2506. [Google Scholar] [CrossRef]
- Lin, W.; Portabella, M.; Stoffelen, A.; Vogelzang, J.; De Chiara, G. Optimization of ASCAT Data Assimilation in Global NWP. EUMETSAT NWP-SAF Report NWPSAF-KN-VS-017, v1.0. 2016. Available online: https://nwp-saf.eumetsat.int/vs_reports/nwpsaf-kn-vs-017.pdf (accessed on 30 November 2020).
- Cotton, J.; Francis, P.; Heming, J.; Forsythe, M.; Reul, N.; Donlon, C. Assimilation of SMOS L-band wind speeds: Impact on Met Office global NWP and tropical cyclone predictions. Q. J. R. Meteorol. Soc. 2017, 144, 614–629. [Google Scholar] [CrossRef]
Data Selection Criteria: |
---|
Removal of samples with receiver antenna gain in the specular direction <9 dBi |
Track longer than 600 samples |
Track with at least one sample where ERA5 wind speed >20 m/s |
Removal of samples for which the location of the specular point is flagged as ‘land’ or ‘near land’ |
Track with more than 20% of samples with ERA5 wind speed between 5 and 25 m/s |
Period | Tropical Cyclones | Number of Tracks |
---|---|---|
9 September 2018–29 September 2018 | Helene | 29 |
Mangkhut | 34 | |
Florence | 24 | |
Joyce | 3 | |
Trami | 40 | |
Leslie | 23 | |
Rosa | 10 | |
Kong-Rey | 1 | |
26 August 2019–6 September 2019 | Dorian | 41 |
Juliette | 4 | |
Lingling | 13 | |
Gabrielle | 2 | |
Faxai | 1 |
ERA5 | SMAP | SMOS | ASCAT-A | ASCAT-b |
---|---|---|---|---|
308,646 | 6870 | 11,927 | 25,514 | 24,931 |
Range | CyGNSS | SMAP | SMOS | ASCAT-A | ASCAT-B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | N | M | N | M | N | M | N | M | N | ||||||
[0, 5) | −0.7 | 2.2 | 70,363 | −0.7 | 1.8 | 910 | −1.4 | 1.9 | 1112 | 0.3 | 1.4 | 3774 | 0.3 | 1.4 | 4830 |
[5, 10) | −0.4 | 2.5 | 139,320 | 0.1 | 2.0 | 2720 | 0.9 | 2.0 | 5321 | 0.4 | 1.6 | 12,122 | 0.3 | 1.6 | 11,554 |
[10, 15) | −0.7 | 3.0 | 64,332 | 1.0 | 1.9 | 2060 | 3.2 | 2.9 | 3000 | 0.4 | 1.7 | 6779 | 0.2 | 1.6 | 6138 |
[15, 20) | 0.3 | 2.8 | 24,339 | 1.0 | 1.4 | 1135 | 4.2 | 4.8 | 1429 | 0.1 | 2.2 | 2496 | −0.2 | 2.1 | 2122 |
[20, 25) | 2.2 | 2.7 | 7360 | 1.9 | 1.6 | 57 | 5.1 | 4.4 | 750 | 0.9 | 3.1 | 705 | 1.3 | 3.4 | 950 |
[25, 30) | 4.6 | 3.0 | 2014 | 5.5 | 2.5 | 17 | 8.1 | 5.1 | 225 | 4.4 | 5.2 | 177 | 3.7 | 6.1 | 196 |
[30, 35) | 7.5 | 2.8 | 649 | 6.7 | 0.4 | 19 | 13.0 | 6.6 | 37 | 6.3 | 2.8 | 16 | 5.2 | 3.0 | 19 |
[35, 40) | 10.8 | 3.1 | 207 | – | – | 0 | 16.6 | 8.1 | 31 | – | – | 0 | 8.3 | – | 1 |
[40, 45) | 15.1 | 3.0 | 41 | – | – | 0 | 17.4 | 3.9 | 34 | – | – | 0 | – | – | 0 |
[45, 50) | 21.6 | 3.7 | 11 | – | – | 0 | 25.3 | 3.0 | 9 | – | – | 0 | – | – | 0 |
All data | −0.4 | 2.4 | 308,646 | 0.4 | 1.6 | 6918 | 2.2 | 3.9 | 11,948 | 0.4 | 1.3 | 26,069 | 0.3 | 1.3 | 25,810 |
<CyGNSS—Other Spaceborne Sensed wind Speed >window (Dispersion) [m/s] | ||||
---|---|---|---|---|
Window: | SMAP | SMOS | ASCAT-A | ASCAT-B |
[0,5) m/s | −1.2 (2.8) | −4.5 (5.4) | −1.2 (2.3) | −1.2 (2.2) |
[5,10) m/s | −1.2 (2.9) | −2.2 (4.1) | −0.9 (2.4) | −0.8 (2.5) |
[10,15) m/s | −0.4 (2.8) | −1.7 (4.8) | −0.7 (2.8) | −0.9 (2.8) |
[15,20) m/s | 0.4 (2.2) | −3.3 (4.3) | −0.2 (3.2) | −0.5 (3.5) |
[20,25) m/s | 0.7 (5.1) | −1.7 (4.5) | 1.4 (3.3) | 1.0 (2.9) |
[25,30) m/s | 0.2 (4.5) | 0.8 (9.5) | 2.9 (3.7) | 3.5 (2.7) |
[30,35) m/s | −0.7 (2.0) | 5.1 (9.3) | 5.3 (2.8) | 6.1 (2.8) |
[35,40) m/s | 1.8 (–) | 9.8 (5.8) | 7.7 (2.5) | 8.5 (3.2) |
[40,45) m/s | – | 19.5 (–) | 13.7 (1.4) | 12.3 (3.4) |
[45,50) m/s | – | 31.6 (–) | – | 15.0 (–) |
All data | −0.8 (2.6) | −2.5 (4.6) | −0.8 (2.5) | −0.8 (2.4) |
Pearson’s Correlation Coefficient | ||||
All data | 0.83 | 0.65 | 0.86 | 0.88 |
Sample Availability: The variational CyGNSS wind retrievals are available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardellach, E.; Nan, Y.; Li, W.; Padullés, R.; Ribó, S.; Rius, A. Variational Retrievals of High Winds Using Uncalibrated CyGNSS Observables. Remote Sens. 2020, 12, 3930. https://doi.org/10.3390/rs12233930
Cardellach E, Nan Y, Li W, Padullés R, Ribó S, Rius A. Variational Retrievals of High Winds Using Uncalibrated CyGNSS Observables. Remote Sensing. 2020; 12(23):3930. https://doi.org/10.3390/rs12233930
Chicago/Turabian StyleCardellach, Estel, Yang Nan, Weiqiang Li, Ramon Padullés, Serni Ribó, and Antonio Rius. 2020. "Variational Retrievals of High Winds Using Uncalibrated CyGNSS Observables" Remote Sensing 12, no. 23: 3930. https://doi.org/10.3390/rs12233930
APA StyleCardellach, E., Nan, Y., Li, W., Padullés, R., Ribó, S., & Rius, A. (2020). Variational Retrievals of High Winds Using Uncalibrated CyGNSS Observables. Remote Sensing, 12(23), 3930. https://doi.org/10.3390/rs12233930