A Novel OpenMVS-Based Texture Reconstruction Method Based on the Fully Automatic Plane Segmentation for 3D Mesh Models
Abstract
:1. Introduction
2. Related Works
2.1. 3D Texture Reconstruction
2.2. Plane Structure Feature Segmentation
3. OpenMVS Texture Reconstruction Method
4. Improved Texture Reconstruction Method Based on the Fully automatic Plane Segmentation
4.1. A Fully Automatic VSA-Based Plane Segmentation Algorithm for Blocked 3D Mesh Models
4.1.1. The VSA Framework
4.1.2. Fully Automatic Plane Segmentation Algorithm Based on the VSA Framework
4.1.3. A Fast VSA Plane Segmentation Method Suitable for Multi-Threaded Parallel Processing
4.2. Texture Chart Generation Method with the Mesh Planar-Structure Information
4.3. Texture Charts Boundary Smoothing
- Quantity priority principle: Traverse all adjacent charts of the face, and count the number of texture charts. If two or more faces belong to the same texture chart, the current face is also added to this largest texture chart.
- The longest side principle: Count the length of the three sides of the face if the texture charts to which the adjacent faces belong are different. Sort the edges in order from large to small, and the current face is added to the texture chart corresponding to the longest edge.
5. Experiments and Analysis
5.1. Qualitative Assessment Experiments
5.1.1. Qualitative Comparison of the Number of Texture Charts
5.1.2. Qualitative Comparison of Texture Reconstruction Results
5.2. Quantitative Evaluation Experiments
5.2.1. Efficiency Comparison with OpenMVS Texture Reconstruction Algorithm
5.2.2. Quantitative Comparison of the Number of Texture Charts
5.2.3. Quantitative Comparison of the Total Length of Texture Seam-Line
5.2.4. Quantitative Comparison of Texture Clarity
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xie, H.; Yao, H.; Sun, X.; Zhou, S.; Zhang, S. Pix2vox: Context-aware 3d reconstruction from single and multi-view images. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 2690–2698. [Google Scholar]
- Jing-Xue, Y.; Qiang, Z.; Wei-Xi, Y. A dense matching algorithm of multi-view image based on the integrated multiple matching primitives. Acta Geod. Cartogr. Sin. 2013, 42, 691. [Google Scholar]
- Seitz, S.M.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; pp. 519–528. [Google Scholar]
- Rouhani, M.; Lafarge, F.; Alliez, P. Semantic segmentation of 3D textured meshes for urban scene analysis. ISPRS J. Photogramm. Remote Sens. 2017, 123, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Pepe, M.; Fregonese, L.; Crocetto, N. Use of SfM-MVS approach to nadir and oblique images generated throught aerial cameras to build 2.5 D map and 3D models in urban areas. Geocarto Int. 2019, 1–22. [Google Scholar] [CrossRef]
- Purnomo, B.; Cohen, J.D.; Kumar, S. Seamless texture atlases. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Nice, France, 8–10 July 2004; pp. 65–74. [Google Scholar]
- Bi, S.; Kalantari, N.K.; Ramamoorthi, R. Patch-based optimization for image-based texture mapping. ACM Trans. Graph. 2017, 36, 106:1–106:11. [Google Scholar] [CrossRef]
- Inzerillo, L.; Di Paola, F.; Alogna, Y. High quality texture mapping process aimed at the optimization of 3d structured light models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.-Y.; Wu, T.-C.; Phothong, W.; Wang, D.W.; Liao, C.-Y.; Lee, J.-Y. A high-resolution texture mapping technique for 3D textured model. Appl. Sci. 2018, 8, 2228. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Li, E.; Li, J.; Chen, Y.; Zhang, Y. A general texture mapping framework for image-based 3D modeling. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 12–15 September 2010; pp. 2713–2716. [Google Scholar]
- Schönberger, J.L.; Zheng, E.; Frahm, J.-M.; Pollefeys, M. Pixelwise view selection for unstructured multi-view stereo. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 501–518. [Google Scholar]
- Fuhrmann, S.; Langguth, F.; Moehrle, N.; Waechter, M.; Goesele, M. MVE—An image-based reconstruction environment. Comput. Graph. 2015, 53, 44–53. [Google Scholar] [CrossRef]
- Hepp, B.; Nießner, M.; Hilliges, O. Plan3d: Viewpoint and trajectory optimization for aerial multi-view stereo reconstruction. ACM Trans. Graph. TOG 2018, 38, 1–17. [Google Scholar] [CrossRef]
- Iizuka, S.; Simo-Serra, E.; Ishikawa, H. Let there be color! Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Trans. Graph. ToG 2016, 35, 1–11. [Google Scholar] [CrossRef]
- Yeo, D.; Lee, C.-O. Variational shape prior segmentation with an initial curve based on image registration technique. Image Vis. Comput. 2020, 94, 103865. [Google Scholar] [CrossRef]
- Cohen-Steiner, D.; Alliez, P.; Desbrun, M. Variational shape approximation. In ACM SIGGRAPH 2004 Papers; Association for Computing Machinery: New York, NY, USA, 2004; pp. 905–914. [Google Scholar]
- Yan, D.-M.; Wang, W.; Liu, Y.; Yang, Z. Variational mesh segmentation via quadric surface fitting. Comput. Aided Des. 2012, 44, 1072–1082. [Google Scholar] [CrossRef]
- Wu, N.; Zhang, D.; Deng, Z.; Jin, X. Variational Mannequin Approximation Using Spheres and Capsules. IEEE Access 2018, 6, 25921–25929. [Google Scholar] [CrossRef]
- Morigi, S.; Huska, M. Sparsity-inducing variational shape partitioning. Electron. Trans. Numer. Anal. 2017, 46, 36–54. [Google Scholar]
- Cernea, D. OpenMVS: Open Multiple View Stereovision. Available online: https://github.com/cdcseacave/openMVS/ (accessed on 18 November 2020).
- Callieri, M.; Cignoni, P.; Corsini, M.; Scopigno, R. Masked photo blending: Mapping dense photographic data set on high-resolution sampled 3D models. Comput. Graph. 2008, 32, 464–473. [Google Scholar] [CrossRef] [Green Version]
- Hoegner, L.; Stilla, U. Automatic 3D reconstruction and texture extraction for 3D building models from thermal infrared image sequences. Quant. InfraRed Thermogr. 2016. [Google Scholar] [CrossRef]
- Liu, L.; Ye, C.; Ni, R.; Fu, X.-M. Progressive parameterizations. ACM Trans. Graph. TOG 2018, 37, 1–12. [Google Scholar] [CrossRef]
- Li, S.; Luo, Z.; Zhen, M.; Yao, Y.; Shen, T.; Fang, T.; Quan, L. Cross-atlas convolution for parameterization invariant learning on textured mesh surface. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–21 June 2019; pp. 6143–6152. [Google Scholar]
- Zhao, H.; Li, X.; Ge, H.; Lei, N.; Zhang, M.; Wang, X.; Gu, X. Conformal mesh parameterization using discrete Calabi flow. Comput. Aided Geom. Des. 2018, 63, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Yang, B. Developing an optimized texture mapping for photorealistic 3D buildings. Trans. GIS 2019, 23, 1–21. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, H.; Meng, X.; Yang, X.; Peng, X. Texture mapping based on photogrammetric reconstruction of the coded markers. Appl. Opt. 2019, 58, A48–A54. [Google Scholar] [CrossRef]
- Lempitsky, V.; Ivanov, D. Seamless mosaicing of image-based texture maps. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–6. [Google Scholar]
- Fu, Y.; Yan, Q.; Yang, L.; Liao, J.; Xiao, C. Texture mapping for 3d reconstruction with rgb-d sensor. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4645–4653. [Google Scholar]
- Li, W.; Gong, H.; Yang, R. Fast texture mapping adjustment via local/global optimization. IEEE Trans. Vis. Comput. Graph. 2018, 25, 2296–2303. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y. A high-realistic texture mapping algorithm based on image sequences. In Proceedings of the 2018 26th International Conference on Geoinformatics, Kunming, China, 28–30 June 2018; pp. 1–8. [Google Scholar]
- Jagannathan, A.; Miller, E.L. Three-dimensional surface mesh segmentation using curvedness-based region growing approach. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 2195–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, M.; Shimada, K. Surface mesh segmentation and smooth surface extraction through region growing. Comput. Aided Geom. Des. 2005, 22, 771–792. [Google Scholar] [CrossRef]
- Liu, S.; Ferguson, Z.; Jacobson, A.; Gingold, Y.I. Seamless: Seam erasure and seam-aware decoupling of shape from mesh resolution. ACM Trans. Graph. 2017, 36, 216:1–216:15. [Google Scholar] [CrossRef]
- Jiao, X.; Wu, T.; Qin, X. Mesh segmentation by combining mesh saliency with spectral clustering. J. Comput. Appl. Math. 2018, 329, 134–146. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Kim, S.-J. Mesh segmentation based on curvatures using the GPU. Multimed. Tools Appl. 2015, 74, 3401–3412. [Google Scholar] [CrossRef]
- He, C.; Wang, C. A survey on segmentation of 3D models. Wirel. Pers. Commun. 2018, 102, 3835–3842. [Google Scholar] [CrossRef]
- Attene, M.; Falcidieno, B.; Spagnuolo, M. Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 2006, 22, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Marinov, M.; Kobbelt, L. Automatic generation of structure preserving multiresolution models. In Proceedings of the Computer Graphics Forum, Amsterdam, The Netherlands, 18–20 May 2005; pp. 479–486. [Google Scholar]
- Khattab, D.; Ebeid, H.M.; Hussein, A.S.; Tolba, M.F. 3D Mesh Segmentation Based on Unsupervised Clustering. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 24–26 October 2016; pp. 598–607. [Google Scholar]
- Garland, M.; Willmott, A.; Heckbert, P.S. Hierarchical face clustering on polygonal surfaces. In Proceedings of the 2001 Symposium on Interactive 3D Graphics, Chapel Hill, NC, USA, 26–29 March 2001; pp. 49–58. [Google Scholar]
- Wang, H.; Lu, T.; Au, O.K.-C.; Tai, C.-L. Spectral 3D mesh segmentation with a novel single segmentation field. Graph. Models 2014, 76, 440–456. [Google Scholar] [CrossRef]
- Cheng, S.-C.; Kuo, C.-T.; Wu, D.-C. A novel 3D mesh compression using mesh segmentation with multiple principal plane analysis. Pattern Recognit. 2010, 43, 267–279. [Google Scholar] [CrossRef]
- Kaiser, A.; Ybanez Zepeda, J.A.; Boubekeur, T. A survey of simple geometric primitives detection methods for captured 3d data. In Proceedings of the Computer Graphics Forum, Brno, Czech Republic, 4–8 June 2018; pp. 167–196. [Google Scholar]
- Yi, B.; Liu, Z.; Tan, J.; Cheng, F.; Duan, G.; Liu, L. Shape recognition of CAD models via iterative slippage analysis. Comput. Aided Des. 2014, 55, 13–25. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Z. Surface feature based mesh segmentation. Comput. Graph. 2011, 35, 661–667. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Zou, Q.-F.; Tong, X.; Liu, Y. Learning adaptive hierarchical cuboid abstractions of 3d shape collections. ACM Trans. Graph. TOG 2019, 38, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Quan, W.; Guo, J.; Zhang, X.; Dongming, Y.; Yan, D. Improved quadric surfaces recognition from scanned mechanical models. CADDM 2016, 26, 9–19. [Google Scholar]
- Simari, P.D.; Singh, K. Extraction and remeshing of ellipsoidal representations from mesh data. In Proceedings of the Graphics Interface, Victoria, BC, Canada, 9–11 May 2005; pp. 161–168. [Google Scholar]
- Wu, J.; Kobbelt, L. Structure Recovery via Hybrid Variational Surface Approximation. In Proceedings of the Comput. Graph. Forum, Amsterdam, The Netherlands, 18–20 May 2005; pp. 277–284. [Google Scholar]
- Thul, D.; Ladický, L.U.; Jeong, S.; Pollefeys, M. Approximate convex decomposition and transfer for animated meshes. ACM Trans. Graph. TOG 2018, 37, 1–10. [Google Scholar] [CrossRef]
- Waechter, M.; Moehrle, N.; Goesele, M. Let there be color! Large-scale texturing of 3D reconstructions. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 836–850. [Google Scholar]
- Salinas, D.; Lafarge, F.; Alliez, P. Structure-aware mesh decimation. In Proceedings of the Computer Graphics Forum, Graz, Austria, 6–8 July 2015; pp. 211–227. [Google Scholar]
- Liu, L.; Sheng, Y.; Zhang, G.; Ugail, H. Graph cut based mesh segmentation using feature points and geodesic distance. In Proceedings of the 2015 International Conference on Cyberworlds (CW), Visby, Sweden, 7–9 October 2015; pp. 115–120. [Google Scholar]
- Schmidt, M.; Alahari, K. Generalized fast approximate energy minimization via graph cuts: Alpha-expansion beta-shrink moves. arXiv 2011, arXiv:Preprint/1108.5710. [Google Scholar]
- Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. Meshlab: An open-source mesh processing tool. In Proceedings of the Eurographics Italian Chapter Conference, Salerno, Italy, 2–4 July 2008; pp. 129–136. [Google Scholar]
- Schuster, K.; Trettner, P.; Schmitz, P.; Kobbelt, L. A Three-Level Approach to Texture Mapping and Synthesis on 3D Surfaces. Proc. ACM Comput. Graph. Interact. Tech. 2020, 3, 1–19. [Google Scholar]
- Velho, L.; Sossai, J., Jr. Projective texture atlas construction for 3D photography. Vis. Comput. 2007, 23, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Shan, Q.; Adams, R.; Curless, B.; Furukawa, Y.; Seitz, S.M. The visual turing test for scene reconstruction. In Proceedings of the 2013 International Conference on 3D Vision-3DV 2013, Seattle, WA, USA, 29 June–1 July 2013; pp. 25–32. [Google Scholar]
Conditions | Value | ||
---|---|---|---|
/ | |||
/ |
Model | Number of Images | Image Size (Pixels × Pixels) | Number of Faces | Area |
---|---|---|---|---|
Church | 25 | 3072 × 2048 | 13.2 m2 | |
Villa | 161 | 3072 × 2048 | 794.7 m2 | |
City | 151 | 4000 × 3000 | 577,431 m2 |
Model | VSA (s) | Our Method (s) | Time Decreased |
---|---|---|---|
Church | 8.8 | 5.9 | 32.9% |
Villa | 483.2 | 148.4 | 69.2% |
City | 891.0 | 278.7 | 68.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Xiao, X.; Guo, B.; Zhang, L. A Novel OpenMVS-Based Texture Reconstruction Method Based on the Fully Automatic Plane Segmentation for 3D Mesh Models. Remote Sens. 2020, 12, 3908. https://doi.org/10.3390/rs12233908
Li S, Xiao X, Guo B, Zhang L. A Novel OpenMVS-Based Texture Reconstruction Method Based on the Fully Automatic Plane Segmentation for 3D Mesh Models. Remote Sensing. 2020; 12(23):3908. https://doi.org/10.3390/rs12233908
Chicago/Turabian StyleLi, Shenhong, Xiongwu Xiao, Bingxuan Guo, and Lin Zhang. 2020. "A Novel OpenMVS-Based Texture Reconstruction Method Based on the Fully Automatic Plane Segmentation for 3D Mesh Models" Remote Sensing 12, no. 23: 3908. https://doi.org/10.3390/rs12233908
APA StyleLi, S., Xiao, X., Guo, B., & Zhang, L. (2020). A Novel OpenMVS-Based Texture Reconstruction Method Based on the Fully Automatic Plane Segmentation for 3D Mesh Models. Remote Sensing, 12(23), 3908. https://doi.org/10.3390/rs12233908