
applied
sciences

Article

A High-Resolution Texture Mapping Technique for
3D Textured Model

Jiing-Yih Lai 1,*, Tsung-Chien Wu 1 , Watchama Phothong 1, Douglas W. Wang 2,
Chao-Yaug Liao 1 and Ju-Yi Lee 1

1 Department of Mechanical Engineering, National Central University, Taoyuan 32001, Taiwan;
rabbit94577@gmail.com (T.-C.W.); p_watchama@hotmail.com (W.P.); cyliao@ncu.edu.tw (C.-Y.L.);
juyilee@ncu.edu.tw (J.-Y.L.)

2 Ortery Technologies, Inc., New Taipei City 22052, Taiwan; dwmwang@gmail.com
* Correspondence: jylai@ncu.edu.tw

Received: 1 October 2018; Accepted: 8 November 2018; Published: 12 November 2018
����������
�������

Abstract: We proposed a texture mapping technique that comprises mesh partitioning, mesh
parameterization and packing, texture transferring, and texture correction and optimization for
generating a high-quality texture map of a three-dimensional (3D) model for applications in
e-commerce presentations. The main problems in texture mapping are that the texture resolution
is generally worse than in the original images and considerable photo inconsistency exists at the
transition of different image sources. To improve the texture resolution, we employed an oriented
boundary box method for placing mesh islands on the parametric (UV) map. We also provided a
texture size that can keep the texture resolution of the 3D textured model similar to that of the object
images. To improve the photo inconsistency problem, we employed a method to detect and overcome
the missing color that might exist on a texture map. We also proposed a blending process to minimize
the transition error caused by different image sources. Thus, a high-quality 3D textured model can be
obtained by applying this series of processes for presentations in e-commerce.

Keywords: conformal mapping; mesh parameterization; mesh partitioning; pixel extraction;
texture mapping

1. Introduction

Two-dimensional (2D) images are commonly used for product presentations in e-commerce
because they can reveal the object’s texture and are easy to process. However, as 2D images can display
only limited views of an object, it may be possible to capture hundreds of 2D images and orient an
image at any viewing angle via a web viewer [1]. However, storing and displaying so many images
while maintaining high image quality would have huge memory requirements. In addition, the actual
three-dimensional (3D) shape and dimensions of an object cannot be obtained in this representation.
3D image-modeling technology is a technique for reconstructing the 3D model of an object by using
multiple 2D images while maintaining its texture on the model (called 3D textured model hereafter).
If its texture quality can be comparable to that of 2D images, this technology could be used to replace
2D images for product presentations, because a 3D textured model requires less memory and can freely
be oriented in 3D space.

Product presentation usually requires a dedicated photography device to catch high-quality object
images with known position and orientation in 3D space. The object images can be obtained using
a single-camera device that applies a digital single-lens reflex (DSLR) camera to capture an object
placed on a turntable, or a multi-camera device that applies several DSLR cameras mounted on an
arm to capture an object placed on a turntable from different angles. These devices can position the

Appl. Sci. 2018, 8, 2228; doi:10.3390/app8112228 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2299-7361
https://orcid.org/0000-0001-8203-9520
http://www.mdpi.com/2076-3417/8/11/2228?type=check_update&version=1
http://dx.doi.org/10.3390/app8112228
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 2228 2 of 22

camera precisely such that the camera information can be calibrated. The object on the turntable can
also be oriented to capture object images in different views. These devices also provide a controlled
environment, for example, single background color and adjustable lighting, such that the object images
and the background color can easily be separated. As these devices are already used in the field of
product presentation, we use them as the image source of the 3D-image modeling technology.

3D image-modeling technology primarily involves the generation of two kinds of information,
the 3D model of an object and its texture map. The former employs triangular meshes to describe the
object’s surface geometry, and the latter describes its color information. There is a mapping between
the 3D model and the texture map such that when the model is displayed in 3D space, accurate object
texture can be displayed accordingly. Approaches to generating 3D models from multiple images can
be classified into two groups: shape-from-silhouette (SFS) and shape-from-photoconsistency (SFP).
The SFP approach has received extensive attention because it can simultaneously yield a 3D geometric
model of an object and its texture map. The main idea of this method is to generate photo-consistent
models that can reduce some measure of the discrepancy between different image projections of their
surface vertices [2–4]. The main advantage of the SFP approach is that it can generate fine surface
details by using photometric and geometric information. However, the reliability of the SFP approach
remains a problem because the texture quality can easily be affected by environmental factors such as
noise in the colors, inaccuracies in camera calibration, non-Lambertian surfaces, and homogeneous
object color.

However, the SFS approach is a common method used to estimate an object’s shape from images
of its silhouettes [5–7]. This method is essentially based on a visual hull concept in which the object’s
shape is constructed by the intersection of multiple sets of polygons from the silhouettes of multiple
2D images. With a sufficient number of images from different views, this method can yield an
approximate model to describe the outline shape of an object. However, this model is not yet suitable
for visualization due to the following two reasons. First, the SFS method can produce visual features
on the 3D model, such as sharp edges and artifacts, which do not exist on the real object surface; some
virtual features may be sufficient large to affect the outline shape. Second, concavities on the object
surface are often formed as convex shapes because these are invisible on image silhouettes. Therefore,
a quality improvement method must be implemented to remove virtual features while recovering
the smoothness of the model [8]. The removal of artifacts is particularly important because they are
difficult to detect and eliminate.

Texture mapping generally includes multiple techniques, such as mesh partitioning, mesh
parameterization, texture transferring, and correction and optimization, which are related to each other
and affect the texture quality. Research in mesh partitioning can be summarized using several different
approaches. Shamir [9] categorized several methods of mesh partitioning according to segmentation
type, partitioning technique, and segmentation criterion. Segmentation type refers to surface-type and
part-type. Surface-type mesh partitioning is commonly used in texture mapping [10–12] because it
can prevent large distortion in mesh parameterization. Mangan et al. [13,14] and Lavoué et al. [15]
proposed a constant curvature watershed method to separate a mesh model into several regions.
Other applications of surface-type partitioning include remeshing and simplification [16], mesh
morphing, and mesh collision detection [17]. Part-type mesh partitioning is commonly used for part
recognition on a mesh model composed of multiple parts. Mortara et al. [18,19] proposed a partitioning
method by applying the curvature information at the transition of different parts to decompose a mesh
model. Funkhouser et al. [20] proposed another method by establishing the database of some known
parts for the separation of a mesh model. Partitioning techniques include region growing, hierarchical
clustering, iterative clustering, and inferring from a skeleton, which can be implemented either alone
or together. Segmentation criterion approaches include dihedral angle or normal angle, geodesic
distance, and topological relationship, which can also be implemented either alone or together.

Mesh parameterization was classified in accordance with distortion minimization, boundary
condition, and numerical complexity [21,22]. Distortion minimization can be summarized based on

Appl. Sci. 2018, 8, 2228 3 of 22

three types: angle, area, and distance. For angle minimization, an objective function is formulated
to minimize the distortion of 2D meshes on the UV domain. Several methods can be employed for
angle minimization. Lévy et al. [11] proposed a least-squares approximation of the Cauchy-Riemann
equations to minimize both angle and area distortion on 2D meshes. Desbrun et al. [23] presented
an instinct parameterization to minimize angle distortion. These two methods allow free boundaries
and linear numerical complexity. Sheffer et al. [24] optimized the angles on the UV domain based on
angle-base flattening. This method sets constraints on the topology of triangular meshes to preserve
the correctness of 2D meshes. Sheffer et al. [25] proposed a hierarchical algorithm to improve the
optimization efficiency for the case of huge triangular meshes, and Zayer et al. [26] proposed a
method to solve the optimization problem for a set of linear equations that were derived based on the
angle-base flattening approach with a set of constraints specified. In addition, the barycentric mapping
is commonly used for mapping 3D meshes onto the UV domain in mesh processing. Tutte [27,28]
proposed an algorithm to embed a 3D mesh onto the UV domain by evaluating the barycentric
position in terms of its neighboring meshes. Eck et al. [29] proposed an algorithm to calculate
the multiresolution form of a mesh via a barycentric map. Floater [30] applied a “shape-preserve”
condition for the barycentric map to preserve the shape of 2D meshes on the UV domain. Floater [31]
and Floater et al. [32] further applied mean-value weights for the barycentric map to preserve the
shape of 2D meshes. For all above-mentioned barycentric mapping, the boundary is fixed and the
numerical complexity is linear, which is not suitable for texture editing. For texture mapping, a method
of free boundary is more appropriate as it can ensure that the boundary of each island of 2D meshes
is close to the real profile, making the texture editing easy. Some other approaches have focused on
minimizing the area distortion [33] and distance [34].

For texture map generation, the main idea is to deal with the texture transferring problem.
Niem et al. [35] proposed a texture transferring method by identifying the most appropriate image
source for a group of meshes. They also minimized the color inconsistency at the transition of
two different groups and synthesized the invisible meshes using the color of neighboring pixels.
Genç et al. [36] proposed a method to extract and render the texture dynamically. The extraction
was implemented by horizontally scanning the pixels and rendering every color onto the meshes.
Baumberg [37] proposed a blending method to handle the color difference between two different
images. The images were separated into high and low bands; the low band images were averaged
to minimize the color difference, whereas the high band images were kept to preserve the outline
profile. In addition, texture synthesizing is commonly used to improve the transition between different
textures. Efros et al. [38] proposed an image quilting method to quilt together different texture patterns.
They extended the boundary of each original pattern and calculated the minimum color difference
on the overlapping area to find the new boundary between two patterns. Wei et al. [39] proposed an
algorithm to synthesize the texture pattern based on deterministic searching and use tree-structured
vector quantization to improve the efficiency. These two approaches focus mainly on the transition
synthesis between two texture patterns.

2. Problem Statement

For product presentations in e-commerce, texture quality is the most crucial issue to investigate
because it directly affects the visualization effect. Ideally, the texture quality at any view in 3D space
should perfectly match that of the corresponding 2D image. Actual texture on the 3D model, however,
is usually worse than that of 2D images, mainly because individual texture on the 3D model comes
from different image sources. A 3D model reconstructed using multiple images of an object is only an
approximation of the object geometry. The camera model and calibration method used to estimate the
camera parameters might yield additional errors in the position and orientation of the object images.
These errors, combined with errors caused by the texture mapping process, might lead to discrepancy
between the texture of the 3D model and the real object. Any defect in the 3D texture could negatively
impact perceptions of the product being presented.

Appl. Sci. 2018, 8, 2228 4 of 22

The following are typical problems involving the 3D texture:

1. Reduced texture resolution: The texture resolution at any view in 3D space is worse than that of
the corresponding object image, primarily because of inappropriate scaling of the pixels between
the real image domain and the texture mapping image domain.

2. Missing color on some mesh regions: All 2D meshes on the texture domain should ideally
be color-filled, but some may be missed if they are beyond the boundary of the object image,
primarily because of insufficient accuracy of the 3D model, especially for those meshes near the
image silhouette.

3. Photo inconsistency at the transition of different image sources: Photo inconsistency usually
occurs along the boundary of different groups of meshes, with each group textured by different
image sources. This problem is the combined effect of insufficient accuracy of the 3D model and
the camera parameters.

Thus, we develop a texture mapping algorithm that focuses on detecting and removing
these problems.

The objective of this study is to develop a high-quality texture mapping algorithm that can be
combined with a 3D modeling algorithm to generate the 3D textured model of an object for use in
e-commerce product presentation. High-quality texture here indicates that the texture at any view
in 3D space should be as close as possible to that of the corresponding 2D image, which mainly
requires maintenance of the resolution on the texture and elimination of photo-inconsistent errors at
the transition of different image sources. A general texture mapping process comprising the following
three techniques is proposed: mesh partitioning, mesh parameterization and packing, and texture
transferring. Specific efforts are made at each step to initially eliminate problems that might affect
the texture of the 3D model. To further reduce the discrepancy of the texture owing to insufficient
inaccuracy of the 3D model and camera parameters, a correction and optimization algorithm is
presented. The entire texture mapping process is fully automatic and is intended to be used for all
kinds of objects.

The main contribution of the proposed texture mapping method is as follows. First, we enhance
the techniques of converting 3D meshes onto the UV domain so that the shape of most 2D meshes can
be preserved and the finest resolution can be obtained in texture transferring. Three main techniques in
converting 3D meshes onto the UV domain are mesh partitioning, mesh parameterization and packing.
In the proposed mesh partitioning algorithm, a novel chart growth method is proposed to partition
3D meshes iteratively so that each chart of 3D meshes can be as flat (disk type) as possible, which can
reduce the error of 2D meshes in mesh parameterization. In the proposed mesh parameterization
algorithm, a novel conformal mapping method is proposed to preserve the shape of 2D meshes as close
to that of 3D meshes as possible. In the proposed packing method, all regions of 2D meshes are tightly
packed in a rectangular area to acquire the finest resolution. Second, we propose an optimized texture
transferring algorithm for generating the texture map, emphasizing the elimination of erroneous
texture mapping owing to insufficient accuracy of the 3D model as well camera parameters, and the
improvement of the texture resolution as close to that of 2D object images as possible. The strategies
used in the proposed algorithm include: (1) increase overall texture size in pixels; (2) increase the
number of pixels occupied by each 2D mesh; (3) detect and fill in void meshes; and (4) perform texture
blending at the boundaries of mesh islands. The first two operations can improve the resolution
of the final texture map, whereas the last two operations can eliminate erroneous texture mapping.
Several realistic examples are presented to verify the feasibility of the proposed texture mapping
method. The results are also compared with those form commercial software.

3. Overview of the Proposed Method

The 3D textured model is created by covering a 3D model with a texture map that stores the color
information of the object. The main idea of direct texture mapping is to generate the texture of the 3D

Appl. Sci. 2018, 8, 2228 5 of 22

model by directly using the object images. Figure 1 shows the overall flowchart of the proposed texture
mapping method. The input data are the 3D model of an object and multiple object images from
different views (Figure 1a). The original 3D model was generated from silhouettes of the object images
using an SFS method. However, the surface quality of the original meshes was not satisfactory because
of artifacts and virtual features affecting the outline shape, as well as the surface smoothness. A mesh
optimization algorithm combining re-meshing, mesh smoothing, and mesh reduction was employed
to eliminate the effect of the above-mentioned phenomena and yield an optimized mesh model [8].
The model after mesh optimization served as the input of the proposed texture mapping algorithm.Appl. Sci. 2018, 8, x FOR PEER REVIEW 6 of 22

Figure 1. Overall flowchart of the proposed texture mapping method: (a) input data, (b) mesh

partitioning, (c) mesh parameterization and packing, (d) texture transferring, (e) correction and

optimization, and (f) output object file.

4. The Proposed Texture Mapping Method

4.1. Mesh Partitioning

The purpose of mesh partitioning is to partition 3D meshes into several charts, where a chart

denotes a group of meshes that are tightly connected to each other and form a boundary loop only.

When a chart is mostly flat and compact in boundaries, it is easy to preserve the shape in mesh

parameterization. By contrast, when a chart is bent too much or closed on both sides, that is, two

boundary loops, the shape distortion in the mesh parameterization increases, thereby reducing the

texture resolution in some regions. A conventional approach to dealing with this issue is to map each

mesh on the 3D model onto the UV domain independently, which can accurately preserve the shape

Object images

3D model

Grouped meshes

2D image

(a)

(b)

(e)

(d)

(c)

(f)

Figure 1. Overall flowchart of the proposed texture mapping method: (a) input data, (b) mesh
partitioning, (c) mesh parameterization and packing, (d) texture transferring, (e) correction and
optimization, and (f) output object file.

Appl. Sci. 2018, 8, 2228 6 of 22

In the proposed texture mapping algorithm, mesh partitioning is first implemented to subdivide
the 3D model into several charts (Figure 1b), each of which is later individually mapped onto the
UV domain. Mesh partitioning is based on a chart growth method to assign a weight to each mesh
on the model, and grow each chart of meshes one by one from a set of initial seed meshes. The seed
meshes are optimized in an iteration process until all meshes have been clustered. This ensures
that all charts are flat and compact in the boundary for easy mapping in the mesh parameterization.
Mesh parameterization and packing is then implemented to map the meshes on each chart and to pack
all 2D meshes on the UV domain (Figure 1c). An angle-preserving algorithm is proposed to optimize
the mapping between the 3D and 2D domains, which can preserve the shape of most 2D meshes.
Furthermore, all 2D meshes are tightly packed in a rectangular area to acquire the finest resolution
when mapping the pixels from the image domain to the texture domain.

Next, texture transferring is implemented to extract pixels from the image domain, and place
them on the texture domain appropriately (Figure 1d). This procedure comprises three main steps:
grouping the 3D meshes, extracting pixels from the image domain, and placing pixels onto the texture
domain. We also propose a method to analyze the texture resolution. The proposed texture transferring
algorithm ensures that the texture resolution can be set to the equivalent of the 2D images. Finally,
we implement correction and optimization of the texture to eliminate erroneous color mapping that
might occur due to the insufficient accuracy of the 3D model and camera parameters and to improve
the photo consistency at the boundary of different image sources (Figure 1e). Several photo inconsistent
problems are detected and solved one by one. The output texture map is saved as a universal data
format (*.obj), which can be displayed with a website viewer (Figure 1f).

4. The Proposed Texture Mapping Method

4.1. Mesh Partitioning

The purpose of mesh partitioning is to partition 3D meshes into several charts, where a chart
denotes a group of meshes that are tightly connected to each other and form a boundary loop
only. When a chart is mostly flat and compact in boundaries, it is easy to preserve the shape in
mesh parameterization. By contrast, when a chart is bent too much or closed on both sides, that is,
two boundary loops, the shape distortion in the mesh parameterization increases, thereby reducing
the texture resolution in some regions. A conventional approach to dealing with this issue is to
map each mesh on the 3D model onto the UV domain independently, which can accurately preserve
the shape of all 2D meshes and pack them all tightly row by row [40]. However, this approach
might result in an un-editable texture map, because all 2D meshes are independently projected and
distributed irregularly.

The proposed mesh partitioning technique essentially assigns a cost to each mesh, which denotes
a mesh’s weight calculated by considering the flatness and distance of the mesh with respect to a chart.
An iterative procedure combining chart growth and seed mesh upgrades is implemented to expand
and modify charts as well as seed meshes in sequence. The chart growth is a process to cluster all
meshes into charts in accordance with each mesh’s cost. When a closed chart is detected as possibly
occurring, a new seed mesh is added to separate the chart into two. The seed mesh upgrading is a
process to upgrade the seed mesh of each chart that has been expanded. Whenever a chart is grown,
its seed mesh is recomputed by putting it near the center of the new chart.

Two costs are defined and used in chart growth and seed mesh upgrading. The cost used in chart
growth is defined as

Cost1
(

F, F′
)
= (1− (NC·NF′))(|PF′ − PF|), (1)

where Cost1(F, F′) denotes the weight of a candidate mesh F′ neighboring a chart C, F is the
neighboring mesh of F′ that has been in C, NC is the normal vector of C evaluated by the average of all
normal vectors of the meshes in C, NF′ is the normal vector of the candidate mesh, and PF′ and PF are
the centroids of F′ and F, respectively. Equation (1) indicates that the cost Cost1(F, F′) considers both

Appl. Sci. 2018, 8, 2228 7 of 22

the flatness and distance of F′ with respect to the chart C. The cost used in seed mesh upgrading is
defined as

Cost2
(

F, F′
)
=
∣∣PF′ − PF

∣∣, (2)

which is used to determine the mesh F that is closest to the candidate mesh F′.
Figure 2 depicts the flowchart of the proposed mesh partitioning algorithm, which has three main

steps: initial seed meshes, chart growth, and seed mesh upgrading. In step 1, a set of seed meshes are
initially assigned on the input 3D meshes. A default value of 10 is typically used and the seed meshes
are randomly selected from the 3D meshes. Each seed mesh is initially assigned as a chart.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 7 of 22

of all 2D meshes and pack them all tightly row by row [40]. However, this approach might result in

an un-editable texture map, because all 2D meshes are independently projected and distributed

irregularly.

The proposed mesh partitioning technique essentially assigns a cost to each mesh, which denotes

a mesh’s weight calculated by considering the flatness and distance of the mesh with respect to a

chart. An iterative procedure combining chart growth and seed mesh upgrades is implemented to

expand and modify charts as well as seed meshes in sequence. The chart growth is a process to cluster

all meshes into charts in accordance with each mesh’s cost. When a closed chart is detected as possibly

occurring, a new seed mesh is added to separate the chart into two. The seed mesh upgrading is a

process to upgrade the seed mesh of each chart that has been expanded. Whenever a chart is grown,

its seed mesh is recomputed by putting it near the center of the new chart.

Two costs are defined and used in chart growth and seed mesh upgrading. The cost used in

chart growth is defined as

𝐶𝑜𝑠𝑡1(𝐹, 𝐹′)= (1 − (NC∙N𝐹′))(|P𝐹′ − PF|), (1)

where 𝐶𝑜𝑠𝑡1(𝐹, 𝐹′) denotes the weight of a candidate mesh 𝐹′ neighboring a chart C, 𝐹 is the

neighboring mesh of 𝐹′ that has been in C, NC is the normal vector of C evaluated by the average of

all normal vectors of the meshes in C, N𝐹′ is the normal vector of the candidate mesh, and P𝐹′ and

PF are the centroids of 𝐹′ and F, respectively. Equation (1) indicates that the cost

𝐶𝑜𝑠𝑡1(𝐹, 𝐹′) considers both the flatness and distance of 𝐹′ with respect to the chart C. The cost used

in seed mesh upgrading is defined as

𝐶𝑜𝑠𝑡2(𝐹, 𝐹′)= |P𝐹′ − PF|, (2)

which is used to determine the mesh F that is closest to the candidate mesh 𝐹′.

Figure 2 depicts the flowchart of the proposed mesh partitioning algorithm, which has three

main steps: initial seed meshes, chart growth, and seed mesh upgrading. In step 1, a set of seed

meshes are initially assigned on the input 3D meshes. A default value of 10 is typically used and the

seed meshes are randomly selected from the 3D meshes. Each seed mesh is initially assigned as a

chart.

Figure 2. Flowchart of mesh partitioning.

In step 2, chart growth, all meshes neighboring the charts are found by using the topological

data of the mesh model. Equation (1) is then employed to evaluate a cost for each of these meshes.

The costs are sorted from minimum to maximum. The mesh with the minimum cost is selected to

cluster with its neighboring chart. Three criteria are then checked in sequence. First, is this chart

Calculate mesh cost

Input 3D meshes

Output mesh groups

Initial seed meshes

Grow a chart

Calculate new seed meshes

Are all mesh included

in chart?

No

Yes

Are all seed meshes

repeated?

No

Yes

Is the mesh chart

single boundary loop?

Add new seed meshYes

No

Are all mesh charts

single boundary loop?

Yes

No

Chart growth

Seed mesh

upgrading

Figure 2. Flowchart of mesh partitioning.

In step 2, chart growth, all meshes neighboring the charts are found by using the topological data
of the mesh model. Equation (1) is then employed to evaluate a cost for each of these meshes. The costs
are sorted from minimum to maximum. The mesh with the minimum cost is selected to cluster with
its neighboring chart. Three criteria are then checked in sequence. First, is this chart (which has just
grown) a single boundary loop? If yes, go to the next criterion. If not, a new seed mesh is added.
The last mesh added to this chart is regarded as the new seed mesh. Second, are all meshes clustered
into charts? If yes, go to the next criterion. If not, go back to the beginning of this step. Third, are all
charts a single boundary loop? If yes, this step is finished. If not, go back to the beginning of this step.
Notably, after step 2, all meshes are clustered into charts.

In step 3, seed mesh upgrading, the seed mesh on each chart is recomputed. The upgraded seed
mesh is located near the center of the chart, which is achieved by a reverse searching process from the
boundary of the chart. Starting from a mesh on the boundary, Equation (2) is repeatedly employed to
find a loop of meshes around the boundary of the chart. The same search is repeated from outside to
inside to yield several layers of loops. The final mesh on the last loop is regarded as the upgraded seed
mesh. If all upgraded seed meshes are identical to the ones in the previous iteration, this indicates
that all charts obtained are converged, and the entire process is finished. Otherwise, we return to the
beginning of step 2 to regenerate all charts with the upgraded seed meshes. Table 1 lists the process
(CPU) time required vs. number of meshes for the case “Shoe 1”. It is noted that the number of meshes
used in this study is only 4500 as the model is to be used on a web viewer. Therefore, the computational
time in this case is sufficiently fast.

Appl. Sci. 2018, 8, 2228 8 of 22

Table 1. Time consuming for mesh partitioning.

Object Number of
Meshes

No. of Initial
Seeds

No. of Final
Charts Total Time (s)

Shoe 1

4500 * 10 10 0.246
10,000 10 30 1.812
20,000 10 66 7.075
30,000 10 111 18.431
40,000 10 148 31.603
50,000 10 202 44.574

* used in the case study herein.

4.2. Mesh Parameterization and Packing

After mesh partitioning, the 3D model can be separated into several disk-type mesh groups.
This series of mesh groups is flattened onto the 2D domain based on an angle-preserving and conformal
mesh parameterization. The main idea of this parameterization method is to make the difference
between angles in the 3D and 2D domains as small as possible. Several topological constraints are also
applied during the optimization of the angles to ensure the topological correctness on the 2D domain.
The proposed angle-based flattening method sets three kinds of mesh-topology constraints, namely,
triangle, vertex and wheel consistencies, as shown in Figure 3a–c. This series of topological constraints
can be formulated as the following objective function in a linear system:

10101 · · · 0
...

10110
...

. . .
...

cot(ϕ)0cot(ω) 0 · · · 0

ε1

ε2

ε3
...

εn×3

 =

180− (α+ β+ γ)
...

360− (θ1 + . . . θd)
...

(log(sin(ϕ))− log(sin(ω))) + . . .

, (3)

where n is the number of meshes; εi is the error of the angle on the ith mesh; α, β, and γ are the angles
on each mesh; θd is the angle around the inner vertex; d is the number of angles around the inner vertex;
and ϕ and ω are the angles on two adjacent meshes, respectively, corresponding to the common edge.
Equation (3) is essentially Ax = b, where the errors εi, i = 1 . . . n × 3 can be minimized. The optimized
angles on the 2D domain can then be obtained by adding the errors and the original angles together.

The new vertices on the 2D domain must be calculated in accordance with the optimized
angles. Let three vertices of a triangle be e1, e2 and e3, and the corresponding angles be α1, α2,
and α3, respectively. The calculation of the new vertices on the 2D domain uses the following
least-squares approximation:

Qobj = min ∑
j

[(
ej

3 − ej
1

)
−

sinα
j
2

sinα
j
3

R
α

j
1

(
ej

2 − ej
1

)]2

, (4)

where R is a rotation matrix with angle α1, and j is the jth iteration. Assume that the two vertices e1

and e2 of a triangle are known. Equation (4) employs the known vertices e1 and e2 to optimize the
unknown vertex e3, where Qobj is the objective function for the optimization. For all 2D meshes, if the
first two vertices on a mesh can be determined, the remaining vertices can be evaluated by using the
least-squares approximation [11], which is formulated as a set of linear equations. The topology of all
vertices on the UV domain can be maintained correctly.

Appl. Sci. 2018, 8, 2228 9 of 22

Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 22

𝑄𝑜𝑏𝑗 = 𝑚𝑖𝑛 ∑ [(𝑒3
𝑗
− 𝑒1

𝑗
) −

𝑠𝑖𝑛 𝛼2
𝑗

𝑠𝑖𝑛 𝛼3
𝑗 𝑹

𝛼1
𝑗(𝑒2

𝑗
− 𝑒1

𝑗
)]

2

𝑗 , (4)

where R is a rotation matrix with angle α1, and j is the jth iteration. Assume that the two vertices e1

and e2 of a triangle are known. Equation (4) employs the known vertices e1 and e2 to optimize the

unknown vertex e3, where Qobj is the objective function for the optimization. For all 2D meshes, if the

first two vertices on a mesh can be determined, the remaining vertices can be evaluated by using the

least-squares approximation [11], which is formulated as a set of linear equations. The topology of all

vertices on the UV domain can be maintained correctly.

Figure 3. Three kinds of mesh-topology constraints in mesh parameterization: (a) triangle consistency,

(b) vertex consistency, and (c) wheel consistency.

The parameterized mesh islands are all independent. This series of mesh islands needs to be

packed together onto the UV map. The UV map is essentially a kind of image that records all 2D

meshes and is of the same image size as the texture map. The process of collecting all mesh-islands

and converting them into the UV map is called packing. The objective in packing is to let each mesh

island occupy as much space as possible, thereby maintaining the resolution of the texture as close to

that of the 2D images as possible. Therefore, we consider how to efficiently arrange the mesh islands

on the UV map. First, an oriented boundary box (OBB) method [41] is employed to construct a best-

fit boundary box for each mesh island, as shown in Figure 4a. Using the OBB method to arrange the

islands ensures that less space on the UV map is wasted compared to when using the axis aligned

bounding box (AABB) method shown in Figure 4b. Next, the mesh islands are arranged together

according to their OBB lengths on the UV map, as shown in Figure 4c.

(a) (b) (c)

α+β+γ

β γ

α

𝜔

φ

(a) (b)

U

V

(c)

Figure 3. Three kinds of mesh-topology constraints in mesh parameterization: (a) triangle consistency,
(b) vertex consistency, and (c) wheel consistency.

The parameterized mesh islands are all independent. This series of mesh islands needs to be
packed together onto the UV map. The UV map is essentially a kind of image that records all 2D
meshes and is of the same image size as the texture map. The process of collecting all mesh-islands
and converting them into the UV map is called packing. The objective in packing is to let each mesh
island occupy as much space as possible, thereby maintaining the resolution of the texture as close to
that of the 2D images as possible. Therefore, we consider how to efficiently arrange the mesh islands
on the UV map. First, an oriented boundary box (OBB) method [41] is employed to construct a best-fit
boundary box for each mesh island, as shown in Figure 4a. Using the OBB method to arrange the
islands ensures that less space on the UV map is wasted compared to when using the axis aligned
bounding box (AABB) method shown in Figure 4b. Next, the mesh islands are arranged together
according to their OBB lengths on the UV map, as shown in Figure 4c.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 22

𝑄𝑜𝑏𝑗 = 𝑚𝑖𝑛 ∑ [(𝑒3
𝑗
− 𝑒1

𝑗
) −

𝑠𝑖𝑛 𝛼2
𝑗

𝑠𝑖𝑛 𝛼3
𝑗 𝑹

𝛼1
𝑗(𝑒2

𝑗
− 𝑒1

𝑗
)]

2

𝑗 , (4)

where R is a rotation matrix with angle α1, and j is the jth iteration. Assume that the two vertices e1

and e2 of a triangle are known. Equation (4) employs the known vertices e1 and e2 to optimize the

unknown vertex e3, where Qobj is the objective function for the optimization. For all 2D meshes, if the

first two vertices on a mesh can be determined, the remaining vertices can be evaluated by using the

least-squares approximation [11], which is formulated as a set of linear equations. The topology of all

vertices on the UV domain can be maintained correctly.

Figure 3. Three kinds of mesh-topology constraints in mesh parameterization: (a) triangle consistency,

(b) vertex consistency, and (c) wheel consistency.

The parameterized mesh islands are all independent. This series of mesh islands needs to be

packed together onto the UV map. The UV map is essentially a kind of image that records all 2D

meshes and is of the same image size as the texture map. The process of collecting all mesh-islands

and converting them into the UV map is called packing. The objective in packing is to let each mesh

island occupy as much space as possible, thereby maintaining the resolution of the texture as close to

that of the 2D images as possible. Therefore, we consider how to efficiently arrange the mesh islands

on the UV map. First, an oriented boundary box (OBB) method [41] is employed to construct a best-

fit boundary box for each mesh island, as shown in Figure 4a. Using the OBB method to arrange the

islands ensures that less space on the UV map is wasted compared to when using the axis aligned

bounding box (AABB) method shown in Figure 4b. Next, the mesh islands are arranged together

according to their OBB lengths on the UV map, as shown in Figure 4c.

(a) (b) (c)

α+β+γ

β γ

α

𝜔

φ

(a) (b)

U

V

(c)

Figure 4. Mesh-islands packing: (a) the oriented boundary box (OBB) method to determine the
boundary box, (b) the axis aligned bounding box (AABB) method to determine the boundary box,
and (c) packing of all mesh-islands.

4.3. Texture Transferring

Texture transferring is essentially a process which yields a texture map by filling in each pixel on
and inside the mesh islands on the UV map with a color extracted from the object images. The following

Appl. Sci. 2018, 8, 2228 10 of 22

sentences describe the basic idea of this algorithm (see Figure 5). For each 3D mesh, we allocate the
most appropriate object image (called front image hereafter) and extract a triangular range of pixels
and color information for this mesh. We can also find a triangular range of pixels on the UV map for the
same mesh. However, two pixel ranges might not be the same. Therefore, we perform a transformation
for pixel mapping between these two domains. The texture transferring algorithm has three main
steps: grouping the 3D meshes, extracting the pixels from object images, and placing the pixels onto
the UV map. A detailed description for each step is given below.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 10 of 22

Figure 4. Mesh-islands packing: (a) the oriented boundary box (OBB) method to determine the

boundary box, (b) the axis aligned bounding box (AABB) method to determine the boundary box,

and (c) packing of all mesh-islands.

4.3. Texture Transferring

Texture transferring is essentially a process which yields a texture map by filling in each pixel

on and inside the mesh islands on the UV map with a color extracted from the object images. The

following sentences describe the basic idea of this algorithm (see Figure 5). For each 3D mesh, we

allocate the most appropriate object image (called front image hereafter) and extract a triangular

range of pixels and color information for this mesh. We can also find a triangular range of pixels on

the UV map for the same mesh. However, two pixel ranges might not be the same. Therefore, we

perform a transformation for pixel mapping between these two domains. The texture transferring

algorithm has three main steps: grouping the 3D meshes, extracting the pixels from object images,

and placing the pixels onto the UV map. A detailed description for each step is given below.

Figure 5. Texture transferring.

4.3.1. Grouping the 3D Meshes

The purpose of this step is to allocate each mesh to a front image and put all meshes that use the

same front image in a group. Each mesh can be projected onto several candidate images. The

candidate image that yields the largest projected area and hence the highest texture resolution is

chosen as the front image. Ideally, all object images could be regarded as the candidate images and

selected by all meshes. However, erroneous texture mapping might occur owing to insufficient

inaccuracy of the 3D model, as well as camera parameters. A seam line is a photo-inconsistent

phenomenon that often occurs at the transition of two different image sources. As the number of

candidate images increases, so does the possibility of seam lines. Therefore, to reduce the occurrence

of seam lines, we only select some object images as the candidate images and perform mesh grouping.

The algorithm of grouping is as follows. A series of pieces of camera information corresponding

to the object images and the 3D meshes are the input. One of the important parameters is the looking

vector, which represents the camera viewing direction and is perpendicular to the image plane. In

addition, each of the meshes has its own surface normal. The grouping criterion is based on the angle

between the looking vector of an image and the surface normal of a mesh. The front image of a mesh

Image plane

Front image

Up direction

Camera

position

Normal vector

v1

v3

v2

p1
p3

p2

3D meshes

Projected triangle

Figure 5. Texture transferring.

4.3.1. Grouping the 3D Meshes

The purpose of this step is to allocate each mesh to a front image and put all meshes that use the
same front image in a group. Each mesh can be projected onto several candidate images. The candidate
image that yields the largest projected area and hence the highest texture resolution is chosen as the
front image. Ideally, all object images could be regarded as the candidate images and selected by all
meshes. However, erroneous texture mapping might occur owing to insufficient inaccuracy of the
3D model, as well as camera parameters. A seam line is a photo-inconsistent phenomenon that often
occurs at the transition of two different image sources. As the number of candidate images increases,
so does the possibility of seam lines. Therefore, to reduce the occurrence of seam lines, we only select
some object images as the candidate images and perform mesh grouping.

The algorithm of grouping is as follows. A series of pieces of camera information corresponding
to the object images and the 3D meshes are the input. One of the important parameters is the looking
vector, which represents the camera viewing direction and is perpendicular to the image plane.
In addition, each of the meshes has its own surface normal. The grouping criterion is based on the
angle between the looking vector of an image and the surface normal of a mesh. The front image of a
mesh is defined as the image with the minimum angle among a set of candidate images. It can yield
the largest projected area when projecting the mesh onto the front image. All meshes that use the same
front image can thus be grouped.

Visibility should be considered when grouping meshes. The following two criteria are checked
to detect the visibility of a mesh. First, the angle between an image and a mesh must be less than
90◦. This criterion is employed to ensure that the image faces the front side of the mesh. Second,

Appl. Sci. 2018, 8, 2228 11 of 22

this mesh cannot be obstructed by other meshes that use the same front image. An obstruction
check in terms of the above two criteria could be developed by comparing each mesh with all other
meshes. However, it would require substantial computational time. A cell subdivision algorithm [42]
is employed to check the possibility of mesh obstruction, which can save the computational time
efficiently. The visibility check can prevent the occurrence of mesh obstruction for all meshes on the
same group. When the visibility problem occurs on an image, the front image can be selected from one
of its two neighboring images.

After these processes, the meshes are grouped. The existence of isolated meshes may result in
additional seam lines. An isolated mesh is a small mesh island, which has a front image different to
its surrounding meshes. As the boundary of the mesh island represents two different image sources,
seam lines easily occur around the boundary of the mesh island. Therefore, when a mesh island is
detected, its image source is changed to that of its surrounding meshes. Figure 6 depicts the grouping
result of an example using six candidate images.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 11 of 22

is defined as the image with the minimum angle among a set of candidate images. It can yield the

largest projected area when projecting the mesh onto the front image. All meshes that use the same

front image can thus be grouped.

Visibility should be considered when grouping meshes. The following two criteria are checked

to detect the visibility of a mesh. First, the angle between an image and a mesh must be less than 90°.

This criterion is employed to ensure that the image faces the front side of the mesh. Second, this mesh

cannot be obstructed by other meshes that use the same front image. An obstruction check in terms

of the above two criteria could be developed by comparing each mesh with all other meshes.

However, it would require substantial computational time. A cell subdivision algorithm [42] is

employed to check the possibility of mesh obstruction, which can save the computational time

efficiently. The visibility check can prevent the occurrence of mesh obstruction for all meshes on the

same group. When the visibility problem occurs on an image, the front image can be selected from

one of its two neighboring images.

After these processes, the meshes are grouped. The existence of isolated meshes may result in

additional seam lines. An isolated mesh is a small mesh island, which has a front image different to

its surrounding meshes. As the boundary of the mesh island represents two different image sources,

seam lines easily occur around the boundary of the mesh island. Therefore, when a mesh island is

detected, its image source is changed to that of its surrounding meshes. Figure 6 depicts the grouping

result of an example using six candidate images.

Figure 6. The grouping result of a shoe example using six candidate images.

4.3.2. Extraction of Pixels from the Object Images

The purpose of this step is to extract pixels from the front image with respect to a 3D mesh. A

prospective projection is performed to project 3D meshes back to the image domain. As Figure 5

depicts, the triangle Δp1p2p3 denotes the projection of a 3D mesh Δv1v2v3 onto the image domain. All

pixels and color information on and inside this triangle represent the corresponding texture for the

3D mesh. The extraction of a pixel inside a triangle is explained below. The image is made up of pixels

in a grid plane containing horizontal and vertical lines, which gives each pixel a unique coordinate.

A scanline method is implemented to compute all pixels inside a triangle. The scanline shown in

Figure 7 intersects two triangle edges, which yields the two endpoints of the line segment inside the

triangle. All pixels on this line segment can then be evaluated in sequence. An endpoint of the line

segment can be evaluated by using the following equation:

𝛿𝑥 = 𝑋2 − [
(𝑌2−𝑌)∙(𝑋2−𝑋1)

(𝑌2−𝑌1)
], (5)

where (X1, Y1) and (X2, Y2) denote two vertices of an edge on the triangle, Y is the vertical coordinate

value of the current scanline, and δx is the horizontal coordinate value of the endpoint on this edge.

Equation (5) is applied twice on the left and right edges, respectively, for each scanline.

Figure 6. The grouping result of a shoe example using six candidate images.

4.3.2. Extraction of Pixels from the Object Images

The purpose of this step is to extract pixels from the front image with respect to a 3D mesh.
A prospective projection is performed to project 3D meshes back to the image domain. As Figure 5
depicts, the triangle ∆p1p2p3 denotes the projection of a 3D mesh ∆v1v2v3 onto the image domain.
All pixels and color information on and inside this triangle represent the corresponding texture for the
3D mesh. The extraction of a pixel inside a triangle is explained below. The image is made up of pixels
in a grid plane containing horizontal and vertical lines, which gives each pixel a unique coordinate.
A scanline method is implemented to compute all pixels inside a triangle. The scanline shown in
Figure 7 intersects two triangle edges, which yields the two endpoints of the line segment inside the
triangle. All pixels on this line segment can then be evaluated in sequence. An endpoint of the line
segment can be evaluated by using the following equation:

δx = X2 − [
(Y2 −Y)·(X2 − X1)

(Y2 −Y1)
], (5)

where (X1, Y1) and (X2, Y2) denote two vertices of an edge on the triangle, Y is the vertical coordinate
value of the current scanline, and δx is the horizontal coordinate value of the endpoint on this edge.
Equation (5) is applied twice on the left and right edges, respectively, for each scanline.

Appl. Sci. 2018, 8, 2228 12 of 22

Appl. Sci. 2018, 8, x FOR PEER REVIEW 12 of 22

Figure 7. A scanline method to evaluate all pixels inside a triangle.

4.3.3. Placement of Pixels onto the UV Domain

The final step is the placement of pixels onto the UV map. The pixels with respect to each 2D

mesh are evaluated in the previous step. However, as each 2D mesh on the UV domain is different

from the projected mesh on the image domain, the pixels on these two-pixel domains do not have a

one to one correspondence. Therefore, a transformation algorithm must be employed to map the

pixels between these two domains. The proposed algorithm is explained below. The three vertices of

a mesh on the image domain are respectively mapped onto the corresponding three vertices on the

UV domain by using the following equation:

𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑋′, (6)

𝑑𝑋 + 𝑒𝑌 + 𝑓 = 𝑌′, (7)

where X and Y denote the coordinates of a vertex on the image domain, and X′ and Y′ denote the

coordinates of the corresponding vertex on the UV domain. The parameters a to f can be evaluated

as all three pairs of vertices on the image and UV domains are given. Once a to f corresponding to a

triangle are obtained, the colors of all pixels within this triangle can thus be interpolated by using

Equations (6) and (7). Therefore, all pixels of different triangles on the UV domain can be filled in

with correct colors, which yield the texture map for all 2D meshes.

4.4. Texture Correction and Optimization

The purpose of this study is to generate a high quality texture for a 3D mesh model. Thus, the

texture correction and optimization need to be investigated to ensure that the texture quality is

similar to that of original 2D images. There are four key issues to study: packing the meshes on the

UV domain efficiently, arranging the pixel resolution on the texture map, eliminating the influence

of geometric error on the 3D model, and blending the texture at the transition of different images. For

the first issue, the main idea has already been described in Section 4.2. The meshes can be packed

efficiently on the UV map by applying the OBB method to each mesh island, which can yield a smaller

boundary box for each mesh island packed on the UV map as compared with the AABB method. In

this way, the overall space required for the OBB method is more compact than that without applying

the OBB method. Hence, each 2D mesh can allocate more pixels on the UV map, which is especially

useful for small meshes with respect to preserving the texture resolution.

The next issue is arranging the overall resolution of the texture map. An object image only

partially covers the texture of an object. However, a texture map must cover the entire object texture.

If the texture size of a texture map is the same as that of an object image, the image resolution of the

texture map is worse than that of the object image. The texture size of an object image used is 5184 ×

Scanline

End points

Triangle on

UV map

Scanning

direction

(X1, Y1)

(X2, Y2)

Start

End

(δx, Y)

Figure 7. A scanline method to evaluate all pixels inside a triangle.

4.3.3. Placement of Pixels onto the UV Domain

The final step is the placement of pixels onto the UV map. The pixels with respect to each 2D
mesh are evaluated in the previous step. However, as each 2D mesh on the UV domain is different
from the projected mesh on the image domain, the pixels on these two-pixel domains do not have
a one to one correspondence. Therefore, a transformation algorithm must be employed to map the
pixels between these two domains. The proposed algorithm is explained below. The three vertices of a
mesh on the image domain are respectively mapped onto the corresponding three vertices on the UV
domain by using the following equation:

aX + bY + c = X′, (6)

dX + eY + f = Y′, (7)

where X and Y denote the coordinates of a vertex on the image domain, and X′ and Y′ denote the
coordinates of the corresponding vertex on the UV domain. The parameters a to f can be evaluated
as all three pairs of vertices on the image and UV domains are given. Once a to f corresponding to
a triangle are obtained, the colors of all pixels within this triangle can thus be interpolated by using
Equations (6) and (7). Therefore, all pixels of different triangles on the UV domain can be filled in with
correct colors, which yield the texture map for all 2D meshes.

4.4. Texture Correction and Optimization

The purpose of this study is to generate a high quality texture for a 3D mesh model. Thus,
the texture correction and optimization need to be investigated to ensure that the texture quality is
similar to that of original 2D images. There are four key issues to study: packing the meshes on the
UV domain efficiently, arranging the pixel resolution on the texture map, eliminating the influence
of geometric error on the 3D model, and blending the texture at the transition of different images.
For the first issue, the main idea has already been described in Section 4.2. The meshes can be packed
efficiently on the UV map by applying the OBB method to each mesh island, which can yield a smaller
boundary box for each mesh island packed on the UV map as compared with the AABB method.
In this way, the overall space required for the OBB method is more compact than that without applying
the OBB method. Hence, each 2D mesh can allocate more pixels on the UV map, which is especially
useful for small meshes with respect to preserving the texture resolution.

The next issue is arranging the overall resolution of the texture map. An object image only
partially covers the texture of an object. However, a texture map must cover the entire object texture.

Appl. Sci. 2018, 8, 2228 13 of 22

If the texture size of a texture map is the same as that of an object image, the image resolution of
the texture map is worse than that of the object image. The texture size of an object image used
is 5184 × 3456, whereas the original texture size for a texture map is 4096 × 4096. After a careful
comparison of several kinds of image resolution, the texture size of the texture map is expanded to
8192 × 8192, with a texture space four times larger than before. This kind of texture size ensures
that the pixel number within a mesh on the texture map is close to that of the same mesh projected
onto an object image. The original high-quality image information can therefore be kept on the final
texture map.

The texture information is extracted from an object image by projecting a 3D mesh onto the
corresponding image plane. Normally, a projected mesh is completely inside an image silhouette,
and the corresponding range of pixels can be extracted from the projection. However, due to the
insufficient accuracy of the 3D model, some of the meshes could be wrongly projected and are partially
or completely outside the image silhouette, such as the example in Figure 8a. When a projected
mesh is not completely inside the image silhouette, no matching texture can be obtained, and hence
the corresponding color is void. To deal with this kind of problem, it is necessary to detect each
occurrence of this kind of mesh, and change the front image for each of them. The detection is based
on the background removal of object images. First, the object image is converted into a binary image
by verifying the foreground and background information. An alpha channel, which records the
transparency of each pixel on an object image, is saved and associated with the object image after
background removal. This process can be used to verify the foreground and background information
of the object image. We convert the object image into black and white in accordance with the data
on the alpha channel, such as the example in Figure 8b, where the pixels in white and black denote
inside and outside the object, respectively. This additional image is used to check if a projected mesh is
outside the image silhouette during the texture transferring process. Since the transferring is scanned
pixel by pixel, the black color can be detected and the mesh that covers the black color can be marked
for further correction later. Figure 8c depicts the meshes covering pixels of black color, and are marked
to individually change their front images. For each of this kind of mesh, the new front image is
determined by choosing one of the two neighboring images of the original front image.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 13 of 22

3456, whereas the original texture size for a texture map is 4096 × 4096. After a careful comparison of

several kinds of image resolution, the texture size of the texture map is expanded to 8192 × 8192, with

a texture space four times larger than before. This kind of texture size ensures that the pixel number

within a mesh on the texture map is close to that of the same mesh projected onto an object image.

The original high-quality image information can therefore be kept on the final texture map.

The texture information is extracted from an object image by projecting a 3D mesh onto the

corresponding image plane. Normally, a projected mesh is completely inside an image silhouette,

and the corresponding range of pixels can be extracted from the projection. However, due to the

insufficient accuracy of the 3D model, some of the meshes could be wrongly projected and are

partially or completely outside the image silhouette, such as the example in Figure 8a. When a

projected mesh is not completely inside the image silhouette, no matching texture can be obtained,

and hence the corresponding color is void. To deal with this kind of problem, it is necessary to detect

each occurrence of this kind of mesh, and change the front image for each of them. The detection is

based on the background removal of object images. First, the object image is converted into a binary

image by verifying the foreground and background information. An alpha channel, which records

the transparency of each pixel on an object image, is saved and associated with the object image after

background removal. This process can be used to verify the foreground and background information

of the object image. We convert the object image into black and white in accordance with the data on

the alpha channel, such as the example in Figure 8b, where the pixels in white and black denote inside

and outside the object, respectively. This additional image is used to check if a projected mesh is

outside the image silhouette during the texture transferring process. Since the transferring is scanned

pixel by pixel, the black color can be detected and the mesh that covers the black color can be marked

for further correction later. Figure 8c depicts the meshes covering pixels of black color, and are

marked to individually change their front images. For each of this kind of mesh, the new front image

is determined by choosing one of the two neighboring images of the original front image.

Figure 8. Detection and removal of meshes with missing color: (a) the projected mesh outside the

image silhouette, (b) the image converted into foreground (white) and background (black) in

accordance with the alpha channel, and (c) meshes detected outside the image silhouette.

The final optimization is to blend the texture at the transition of different images. The texture is

extracted from different front images. However, the texture between different image sources may be

inconsistent in color. This difference will cause seam lines on the 3D textured model. The blending

between two texture sources can be performed to optimize the color consistency on the model. The

(b)
(a)

(c)

Background

Foreground

Figure 8. Detection and removal of meshes with missing color: (a) the projected mesh outside the image
silhouette, (b) the image converted into foreground (white) and background (black) in accordance with
the alpha channel, and (c) meshes detected outside the image silhouette.

Appl. Sci. 2018, 8, 2228 14 of 22

The final optimization is to blend the texture at the transition of different images. The texture is
extracted from different front images. However, the texture between different image sources may be
inconsistent in color. This difference will cause seam lines on the 3D textured model. The blending
between two texture sources can be performed to optimize the color consistency on the model.
The boundary meshes should be detected first. The blending is based on the pixel distance to the
boundary edge. The equation of color blending is

P′(i) = (Pm (i) × Df + Pn (i) × (Df − Dc))/(2 × Df − Dc), (8)

where P′(i) denotes the blending pixel color of the mesh, Pm (i) denotes the main pixel color of the
mesh, Pn (i) denotes the neighboring pixel color of the mesh, Df denotes the farthest pixel of the mesh,
and Dc denotes the current pixel of the mesh. Figure 9a depicts the blending of two pixel colors on
two neighboring meshes. A linear variation on the weight for blending is applied so that when the
distance of the pixel is close to the boundary edge, the weight is larger; whereas, when the distance of
the pixel is further from the boundary edge, the weight decreases linearly. That is, the original color
information on each mesh is kept if the pixel is far from the boundary edge. In this way, the seam lines
on the model can be eliminated to support the consistency of the 3D textured model. Figure 9b shows
one example to illustrate the effect of blending, where the left and right plots indicate the results before
and after blending, respectively.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 14 of 22

boundary meshes should be detected first. The blending is based on the pixel distance to the

boundary edge. The equation of color blending is

P′(i) = (Pm (i) × Df + Pn (i) × (Df − Dc))/(2 × Df − Dc), (8)

where P′(i) denotes the blending pixel color of the mesh, Pm (i) denotes the main pixel color of the

mesh, Pn (i) denotes the neighboring pixel color of the mesh, Df denotes the farthest pixel of the mesh,

and Dc denotes the current pixel of the mesh. Figure 9a depicts the blending of two pixel colors on

two neighboring meshes. A linear variation on the weight for blending is applied so that when the

distance of the pixel is close to the boundary edge, the weight is larger; whereas, when the distance

of the pixel is further from the boundary edge, the weight decreases linearly. That is, the original

color information on each mesh is kept if the pixel is far from the boundary edge. In this way, the

seam lines on the model can be eliminated to support the consistency of the 3D textured model.

Figure 9b shows one example to illustrate the effect of blending, where the left and right plots indicate

the results before and after blending, respectively.

Figure 9. Texture blending at the transition of different images: (a) the blending of two neighboring

meshes, and (b) a shoe example before and after blending.

5. Result and Discussion

The results of the texture map and 3D textured model for six examples are depicted in Figure

10a–f, where the left and right images in each figure panel denote the 3D textured model and the

texture map, respectively. The entire texture mapping process is done automatically, with a 3D model

and 16 object images in different views as inputs, and the corresponding texture map as the output.

The texture size for all six examples is 8912 × 8912. The proposed process includes the following key

procedures: mesh partitioning, mesh parameterization and packing, texture transferring, and

correction and optimization of the texture. The initial number of seeds on mesh partitioning is set to

10, and the final number of mesh islands generated for all six examples is 10–13. Each of the results

in Figure 10 can be demonstrated as a high-quality 3D textured model by applying the texture

correction and optimization during the texture generation process. The results with and without

texture correction and optimization are further discussed below.

(b)

(a)

Before blending After blending

Figure 9. Texture blending at the transition of different images: (a) the blending of two neighboring
meshes, and (b) a shoe example before and after blending.

5. Result and Discussion

The results of the texture map and 3D textured model for six examples are depicted in Figure 10a–f,
where the left and right images in each figure panel denote the 3D textured model and the texture map,
respectively. The entire texture mapping process is done automatically, with a 3D model and 16 object
images in different views as inputs, and the corresponding texture map as the output. The texture
size for all six examples is 8912 × 8912. The proposed process includes the following key procedures:
mesh partitioning, mesh parameterization and packing, texture transferring, and correction and
optimization of the texture. The initial number of seeds on mesh partitioning is set to 10, and the
final number of mesh islands generated for all six examples is 10–13. Each of the results in Figure 10
can be demonstrated as a high-quality 3D textured model by applying the texture correction and

Appl. Sci. 2018, 8, 2228 15 of 22

optimization during the texture generation process. The results with and without texture correction
and optimization are further discussed below.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 15 of 22

(a)

(b)

(c)

Figure 10. Cont.

Appl. Sci. 2018, 8, 2228 16 of 22

Appl. Sci. 2018, 8, x FOR PEER REVIEW 16 of 22

Figure 10. The results of the texture map and 3D textured model for six examples: (a) shoe 1, (b)

microphone, (c) shoe 2, (d) cup, (e) shoe 3, and (f) statue.

The first optimization process is mesh island packing. When the AABB method is employed

(Figure 11a), the bounding box of each mesh island is larger, and the empty space inside each

boundary box is also larger. When all these boundary boxes are packed onto a UV map of fixed size,

each mesh island is over-compressed and loses the texture resolution that it should have. By contrast,

when the OBB method is employed (Figure 11b), each boundary box can best fit its mesh island so

that the space that a mesh island occupies is more compact. In addition, the previous resolution of

the texture map was 4096 × 4096 pixels. To maintain the resolution 5184 × 3456 of the original image,

(d)

(e)

(f)

Figure 10. The results of the texture map and 3D textured model for six examples: (a) shoe 1,
(b) microphone, (c) shoe 2, (d) cup, (e) shoe 3, and (f) statue.

The first optimization process is mesh island packing. When the AABB method is employed
(Figure 11a), the bounding box of each mesh island is larger, and the empty space inside each boundary
box is also larger. When all these boundary boxes are packed onto a UV map of fixed size, each mesh
island is over-compressed and loses the texture resolution that it should have. By contrast, when the
OBB method is employed (Figure 11b), each boundary box can best fit its mesh island so that the

Appl. Sci. 2018, 8, 2228 17 of 22

space that a mesh island occupies is more compact. In addition, the previous resolution of the texture
map was 4096 × 4096 pixels. To maintain the resolution 5184 × 3456 of the original image, the larger
resolution 8192 × 8192 has been applied to enhance the quality of the final texture. The texture
space is four times larger than before. Therefore, each mesh island can be allocated more pixel space
when all boundary boxes are packed on the same UV map. Figure 12 depicts the distribution of
the mesh number on each range of pixel numbers for the following four cases: 8192 × 8192/OBB,
8192 × 8192/AABB, 4096 × 4096/OBB, 4096 × 4096/AABB and commercial (3DSOM) software [43],
where 3DSOM is commercial software. When the number of meshes with fewer pixels is reduced,
the texture resolution is closer to that of the original images. It is evident that the texture resolution of
the case 8192 × 8192/OBB is the best among the five cases because it has the minimum number of
meshes with fewer pixels. In addition, the texture resolution of 3DSOM software is the worst as most
of meshes have pixels less than 2000. Therefore, the texture resolution of the proposed method is better
than that of 3DSOM software. Figure 13 depicts a local region of the texture for three cases, 3DSOM
software, 4096 × 4096/AABB and 8192 × 8192/OBB. The result clearly indicates that the sharpness of
the texture in Figure 13c is better than that in Figure 13a,b. The 3DSOM software blends the color with
a low-pass filtered image, which will result in a loss on the texture resolution. This result indicates that
the proposed method can yield a better texture resolution than 3DSOM software.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 17 of 22

the larger resolution 8192 × 8192 has been applied to enhance the quality of the final texture. The

texture space is four times larger than before. Therefore, each mesh island can be allocated more pixel

space when all boundary boxes are packed on the same UV map. Figure 12 depicts the distribution

of the mesh number on each range of pixel numbers for the following four cases: 8192 × 8192/OBB,

8192 × 8192/AABB, 4096 × 4096/OBB, 4096 × 4096/AABB and commercial (3DSOM) software [43],

where 3DSOM is commercial software. When the number of meshes with fewer pixels is reduced,

the texture resolution is closer to that of the original images. It is evident that the texture resolution

of the case 8192 × 8192/OBB is the best among the five cases because it has the minimum number of

meshes with fewer pixels. In addition, the texture resolution of 3DSOM software is the worst as most

of meshes have pixels less than 2000. Therefore, the texture resolution of the proposed method is

better than that of 3DSOM software. Figure 13 depicts a local region of the texture for three cases,

3DSOM software, 4096 × 4096/AABB and 8192 × 8192/OBB. The result clearly indicates that the

sharpness of the texture in Figure 13c is better than that in Figure 13a,b. The 3DSOM software blends

the color with a low-pass filtered image, which will result in a loss on the texture resolution. This

result indicates that the proposed method can yield a better texture resolution than 3DSOM software.

Figure 11. The results of mesh-island packing for two methods: (a) AABB method and (b) OBB

method.

Figure 12. The bar chart of mesh number vs. pixel number for five cases: 8192 × 8192/OBB, 8192 ×

8192/AABB, 4096 × 4096/OBB, 4096 × 4096/AABB and 3DSOM software.

(a) (b)

Boundary box

Mesh island

Pixel

number

Mesh

number

0

600

1200

1800

2400

8192×8192, OBB 8192×8192, AABB 4096×4096, OBB 4096×4096, AABB 3DSOM

Figure 11. The results of mesh-island packing for two methods: (a) AABB method and (b) OBB method.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 17 of 22

the larger resolution 8192 × 8192 has been applied to enhance the quality of the final texture. The

texture space is four times larger than before. Therefore, each mesh island can be allocated more pixel

space when all boundary boxes are packed on the same UV map. Figure 12 depicts the distribution

of the mesh number on each range of pixel numbers for the following four cases: 8192 × 8192/OBB,

8192 × 8192/AABB, 4096 × 4096/OBB, 4096 × 4096/AABB and commercial (3DSOM) software [43],

where 3DSOM is commercial software. When the number of meshes with fewer pixels is reduced,

the texture resolution is closer to that of the original images. It is evident that the texture resolution

of the case 8192 × 8192/OBB is the best among the five cases because it has the minimum number of

meshes with fewer pixels. In addition, the texture resolution of 3DSOM software is the worst as most

of meshes have pixels less than 2000. Therefore, the texture resolution of the proposed method is

better than that of 3DSOM software. Figure 13 depicts a local region of the texture for three cases,

3DSOM software, 4096 × 4096/AABB and 8192 × 8192/OBB. The result clearly indicates that the

sharpness of the texture in Figure 13c is better than that in Figure 13a,b. The 3DSOM software blends

the color with a low-pass filtered image, which will result in a loss on the texture resolution. This

result indicates that the proposed method can yield a better texture resolution than 3DSOM software.

Figure 11. The results of mesh-island packing for two methods: (a) AABB method and (b) OBB

method.

Figure 12. The bar chart of mesh number vs. pixel number for five cases: 8192 × 8192/OBB, 8192 ×

8192/AABB, 4096 × 4096/OBB, 4096 × 4096/AABB and 3DSOM software.

(a) (b)

Boundary box

Mesh island

Pixel

number

Mesh

number

0

600

1200

1800

2400

8192×8192, OBB 8192×8192, AABB 4096×4096, OBB 4096×4096, AABB 3DSOM

Figure 12. The bar chart of mesh number vs. pixel number for five cases: 8192 × 8192/OBB,
8192 × 8192/AABB, 4096 × 4096/OBB, 4096 × 4096/AABB and 3DSOM software.

Appl. Sci. 2018, 8, 2228 18 of 22

Appl. Sci. 2018, 8, x FOR PEER REVIEW 18 of 22

Figure 13. The comparison of texture quality for three cases: (a) 3DSOM software, (b) 4096 ×

4096/AABB and (c) 8192 × 8192/OBB.

The next optimization process is the elimination of the texture defects caused by the geometric

error. The background color of the image might be wrongly extracted for some meshes near the image

silhouette, resulting in white spots on the 3D textured model. The incorrect extraction is caused by

the meshes that are located outside the image silhouette when they are projected onto the front image.

Thus, we wish to eliminate the influence of the error. Figure 14 depicts the comparison of 3DSOM

software, the previous result, and the proposed result where, for the previous result, no action was

taken to deal with this problem, and for the proposed result, the data on the alpha channel of each

object image was employed to detect this problem, and then its front image was replaced where

necessary. It is evident that white background spots appear both on the result of 3DSOM software

and previous result, they have been eliminated on the proposed result and the color is more

consistent on the boundary area. For the e-commerce presentation, the color correctness is increased

and the entire model viewing experience is improved.

The final optimization process is blending the texture information on the image transition area.

The texture information is extracted from different front images. The boundary between two image

sources might be inconsistent in color. The results before and after the implementation of the

proposed blending algorithm for a shoe and a cup are shown in Figure 15a,b, respectively. The texture

quality on the transition area has been improved. The quality of the entire 3D textured model can

therefore be improved for the purpose of e-commerce presentation.

(a)

(b)

(c)

Figure 13. The comparison of texture quality for three cases: (a) 3DSOM software, (b) 4096 ×
4096/AABB and (c) 8192 × 8192/OBB.

The next optimization process is the elimination of the texture defects caused by the geometric
error. The background color of the image might be wrongly extracted for some meshes near the image
silhouette, resulting in white spots on the 3D textured model. The incorrect extraction is caused by the
meshes that are located outside the image silhouette when they are projected onto the front image.
Thus, we wish to eliminate the influence of the error. Figure 14 depicts the comparison of 3DSOM
software, the previous result, and the proposed result where, for the previous result, no action was
taken to deal with this problem, and for the proposed result, the data on the alpha channel of each
object image was employed to detect this problem, and then its front image was replaced where
necessary. It is evident that white background spots appear both on the result of 3DSOM software and
previous result, they have been eliminated on the proposed result and the color is more consistent on
the boundary area. For the e-commerce presentation, the color correctness is increased and the entire
model viewing experience is improved.

The final optimization process is blending the texture information on the image transition area.
The texture information is extracted from different front images. The boundary between two image
sources might be inconsistent in color. The results before and after the implementation of the proposed
blending algorithm for a shoe and a cup are shown in Figure 15a,b, respectively. The texture quality on
the transition area has been improved. The quality of the entire 3D textured model can therefore be
improved for the purpose of e-commerce presentation.

Appl. Sci. 2018, 8, 2228 19 of 22

Appl. Sci. 2018, 8, x FOR PEER REVIEW 19 of 22

Figure 14. Implementation of the proposed algorithm to remove missing colors: (a) 3DSOM software

(b) before and (c) after.

Figure 15. Results before and after the implementation of the proposed blending algorithm: (a) shoe

and (b) cup.

(c)

(a)

Missing colorMissing color

(b)

(a)

(b)

Before blending

After blending

Before blending

After blending

Before blending

After blending

After blending

Before blending

Before blending

After blending

Figure 14. Implementation of the proposed algorithm to remove missing colors: (a) 3DSOM software
(b) before and (c) after.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 19 of 22

Figure 14. Implementation of the proposed algorithm to remove missing colors: (a) 3DSOM software

(b) before and (c) after.

Figure 15. Results before and after the implementation of the proposed blending algorithm: (a) shoe

and (b) cup.

(c)

(a)

Missing colorMissing color

(b)

(a)

(b)

Before blending

After blending

Before blending

After blending

Before blending

After blending

After blending

Before blending

Before blending

After blending

Figure 15. Results before and after the implementation of the proposed blending algorithm: (a) shoe
and (b) cup.

Appl. Sci. 2018, 8, 2228 20 of 22

6. Conclusions

In this study, we proposed a texture mapping technique that incorporates mesh partitioning,
mesh parameterization and packing, texture transferring, and texture correction and optimization.
The proposed mesh partition minimizes the growing cost to find the optimized mesh group. The mesh
parameterization was based on an angle-based flattening to yield the optimized angles for 2D meshes,
and a least-squares approximation to obtain all vertices. The texture transferring was implemented by
projecting 3D meshes onto the image domain, and then extracting the pixels to map onto the UV map.
However, to maintain the original quality of the texture information, a correction and optimization
process was proposed. The OBB method was applied to allocate the UV map space more efficiently
in the packing stage. The resolution of the texture map was increased to sufficiently include the
original extracted pixels. Additional images were also employed to correct the error extraction of the
background color by applying the alpha channel onto the object image. Finally, a blending process
was proposed to minimize the transition error caused by different image sources. A high-quality 3D
textured model can be obtained by applying this series of processes for presentations in e-commerce.
However, the photo consistency of the 3D textured model is still not as good as that of 2D images.
The color information from different image sources for the same point may differ slightly. This error is
caused by the inaccuracy of 3D vertices and the calibration error; it can affect the projection accuracy
of the vertices onto different texture sources. To further improve the quality of the 3D textured model,
the photo inconsistency problem should be studied further.

Author Contributions: Conceptualization, J.-Y.L., T.-C.W., W.P., D.W.W., C.-Y.L. and J.-Y.L.; methodology, J.-Y.L.
and T.-C.W.; writing—original draft preparation, J.-Y.L. and T.-C.W.; writing—review and editing, J.-Y.L. and
T.-C.W.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ortery. Available online: https://www.ortery.com/ (accessed on 1 October 2018).
2. Kutulakos, V.; Seitz, S. A theory of shape by space carving. Int. J. Comput. Vis. 2000, 38, 199–218. [CrossRef]
3. Sinha, S.; Pollefeys, M. Multi-view reconstruction using photo-consistency and exact silhouette constraints:

A maximum flow formulation. In Proceedings of the Tenth IEEE International Conference on Computer
Vision, Washington, DC, USA, 17–21 October 2005; Volume 1, pp. 349–356. [CrossRef]

4. Lazebnik, S.; Furukawa, S.; Ponce, J. Projective visual hulls. Int. J. Comput. Vis. 2007, 74, 137–165. [CrossRef]
5. Mulayim, A.Y.; Yilmaz, U.; Atalay, V. Silhouette-based 3D model reconstruction from multiple images.

IEEE Trans. Syst. Man Cybern. Part B Cybern. 2003, 34, 582–591. [CrossRef] [PubMed]
6. Franco, J.S.; Boyer, E. Exact polyhedral visual hulls. In Proceedings of the British Machine Vision Conference,

Norwich, UK, 9–11 September 2003; Volume 1, pp. 329–338. [CrossRef]
7. Yous, S.; Laga, H.; Kidode, M.; Chihara, K. Gpu-based shape from silhouettes. In Proceedings of the 5th

International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia
ACM, Perth, Australia, 1–4 December 2007; pp. 71–77. [CrossRef]

8. Phothong, W.; Wu, T.C.; Lai, J.Y.; Yu, J.Y.; Wang, D.W.; Liao, C.Y. Quality improvement of 3D models
reconstructed from silhouettes of multiple images. In Proceedings of the CAD’17, Okayama, Japan, 10–12
August 2017. [CrossRef]

9. Shamir, A. A survey on mesh segmentation techniques. In Computer Graphics Forum; Blackwell Publishing:
Oxford, UK, 2008; Volume 27, pp. 1539–1556. [CrossRef]

10. Sander, P.; Snyder, J.; Gortler, S.; Hoppe, H. Texture mapping progressive meshes. In Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17
August 2001; pp. 409–416. [CrossRef]

11. Lévy, B.; Petitjean, S.; Ray, N.; Maillot, J. Least squares conformal maps for automatic texture atlas
generation. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques,
San Antonio, TX, USA, 23–26 July 2002; Volume 21, pp. 362–371. [CrossRef]

https://www.ortery.com/
http://dx.doi.org/10.1023/A:1008191222954
http://dx.doi.org/10.1109/ICCV.2005.159
http://dx.doi.org/10.1007/s11263-006-0008-x
http://dx.doi.org/10.1109/TSMCB.2003.814303
http://www.ncbi.nlm.nih.gov/pubmed/18238208
http://dx.doi.org/10.5244/C.17.32
http://dx.doi.org/10.1145/1321261.1321274
http://dx.doi.org/10.14733/cadconfP.2017.115-121
http://dx.doi.org/10.1111/j.1467-8659.2007.01103.x
http://dx.doi.org/10.1145/383259.383307
http://dx.doi.org/10.1145/566654.566590

Appl. Sci. 2018, 8, 2228 21 of 22

12. Sander, P.; Wood, Z.; Gortler, S.; Snyder, J.; Hoppe, H. Multi-chart geometry images. In Proceedings of the
2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Aachen, Germany, 23–25 June
2003; pp. 146–155. [CrossRef]

13. Mangan, A.P.; Whitaker, R.T. Surface segmentation using morphological watersheds. In Proceedings of the
IEEE Visualization, 18–23 October 1998.

14. Mangan, A.P.; Whitaker, R.T. Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Vis.
Comput. Graph. 1999, 5, 308–321. [CrossRef]

15. Lavoué, G.; Dupont, F.; Baskurt, A. A New cad mesh segmentation method, based on curvature tensor
analysis. Comput. Aided Des. 2005, 37, 975–987. [CrossRef]

16. Mortara, M.; Patan’e, G.; Spagnuolo, M.; Falcidieno, B.; Rossignac, J. Blowing bubbles for multi-scale analysis
and decomposition of triangle meshes. Algorithmica 2004, 38, 227–248. [CrossRef]

17. Mortara, M.; Patan’e, G.; Spagnuolo, M.; Falcidieno, B.; Rossignac, J. Plumber: A method for a multi-scale
decomposition of 3d shapes into tubular primitives and bodies. In Proceedings of the Ninth ACM
Symposium on Solid Modeling and Applications, Genoa, Italy, 9–11 June 2004; pp. 139–158. [CrossRef]

18. Funkhouser, T.; Kazhdan, M.; Shilane, P.; Min, P.; Kiefer, W.; Tal, A.; Rusinkiewicz, S.; Dobkin, D. Modeling
by example. ACM Trans. Graph. 2004, 23, 652–663. [CrossRef]

19. Sheffer, A. Model simplification for meshing using face clustering. Comput. Aided Des. 2001, 33, 925–934.
[CrossRef]

20. Garland, M.; Willmott, A.; Heckbert, P. Hierarchical face clustering on polygonal surfaces. In Proceedings
of the 2001 Symposium on Interactive 3D Graphics, New York, NY, USA, 19–21 March 2001; pp. 49–58.
[CrossRef]

21. Sheffer, A.; Praun, E.; Rose, K. Mesh parameterization methods and their applications. Found. Trends Comput.
Graph. Vis. 2006, 2, 105–171. [CrossRef]

22. Hormann, K.; Lévy, B.; Sheffer, A. Mesh parameterization: Theory and practice. In ACM SIGGRAPH 2007
Courses on–SIGGRAPH 07; ACM: New York, NY, USA, 2007; Volume 1. [CrossRef]

23. Desbrun, M.; Meyer, M.; Alliez, P. Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 2002,
21, 209–218. [CrossRef]

24. Sheffer, A.; De Sturler, E. Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening.
Eng. Comput. 2001, 17, 326–337. [CrossRef]

25. Sheffer, A.; Lévy, B.; Mogilnitsky, M.; Bogomyakov, A. ABF++: Fast and robust angle based flattening.
ACM Trans. Graph. 2005, 24, 311–330. [CrossRef]

26. Zayer, R.; Lévy, B.; Seidel, H.P. Linear angle based parameterization. In Proceedings of the Fifth Eurographics
Symposium on Geometry Processing-SGP, Eurographics Association, Barcelona, Spain, 4–6 July 2007;
pp. 135–141. [CrossRef]

27. Tutte, W.T. Convex Representations of Graphs; London Mathematical Society: London, UK, 1960; Volume 3,
pp. 304–320.

28. Tutte, W.T. How to Draw a Graph; London Mathematical Society: London, UK, 1963; Volume 3, pp. 743–767.
29. Eck, M.; DeRose, T.D.; Duchamp, T.; Hoppe, H.; Lounsbery, M.; Stuetzle, W. Multiresolution analysis of

arbitrary meshes. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive
Techniques, Los Angeles, CA, USA, 6–11 August 1995; pp. 173–182. [CrossRef]

30. Floater, M.S. Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des.
1997, 14, 231–250. [CrossRef]

31. Floater, M.S. Mean value coordinates. Comput. Aided Geom. Des. 2003, 20, 19–27. [CrossRef]
32. Floater, M.S.; Hormann, K.; Kós, G. A general construction of barycentric coordinates over convex polygons.

Adv. Comput. Math. 2006, 24, 311–331. [CrossRef]
33. Zigelman, G.; Kimmel, R.; Kiryati, N. Texture mapping using surface flattening via multidimensional scaling.

Vis. Comput. Graph. 2002, 8, 198–207. [CrossRef]
34. Degener, P.; Jan, M.; Reinhard, K. An Adaptable Surface Parameterization Method. IMR 2003, 3, 201–213.
35. Niem, W.; Buschmann, R. Automatic Modelling of 3D Natural Objects from Multiple Views. In Image

Processing for Broadcast and Video Production; Springer: London, UK, 1995; pp. 181–193.
36. Genç, S.; Atalay, V. Texture extraction from photographs and rendering with dynamic texture mapping.

In Proceedings of the 10th International Conference on Image Analysis and Processing, Venice, Italy, 27–29
September 1999; pp. 1055–1058. [CrossRef]

http://dx.doi.org/10.1145/359842.359846
http://dx.doi.org/10.1109/2945.817348
http://dx.doi.org/10.1016/j.cad.2004.09.001
http://dx.doi.org/10.1007/s00453-003-1051-4
http://dx.doi.org/10.1145/882262.882369
http://dx.doi.org/10.1145/1015706.1015775
http://dx.doi.org/10.1016/S0010-4485(00)00116-0
http://dx.doi.org/10.1145/358645.358661
http://dx.doi.org/10.1561/0600000011
http://dx.doi.org/10.1145/1508044.1508091
http://dx.doi.org/10.1111/1467-8659.00580
http://dx.doi.org/10.1007/PL00013391
http://dx.doi.org/10.1145/1061347.1061354
http://dx.doi.org/10.1145/571647.571651
http://dx.doi.org/10.1145/218380.218440
http://dx.doi.org/10.1016/S0167-8396(96)00031-3
http://dx.doi.org/10.1016/S0167-8396(03)00002-5
http://dx.doi.org/10.1007/s10444-004-7611-6
http://dx.doi.org/10.1109/2945.998671
http://dx.doi.org/10.1109/ICIAP.1999.797737

Appl. Sci. 2018, 8, 2228 22 of 22

37. Baumberg, A. Blending Images for Texturing 3D Models. In Proceedings of the BMVC, Cardiff, UK, 2–5
September 2002; Volume 3, p. 5. [CrossRef]

38. Efros, A.A.; Freeman, W.T. Image quilting for texture synthesis and transfer. In Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques ACM, Los Angeles, CA, USA, 12–17
August 2001; pp. 341–346. [CrossRef]

39. Wei, L.Y.; Levoy, M. Fast texture synthesis using tree-structured vector quantization. In Proceedings of the
27th Annual Conference on Computer Graphics and Interactive Techniques ACM, New Orleans, LA, USA,
23–28 July 2000; pp. 479–488. [CrossRef]

40. Maruya, M. Generating a Texture Map from Object-Surface Texture Data. In Computer Graphics Forum;
Blackwell Science Ltd.: Edinburgh, UK, 1995; Volume 14, pp. 397–405.

41. Gottschalk, S.; Lin, M.C.; Manocha, D. OBBTree: A hierarchical structure for rapid interference detection.
In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques ACM,
New Orleans, LA, USA, 4–9 August 1996; pp. 171–180. [CrossRef]

42. Lai, J.Y.; Shu, S.H.; Huang, Y.C. A cell subdivision strategy for r-nearest neighbors computation. J. Chin. Inst.
Eng. 2006, 29, 953–965. [CrossRef]

43. 3DSOM Software. Available online: https://www.3dsom.com/ (accessed on 1 October 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5244/C.16.38
http://dx.doi.org/10.1145/383259.383296
http://dx.doi.org/10.1145/311535.311560
http://dx.doi.org/10.1145/237170.237244
http://dx.doi.org/10.1080/02533839.2006.9671196
https://www.3dsom.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement
	Overview of the Proposed Method
	The Proposed Texture Mapping Method
	Mesh Partitioning
	Mesh Parameterization and Packing
	Texture Transferring
	Grouping the 3D Meshes
	Extraction of Pixels from the Object Images
	Placement of Pixels onto the UV Domain

	Texture Correction and Optimization

	Result and Discussion
	Conclusions
	References

