Evaluating the Impact of the 2020 Iowa Derecho on Corn and Soybean Fields Using Synthetic Aperture Radar
Abstract
:1. Introduction
2. Data
2.1. Study Area
2.2. Ground Truth Data
2.3. Satellite Data
3. Methodology
3.1. Damaged Area Detection
3.2. Threshold Estimation
3.3. In-Season Crop Type Mapping
3.4. Derecho Impact on Crops
4. Results
4.1. In-Season Crop Type Map
4.2. Time-Series Analysis
4.3. Impacted Area
4.4. Damage Severity Estimates
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- USDA-NASS. Iowa Ag News–2019 Crop Production. Available online: https://www.nass.usda.gov/Statistics_by_State/Iowa/Publications/Crop_Report/2020/IA-Crop-Production-Annual-01-20.pdf (accessed on 20 September 2020).
- Dingle Robertson, L.; Davidson, A.; McNairn, H.; Hosseini, M.; Mitchell, S.; Abelleyra, D.; Verón, S.; Cosh, M.H. Synthetic Aperture Radar (SAR) Image Processing for Operational Space-Based Agriculture Mapping. Int. J. Remote Sens. 2020, 41, 7112–7144. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Irena, H.; Ballester-Berman, J.D. First demonstration of agriculture height retrieval with PolInSAR airborne data. IEEE Geosci. Remote Sens. Lett. 2012, 9, 242–246. [Google Scholar] [CrossRef]
- Alonso-González, A.; Jagdhuber, T.; Hajnsek, I. Agricultural monitoring with polarimetric SAR time series. In Proceedings of the 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp), Annecy, France, 22–24 July 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Kontgis, C.; Warren, M.S.; Skillman, S.W.; Chartrand, R.; Moody, D.I. Leveraging Sentinel-1 time-series data for mapping agricultural land cover and land use in the tropics. In Proceedings of the 9th International Workshop on the Analysis of Multi Temporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017. [Google Scholar]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Hosseini, M.; McNairn, H.; Mitchell, S.; Davidson, A.; Dingle Robertson, L. Synthetic Aperture Radar and Optical Satellite Data for Estimating the Biomass of Corn. Int. J. Earth Obs. Geoinf. 2019, 83, 101933. [Google Scholar] [CrossRef]
- Mandal, D.; Hosseini, M.; McNairn, H.; Kumar, V.; Bhattacharya, A.; Rao, Y.S.; Mitchell, S.; Dingle Robertson, R.; Davidson, A.; Dabrowska-Zielinska, K. An investigation of inversion methodologies to retrieve the Leaf Area Index of corn from C-Band backscatter. Int. J. Earth Obs. Geoinf. 2019, 82, 101893. [Google Scholar] [CrossRef]
- Hosseini, M.; McNairn, H.; Merzouki, A.; Pacheco, A. Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data. Remote Sens. Environ. 2015, 170, 77–89. [Google Scholar] [CrossRef]
- Bell, J.; Gebremichael, E.; Molthan, A.; Schultz, L.; Meyer, F.; Shrestha, S. Synthetic Aperture Radar and Optical Remote Sensing of Crop Damage Attributed to Severe Weather in the Central United States. In Proceedings of the IGARSS 2019, Yokohama, Japan, 28 July–2 August 2019; pp. 9938–9941. [Google Scholar]
- Surek, G.; Nador, G. Monitoring of Damage in Sunflower and Maize Parcels Using Radar and Optical Time Series Data. J. Sens. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.; Darvishzadeh, R.; Lu, Y.; Boschetti, M.; Nelson, A. Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 2020, 243, 111804. [Google Scholar] [CrossRef]
- Silleos, N.; Perakis, K.; Petsanis, G. Assessment of crop damage using space remote sensing and GIS. Int. J. Remote Sens. 2002, 23, 417–428. [Google Scholar] [CrossRef]
- Young, F.; Chandler, O.; Apan, A. Crop Hail Damage: Insurance Loss Assessment using Remote Sensing. In Proceedings of the Remote Sensing and Photogrammetry Society Conference, Aberdeen, UK, 7–10 September 2004. [Google Scholar]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- McNairn, H.; Hochheim, K.; Rabe, N. Applying polarimetric radar imagery for mapping the productivity of wheat crops. Can. J. Remote Sens. 2004, 30, 517–524. [Google Scholar] [CrossRef]
- Jiao, X.; McNairn, H.; Shang, J.; Pattey, E.; Liu, J.; Champagne, C. The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index. Can. J. Remote Sens. 2009, 37, 69–81. [Google Scholar] [CrossRef]
- McNairn, H.; Shang, J. A Review of Multitemporal Synthetic Aperture Radar (SAR) for Crop Monitoring. In Multitemporal Remote Sensing: Methods and Applications; Ban, Y., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; Chapter 15; pp. 317–340. [Google Scholar]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Kerner, H.; Becker-Reshef, I.; Estefania, I.P.; Barker, B.; Sahajpal, R.; Skakun, S.; Gray, P.; Hosseini, M. Resilient In-Season Crop Type Classification in Multispectral Satellite Observations using Growth Stage Normalization. In Proceedings of the SIGKDD ACM Conference on Knowledge Discovery and Data Mining Workshops, San Diego, CA, USA, 23–27 August 2020. [Google Scholar]
- USDA-NASS. Crop Production Report. 11 December 2018. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/tm70mv177/r781wm151/vm40xw490/crop1218.pdf (accessed on 20 September 2020).
- USDA-NASS. Crop Production Report. 9 October 2020. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/tm70mv177/ng452781q/mk61s709f/crop1020.pdf (accessed on 20 September 2020).
- Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Rudiger, C.; Strauss, P. Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sens. 2018, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
McKinsey and Company Inc. | Indigo Ag Inc. | NASA-Harvest (i.e., This Study) | |
---|---|---|---|
Total | 3.1–3.8 | 3.5 | 2.59 |
Soybean | 0.31–0.76 | 1.4 | 0.6 |
Corn | 2.48–3.42 | 2.1 | 1.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini, M.; Kerner, H.R.; Sahajpal, R.; Puricelli, E.; Lu, Y.-H.; Lawal, A.F.; Humber, M.L.; Mitkish, M.; Meyer, S.; Becker-Reshef, I. Evaluating the Impact of the 2020 Iowa Derecho on Corn and Soybean Fields Using Synthetic Aperture Radar. Remote Sens. 2020, 12, 3878. https://doi.org/10.3390/rs12233878
Hosseini M, Kerner HR, Sahajpal R, Puricelli E, Lu Y-H, Lawal AF, Humber ML, Mitkish M, Meyer S, Becker-Reshef I. Evaluating the Impact of the 2020 Iowa Derecho on Corn and Soybean Fields Using Synthetic Aperture Radar. Remote Sensing. 2020; 12(23):3878. https://doi.org/10.3390/rs12233878
Chicago/Turabian StyleHosseini, Mehdi, Hannah R. Kerner, Ritvik Sahajpal, Estefania Puricelli, Yu-Hsiang Lu, Afolarin Fahd Lawal, Michael L. Humber, Mary Mitkish, Seth Meyer, and Inbal Becker-Reshef. 2020. "Evaluating the Impact of the 2020 Iowa Derecho on Corn and Soybean Fields Using Synthetic Aperture Radar" Remote Sensing 12, no. 23: 3878. https://doi.org/10.3390/rs12233878
APA StyleHosseini, M., Kerner, H. R., Sahajpal, R., Puricelli, E., Lu, Y. -H., Lawal, A. F., Humber, M. L., Mitkish, M., Meyer, S., & Becker-Reshef, I. (2020). Evaluating the Impact of the 2020 Iowa Derecho on Corn and Soybean Fields Using Synthetic Aperture Radar. Remote Sensing, 12(23), 3878. https://doi.org/10.3390/rs12233878