Sentinel-1 and Sentinel-2 Data for Savannah Land Cover Mapping: Optimising the Combination of Sensors and Seasons
Abstract
:1. Introduction
- Can Sentinel-1 and Sentinel-2 seasonal imagery be used to accurately map savannah land cover types at the regional scale?
- Can the combination of optical and radar data improve classification accuracies?
- How does the combination of data from different seasons influence the accuracy of the classification?
2. Study Area
- Bareland: areas with minimal plant cover that include bare rock, sand, alpine snow and ice, saline or alkaline flats or riverine deposits. These areas often experience extreme environmental conditions, such as low rainfall, high winds, high salinity and toxic or infertile soils that prevent vegetation from developing.
- Bushland: areas of woody plants, bushes or trees, with a closed shrub canopy between 3 and 6 m in height. The closed canopy of bushland thicket has little grazing value and makes it challenging for large animals to navigate through [49].
- Cropland: areas where natural vegetation has been removed or modified and replaced by other types of vegetation that requires human activity to maintain it in the long term. Cropland fields may be fallow at certain times during the year.
- Forest: areas with closed canopy trees of one or more storeys, rising from 7 to ≥40 m in height. Bushes and shrubs dominate the ground making it difficult for animals to travel through it.
- Grassland: areas dominated by grasses <25 to 150 cm tall, sometimes with herbs, scarred trees or shrubs, with a high grazing value for both wildlife and livestock. Areas may contain some woody cover and may be almost bare during the dry season and during drought episodes.
- Montane heath: areas with medium sized woody vegetation (<1 m) that can be shrubs, grasses, ferns and mosses. Montane heath occurs in environments ≥600 m in altitude, usually on mountains, but also on hills with lower and more variable temperatures and rainfall.
- Shrubland: areas with medium sized woody vegetation (<6 m in [49]), generally open canopy, surrounded by grassland or dry land. Some occasional trees and bushes are present depending on location.
- Water: areas that can be lakes, rivers, ponds or reservoirs, which vary with season.
- Woodland: tree-covered area with trees as tall as 20 m and an open canopy surrounded by grassland and sometimes shrub but not thicket. These areas are sometimes dominated by only a few species of trees.
3. Materials and Methods
3.1. Data
3.1.1. Sentinel-2
3.1.2. Sentinel-1
3.2. Classification Strategy
3.2.1. Training Samples and Classification
3.2.2. Modelling Framework: Season and Sensor Combinations
3.2.3. Validation and Accuracy Assessment
4. Results
4.1. Sentinel-2 and Sentinel-1 Seasonal Imagery to Map Savannah Land Cover Types
4.2. The Role of C-Band SAR
4.3. The Role of Season
5. Discussion
5.1. Can Sentinel-2 and Sentinel-1 Seasonal Imagery Be Used to Accurately Map Savannah Land Cover Types at the Regional Scale?
5.2. Can the Combination of Optical and Radar Data Improve Classification Accuracies?
5.3. How Does the Combination of Data from Different Seasons Influence the Accuracy of the Classification?
5.4. Implications for Biodiversity Monitoring/Ecosystem Monitoring Challenges in the Area
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Solbrig, O.T. The diversity of the savanna ecosystem. In Biodiversity and Savanna Ecosystem Processes; A Global Perspective; Springer: Berlin/Heidelberg, Germany, 1996; Volume 121, pp. 1–27. [Google Scholar]
- Liu, Y.Y.; van Dijk, A.; de Jeu, R.A.M.; Canadell, J.G.; McCabe, M.F.; Evans, J.P.; Wang, G.J. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang. 2015, 5, 470–474. [Google Scholar] [CrossRef]
- Pfeifer, M.; Platts, P.J.; Burgess, N.D.; Swetnam, R.D.; Willcock, S.; Lewis, S.L.; Marchant, R. Land use change and carbon fluxes in East Africa quantified using earth observation data and field measurements. Environ. Conserv. 2013, 40, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneibel, A.; Frantz, D.; Roder, A.; Stellmes, M.; Fischer, K.; Hill, J. Using Annual Landsat Time Series for the Detection of Dry Forest Degradation Processes in South-Central Angola. Remote Sens. 2017, 9, 905. [Google Scholar] [CrossRef] [Green Version]
- Symeonakis, E.; Higginbottom, T. Bush encroachment monitoring using multi-temporal Landsat data and Random Forests. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—2014 ISPRS Technical Commission II Symposium, Toronto, ON, Canada, 6–8 October 2014; Volume XL-2, pp. 29–35. [Google Scholar] [CrossRef] [Green Version]
- Eldridge, D.J.; Bowker, M.A.; Maestre, F.T.; Roger, E.; Reynolds, J.F.; Whitford, W.G. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecol. Lett. 2011, 14, 709–722. [Google Scholar] [CrossRef]
- Stevens, N.; Lehmann, C.E.R.; Murphy, B.P.; Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 2017, 23, 235–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venter, Z.S.; Cramer, M.D.; Hawkins, H.J. Drivers of woody plant encroachment over Africa. Nat. Commun. 2018, 9, 2272. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Brandt, M.; Wang, Q.; Prishchepov, A.V.; Tucker, C.J.; Li, Y.; Lyu, H.; Fensholt, R. From woody cover to woody canopies: How Sentinel-1 and Sentinel-2 data advance the mapping of woody plants in savannas. Remote Sens. Environ. 2019, 234, 111465. [Google Scholar] [CrossRef]
- Berthrong, S.T.; Pineiro, G.; Jobbagy, E.G.; Jackson, R.B. Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age. Ecol. Appl. 2012, 22, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Gray, E.F.; Bond, W.J. Will woody plant encroachment impact the visitor experience and economy of conservation areas? Koedoe 2013, 55. [Google Scholar] [CrossRef] [Green Version]
- Angassa, A.; Baars, R.M.T. Ecological condition of encroached and non-encroached rangelands in Borana, Ethiopia. Afr. J. Ecol. 2000, 38, 321–328. [Google Scholar] [CrossRef]
- Niboye, E.P. Vegetation Cover Changes in Ngorongoro Conservation Area from 1975 to 2000: The Importance of Remote Sensing Images. Open Geogr. J. 2010, 3, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Fritz, H.; Duncan, P. On the carrying-capacity for large ungulates of African savanna ecosystems. Proc. R. Soc. B-Biol. Sci. 1994, 256, 77–82. [Google Scholar] [CrossRef]
- Beale, C.M.; van Rensberg, S.; Bond, W.J.; Coughenour, M.; Fynn, R.; Gaylard, A.; Grant, R.; Harris, B.; Jones, T.; Mduma, S.; et al. Ten lessons for the conservation of African savannah ecosystems. Biol. Conserv. 2013, 167, 224–232. [Google Scholar] [CrossRef]
- Newmark, W.D. Isolation of African protected areas. Front. Ecol. Environ. 2008, 6, 321–328. [Google Scholar] [CrossRef]
- IUCN & UNEP. The World Database on Protected Areas (WDPA); UNEP-WCMC: Cambridge, UK, 2009. [Google Scholar]
- Eisfelder, C.; Kuenzer, C.; Dech, S. Derivation of biomass information for semi-arid areas using remote-sensing data. Int. J. Remote Sens. 2012, 33, 2937–2984. [Google Scholar] [CrossRef]
- Yang, J.; Prince, S.D. Remote sensing of savanna vegetation changes in Eastern Zambia 1972–1989. Int. J. Remote Sens. 2000, 21, 301–322. [Google Scholar] [CrossRef]
- Adole, T.; Dash, J.; Atkinson, P.M. A systematic review of vegetation phenology in Africa. Ecol. Inform. 2016, 34, 117–128. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Tsalyuk, M.; Kelly, M.; Getz, W.M. Improving the prediction of African savanna vegetation variables using time series of MODIS products. ISPRS J. Photogramm. Remote Sens. 2017, 131, 77–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, H.; Rufin, P.; Griffiths, P.; Siqueira, A.J.B.; Hostert, P. Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens. Environ. 2015, 156, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Eggen, M.; Ozdogan, M.; Zaitchik, B.F.; Simane, B. Land Cover Classification in Complex and Fragmented Agricultural Landscapes of the Ethiopian Highlands. Remote Sens. 2016, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Morrison, J.; Higginbottom, T.P.; Symeonakis, E.; Jones, M.J.; Omengo, F.; Walker, S.L.; Cain, B. Detecting Vegetation Change in Response to Confining Elephants in Forests Using MODIS Time-Series and BFAST. Remote Sens. 2018, 10, 1075. [Google Scholar] [CrossRef] [Green Version]
- Symeonakis, E.; Higginbottom, T.P.; Petroulaki, K.; Rabe, A. Optimisation of Savannah Land Cover Characterisation with Optical and SAR Data. Remote Sens. 2018, 10, 499. [Google Scholar] [CrossRef] [Green Version]
- Higginbottom, T.P.; Symeonakis, E.; Meyer, H.; van der Linden, S. Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, L.; Mathieu, R.; Main, R.; Wessels, K.; Asner, G.P. L-band Synthetic Aperture Radar imagery performs better than optical datasets at retrieving woody fractional cover in deciduous, dry savannahs. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 54–64. [Google Scholar] [CrossRef]
- Mathieu, R.; Naidoo, L.; Cho, M.A.; Leblon, B.; Main, R.; Wessels, K.; Asner, G.P.; Buckley, J.; Van Aardt, J.; Erasmus, B.F.N.; et al. Toward structural assessment of semi-arid African savannahs and woodlands: The potential of multitemporal polarimetric RADARSAT-2 fine beam images. Remote Sens. Environ. 2013, 138, 215–231. [Google Scholar] [CrossRef]
- Haro-Carrion, X.; Southworth, J. Understanding Land Cover Change in a Fragmented Forest Landscape in a Biodiversity Hotspot of Coastal Ecuador. Remote Sens. 2018, 10, 1980. [Google Scholar] [CrossRef] [Green Version]
- Brandt, M.; Hiernaux, P.; Tagesson, T.; Verger, A.; Rasmussen, K.; Diouf, A.A.; Mbow, C.; Mougin, E.; Fensholt, R. Woody plant cover estimation in drylands from Earth Observation based seasonal metrics. Remote Sens. Environ. 2016, 172, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, P.; van der Linden, S.; Kuemmerle, T.; Hostert, P. A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2088–2101. [Google Scholar] [CrossRef]
- Frantz, D. FORCELandsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sens. 2019, 11, 1124. [Google Scholar] [CrossRef] [Green Version]
- Symeonakis, E.; Petroulaki, K.; Higginbottom, T. Landsat-based woody vegetation cover monitoring in southern African savannahs. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 563–567. [Google Scholar] [CrossRef]
- Mishra, N.B.; Crews, K.A. Mapping vegetation morphology types in a dry savanna ecosystem: Integrating hierarchical object-based image analysis with Random Forest. Int. J. Remote Sens. 2014, 35, 1175–1198. [Google Scholar] [CrossRef]
- Hüttich, C.; Gessner, U.; Herold, M.; Strohbach, B.; Schmidt, M.; Keil, M.; Dech, S. On the Suitability of MODIS Time Series Metrics to Map Vegetation Types in Dry Savanna Ecosystems: A Case Study in the Kalahari of NE Namibia. Remote Sens. 2009, 1, 620–643. [Google Scholar] [CrossRef] [Green Version]
- Swanson, L.A. Ngorongoro Conservation Area: Spring of Life. Master of Environmental Studies Capstone Projects. Master’s Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2007. [Google Scholar]
- Estes, R.D.; Atwood, J.L.; Estes, A.B. Downward trends in Ngorongoro Crater ungulate populations 1986–2005: Conservation concerns and the need for ecological research. Biol. Conserv. 2006, 131, 106–120. [Google Scholar] [CrossRef]
- Amiyo, T.A. Ngorongoro Crater Rangelands: Condition, Management and Monitoring. Master’s Thesis, University of Kwazulu-Natal, Durban, South Africa, 2006. [Google Scholar]
- Boone, R.B.; Galvin, K.A.; Thornton, P.K.; Swift, D.M.; Coughenour, M.B. Cultivation and conservation in Ngorongoro Conservation Area, Tanzania. Hum. Ecol. 2006, 34, 809–828. [Google Scholar] [CrossRef]
- Hunter, F.D.L.; Mitchard, E.T.A.; Tyrrell, P.; Russell, S. Inter-Seasonal Time Series Imagery Enhances Classification Accuracy of Grazing Resource and Land Degradation Maps in a Savanna Ecosystem. Remote Sens. 2020, 12, 198. [Google Scholar] [CrossRef] [Green Version]
- Masao, C.A.; Makoba, R.; Sosovele, H. Will Ngorongoro Conservation Area remain a world heritage site amidst increasing human footprint? Int. J. Biodivers. Conserv. 2015, 7, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Herlocker, D.J.; Dirschl, H.J. Vegetation of the Ngorongoro Conservation Area, Tanzania; Canadian Wildlife Service: Sackville, NB, Canada, 1972. [Google Scholar]
- Mills, A.; Morkel, P.; Amiyo, A.; Runyoro, V.; Borner, M.; Thirgood, S. Managing small populations in practice: Black rhino Diceros bicomis michaeli in the Ngorongoro Crater, Tanzania. Oryx 2006, 40, 319–323. [Google Scholar] [CrossRef] [Green Version]
- Homewood, K.M.; Rodgers, W.A. Maasailand Ecology: Pastoralist Development and Wildlife Conservation in Ngorongoro, Tanzania; Cambridge Studies in Applied Ecology and Resource Management; Cambridge University Press: Cambridge, UK, 1991; ISBN 978-0-521-60749-0. [Google Scholar]
- Harris, W.E.; de Kort, S.; Bettridge, C.; Borges, J.; Cain, B.; Dulle, H.; Fyumagwa, R.; Gadiye, D.; Jones, M.; Kahana, L.; et al. A Learning Networks approach to resolve conservation challenges in the Ngorongoro Conservation Area. J. Afr. Ecol. 2020, in press. [Google Scholar] [CrossRef]
- Pratt, D.J.; Greenway, P.J.; Gwynne, M.D. A Classification of East African Rangeland, with an Appendix on Terminology. J. Appl. Ecol. 1966, 3, 369. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Moore, R.T.; Hansen, M.C. Google Earth Engine: A new cloud-computing platform for global-scale earth observation data and analysis. AGU Fall Meet. Abstr. 2011, 2011, IN43C-02. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Frantz, D.; Röder, A.; Stellmes, M.; Hill, J. An Operational Radiometric Landsat Preprocessing Framework for Large-Area Time Series Applications. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3928–3943. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Frantz, D.; Stellmes, M.; Roder, A.; Udelhoven, T.; Mader, S.; Hill, J. Improving the Spatial Resolution of Land Surface Phenology by Fusing Medium- and Coarse-Resolution Inputs. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4153–4164. [Google Scholar] [CrossRef]
- Baumann, M.; Levers, C.; Macchi, L.; Bluhm, H.; Waske, B.; Gasparri, N.I.; Kuemmerle, T. Mapping continuous fields of tree and shrub cover across the Gran Chaco using Landsat 8 and Sentinel-1 data. Remote Sens. Environ. 2018, 216, 201–211. [Google Scholar] [CrossRef]
- Leutner, B.; Horning, N.; Schwalb-Willmann, J. RStoolbox: Tools for Remote Sensing Data Analysis. Available online: https://CRAN.R-project.org/package=RStoolbox (accessed on 11 December 2018).
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. Available online: https://www.r-project.org/ (accessed on 25 November 2020).
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Li, X.J.; Cheng, X.W.; Chen, W.T.; Chen, G.; Liu, S.W. Identification of Forested Landslides Using LiDar Data, Object-based Image Analysis, and Machine Learning Algorithms. Remote Sens. 2015, 7, 9705–9726. [Google Scholar] [CrossRef] [Green Version]
- Ng, W.T.; Rima, P.; Einzmann, K.; Immitzer, M.; Atzberger, C.; Eckert, S. Assessing the Potential of Sentinel-2 and Pleiades Data for the Detection of Prosopis and Vachellia spp. in Kenya. Remote Sens. 2017, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Kija, H.K.; Ogutu, J.O.; Mangewa, L.J.; Bukombe, J.; Verones, F.; Graae, B.J.; Kideghesho, J.R.; Said, M.Y.; Nzunda, E.F. Land Use and Land Cover Change Within and Around the Greater Serengeti Ecosystem, Tanzania. Am. J. Remote Sens. 2020, 8, 1–19. [Google Scholar] [CrossRef]
- Foody, G. Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Reed, D.N.; Anderson, T.M.; Dempewolf, J.; Metzger, K.; Serneels, S. The spatial distribution of vegetation types in the Serengeti ecosystem: The influence of rainfall and topographic relief on vegetation patch characteristics. J. Biogeogr. 2009, 36, 770–782. [Google Scholar] [CrossRef]
- Lopes, M.; Frison, P.L.; Durant, S.M.; Buhne, H.S.T.; Ipavec, A.; Lapeyre, V.; Pettorelli, N. Combining optical and radar satellite image time series to map natural vegetation: Savannas as an example. Remote Sens. Ecol. Conserv. 2020, 6, 316–326. [Google Scholar] [CrossRef]
- Laurin, G.V.; Liesenberg, V.; Chen, Q.; Guerriero, L.; Del Frate, F.; Bartolini, A.; Coomes, D.; Wilebore, B.; Lindsell, J.; Valentini, R. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 7–16. [Google Scholar] [CrossRef]
- Walker, J.S.; Briggs, J.M. An object-oriented approach to urban forest mapping in Phoenix. Photogramm. Eng. Remote Sens. 2007, 73, 577–583. [Google Scholar] [CrossRef]
- Hüttich, C.; Herold, M.; Wegmann, M.; Cord, A.; Strohbach, B.; Schmullius, C.; Dech, S. Assessing effects of temporal compositing and varying observation periods for large-area land-cover mapping in semi-arid ecosystems: Implications for global monitoring. Remote Sens. Environ. 2011, 115, 2445–2459. [Google Scholar] [CrossRef]
- Urban, M.; Heckel, K.; Berger, C.; Schratz, P.; Smit, I.P.J.; Strydom, T.; Baade, J.; Schmullius, C. Woody cover mapping in the savanna ecosystem of the Kruger National Park using Sentinel-1 C-Band time series data. KOEDOE Afr. Prot. Area Conserv. Sci. 2020, 62. [Google Scholar] [CrossRef]
- Chatziantoniou, A.; Petropoulos, G.P.; Psomiadis, E. Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning. Remote Sens. 2017, 9, 1259. [Google Scholar] [CrossRef] [Green Version]
- Kohi, E.M.; Lobora, A.L. Conservation and Management Plan for Black Rhino in Tanzania 2019–2023, 4th ed.; TAWIRI: Arusha, Tanzania, 2019. [Google Scholar]
- Makacha, S.; Mollel, C.L.; Rwezaura, J. Conservation status of the black rhinoceros (Diceros bicornis, L.) in the Ngorongoro Crater, Tanzania. Afr. J. Ecol. 1979, 17, 97–103. [Google Scholar] [CrossRef]
Season | Start Date | Target Date | End Date | N° of Images |
---|---|---|---|---|
Short-dry | 1 January 2019 | 27 January 2019 | 28 February 2019 | 111 |
Wet | 1 March 2019 | 17 April 2019 | 31 May 2019 | 159 |
Dry | 1 June 2019 | 17 September 2019 | 30 September 2019 | 251 |
Sensor | Data Included | Model |
---|---|---|
Sentinel-2 (S2) | Dry season S2 | 1 |
Short-dry season S2 | 2 | |
Wet season S2 | 3 | |
Dry + short-dry seasons S2 | 4 | |
Dry + wet seasons S2 | 5 | |
Wet + short-dry seasons S2 | 6 | |
All seasons S2 | 7 | |
Sentinel-1 (S1) | Dry season S1 | 8 |
Short-dry season S1 | 9 | |
Wet season S1 | 10 | |
Dry + short-dry seasons S1 | 11 | |
Dry + wet seasons S1 | 12 | |
Wet + short-dry seasons S1 | 13 | |
All seasons S1 | 14 | |
Sentinel-1 and Sentinel-2 combinations (S1 and S2) | Dry season S1 and S2 | 15 |
Short-dry seasons S1 and S2 | 16 | |
Wet season S1 and S2 | 17 | |
Dry + short-dry seasons S1 and S2 | 18 | |
Dry + wet seasons S1 and S2 | 19 | |
Wet + short-dry seasons S1 and S2 | 20 | |
All seasons S1 and S2 | 21 |
Reference | User’s Accuracy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ba | Bu | Fo | G | Mh | Sh | Wo | Total | |||
Mapped | Bareland (Ba) | 73 | 0 | 0 | 8 | 0 | 1 | 0 | 82 | 0.89 |
Bushland (Bu) | 0 | 205 | 22 | 9 | 2 | 17 | 16 | 271 | 0.76 | |
Forest (Fo) | 0 | 7 | 78 | 0 | 0 | 1 | 0 | 86 | 0.91 | |
Grassland (G) | 4 | 3 | 0 | 1203 | 2 | 65 | 19 | 1296 | 0.93 | |
Montane heath (Mh) | 0 | 1 | 0 | 1 | 51 | 1 | 2 | 56 | 0.91 | |
Shrubland (Sh) | 4 | 1 | 0 | 31 | 1 | 77 | 31 | 145 | 0.53 | |
Woodland (Wo) | 0 | 1 | 0 | 9 | 0 | 22 | 173 | 205 | 0.84 | |
Total | 81 | 218 | 100 | 1261 | 56 | 184 | 241 | 2141 | ||
Producer’s accuracy | 0.70 | 0.92 | 0.84 | 0.95 | 0.84 | 0.49 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, J.; Higginbottom, T.P.; Symeonakis, E.; Jones, M. Sentinel-1 and Sentinel-2 Data for Savannah Land Cover Mapping: Optimising the Combination of Sensors and Seasons. Remote Sens. 2020, 12, 3862. https://doi.org/10.3390/rs12233862
Borges J, Higginbottom TP, Symeonakis E, Jones M. Sentinel-1 and Sentinel-2 Data for Savannah Land Cover Mapping: Optimising the Combination of Sensors and Seasons. Remote Sensing. 2020; 12(23):3862. https://doi.org/10.3390/rs12233862
Chicago/Turabian StyleBorges, Joana, Thomas P. Higginbottom, Elias Symeonakis, and Martin Jones. 2020. "Sentinel-1 and Sentinel-2 Data for Savannah Land Cover Mapping: Optimising the Combination of Sensors and Seasons" Remote Sensing 12, no. 23: 3862. https://doi.org/10.3390/rs12233862
APA StyleBorges, J., Higginbottom, T. P., Symeonakis, E., & Jones, M. (2020). Sentinel-1 and Sentinel-2 Data for Savannah Land Cover Mapping: Optimising the Combination of Sensors and Seasons. Remote Sensing, 12(23), 3862. https://doi.org/10.3390/rs12233862