Improved Mapping of Potentially Toxic Elements in Soil via Integration of Multiple Data Sources and Various Geostatistical Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Chemical Analysis
2.3. p-XRF
2.4. Mapping Methods
2.4.1. IDW Method
2.4.2. OK Method
2.4.3. EBK Method
2.4.4. Model Averaging Using the Granger–Ramanathan Algorithm
2.5. Assessment of Model Performance
2.6. Data Analysis
3. Results
3.1. Summary Statistics
3.2. Mapping of PTEs Using Data from Individual Sources
3.3. Spatial Modeling of PTEs Using Model Averaging
3.4. Comparison of Performance of Different Mapping Methods
3.5. PTE Mapping Using Model Averaging
4. Discussion
4.1. Spatial Prediction Accuracy Using Different Interpolation Methods
4.2. p-XRF Measurements as an Alternative Means for PTE Mapping
4.3. Potential of Model Averaging for PTE Mapping
4.4. Method Limitations and Potential Improvements
5. Conclusions
- The average content of all PTEs was lower than the corresponding risk screening value regulated by the Chinese National Standards (GB15618-2018), except for Cd.
- The EBK method showed no clear advantage over IDW and OK, according to the study results. Moreover, no method regarded herein consistently outperformed other methods when interpolating different PTEs.
- The p-XRF spatial prediction accuracy of Cd, Cu, Ni, and Zn was similar to that of the laboratory measurements, confirming that p-XRF can be used as a reliable alternative to traditional laboratory analysis for mapping Cd, Cu, Ni, and Zn in the soil.
- The model averaging method improved the mapping accuracy of all soil PTEs regarded herein compared with individual geostatistical algorithms (i.e., IDW, OK, and EBK). The improvement in mapping accuracy was the clearest for As.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lacarce, E.; Saby, N.P.A.; Martin, M.P.; Marchant, B.P.; Boulonne, L.; Meersmans, J.; Jolivet, C.; Bispo, A.; Arrouays, D. Mapping soil Pb stocks and availability in mainland France combining regression trees with robust geostatistics. Geoderma 2012, 170, 359–368. [Google Scholar] [CrossRef]
- Hu, B.F.; Xue, J.; Zhou, Y.; Shao, S.; Fu, Z.; Li, Y.; Chen, S.C.; Qi, L.; Shi, Z. Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning. Environ. Pollut. 2020, 114308. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.L.; Hu, B.F.; Marchant, B.P.; Zhou, L.Q.; Shi, Z.; Zhu, Y.W. A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: A case study in the Yangtze Delta, China. Environ. Pollut. 2019, 250, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.F.; Chen, S.C.; Hu, B.F.; Zhou, Y.; Liang, Z.Z.; Jia, X.L.; Huang, M.X.; Wei, J.; Shi, Z. A comprehensive framework for assessing the impact of potential agricultural pollution on grain security and human health in economically developed areas. Environ. Pollut. 2020, 114653. [Google Scholar] [CrossRef]
- Lequy, E.; Saby, N.P.A.; Ilyin, I.; Bourin, A.; Sauvage, S.; Leblond, S. Spatial analysis of trace elements in a moss bio-monitoring data over France by accounting for source, protocol and environmental parameters. Sci. Total Environ. 2017, 590, 602–610. [Google Scholar] [CrossRef]
- Fu, T.T.; Zhao, R.Y.; Hu, B.F.; Jia, X.L.; Wang, Z.G.; Zhou, L.Q.; Huang, M.X.; Li, Y.; Shi, Z. Novel framework for modelling the cadmium balance and accumulation in farmland soil in Zhejiang Province, East China: Sensitivity analysis, parameter optimisation, and forecast for 2050. J. Clean Prod. 2020, 123674. [Google Scholar] [CrossRef]
- Nriagu, J.O. A history of global metal pollution. Science 2017, 272, 223. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Shi, A.; Shao, Y.; Zhao, K.; Fu, W. Long-term effect of E-waste dismantling activities on the heavy metals pollution in paddy soils of southeastern China. Sci. Total Environ. 2020, 705, 135971. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kaur, P.; Sidhu, G.P.S.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 2019, 216, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Dogra, N.; Sharma, M.; Sharma, A.; Keshavarzi, A.; Minakshi; Bhardwaj, R.; Thukral, A.K.; Kumar, V. Pollution assessment and spatial distribution of roadside agricultural soils: A case study from India. Int. J. Environ. Health Res. 2020, 30, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Adimalla, N. Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environ. Geochem. Health 2020, 42, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Doabi, S.A.; Karami, M.; Afyuni, M. Heavy metal pollution assessment in agricultural soils of Kermanshah province, Iran. Environ. Earth Sci. 2019, 78, 70. [Google Scholar] [CrossRef]
- Solgi, E.; Abbasitabr, H.; Shayesteh, K.; Mortazavi, S. Mapping and risk assessment of heavy metals in agricultural soils of the Siakh Darengoun Region, Shiraz, Iran. Environ. Resour. Res. 2020, 8, 83–95. [Google Scholar]
- Taati, A.; Salehi, M.H.; Mohammadi, J.; Mohajer, R.; Díez, S. Pollution assessment and spatial distribution of trace elements in soils of Arak industrial area, Iran: Implications for human health. Environ. Res. 2020, 187, 109577. [Google Scholar] [CrossRef]
- Hafeez, F.; Zafar, N.; Nazir, R.; Javeed, H.M.R.; Rizwan, M.; Asad, S.A.; Iqbal, A. Assessment of flood-induced changes in soil heavy metal and nutrient status in Rajanpur, Pakistan. Environ. Monit. Assess. 2019, 191, 234. [Google Scholar] [CrossRef]
- Rehman, I.U.; Ishaq, M.; Ali, L.; Muhammad, S.; Din, I.U.; Yaseen, M.; Ullah, H. Potentially toxic elements’ occurrence and risk assessment through water and soil of Chitral urban environment, Pakistan: A case study. Environ. Geochem. Health 2020, 1–14. [Google Scholar] [CrossRef]
- Hashmi, M.Z.; Kanwal, A.; Pongpiachan, S.; Su, X.; Nasim, W.; Saand, M.A.; Mubeen, M.; Akram, R.; Wang, S.; Ahmed, Z. Arsenic distribution and metabolism genes abundance in Paddy soils from Punjab and Sindh provinces, Pakistan. Arab. J. Geosci. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Nascimento, V.X.; Barros, A.; Azevedo, J.A.; Miranda, P.R.; da Costa, J.G. Bioavailability of heavy metals in mangrove soil in Alagoas, Brazil. Biosci. J. 2019, 818–825. [Google Scholar] [CrossRef]
- Davila, R.B.; Fontes, M.P.F.; Pacheco, A.A.; da Silva Ferreira, M. Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Sci. Total Environ. 2020, 709, 136151. [Google Scholar] [CrossRef] [PubMed]
- de Menezes, M.D.; Bispo, F.H.A.; Faria, W.M.; Gonçalves, M.G.M.; Curi, N.; Guilherme, L.R.G. Modeling arsenic content in Brazilian soils: What is relevant? Sci. Total Environ. 2020, 712, 136511. [Google Scholar] [CrossRef] [PubMed]
- Nahar, K.; Ali, M.M.; Khanom, A.; Alam, M.K.; Azad, M.A.K.; Rahman, M.M. Levels of heavy metal concentrations and their effect on net nitrification rates and nitrifying archaea/bacteria in paddy soils of Bangladesh. Appl. Soil Ecol. 2020, 156, 103697. [Google Scholar] [CrossRef]
- Akber, M.A.; Rahman, M.A.; Islam, M.A.; Islam, M.A. Potential ecological risk of metal pollution in lead smelter-contaminated agricultural soils in Khulna, Bangladesh. Environ. Monit. Assess. 2019, 191, 351. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Ahmed, M.K.; Al-Mamun, M.H.; Eaton, D.W. Human and ecological risks of metals in soils under different land-use types in an urban environment of Bangladesh. Pedosphere 2020, 30, 201–213. [Google Scholar] [CrossRef]
- Hu, B.F.; Jia, X.L.; Hu, J.; Xu, D.Y.; Xia, F.; Li, Y. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2017, 14, 1042. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.L.; Fu, T.T.; Hu, B.F.; Shi, Z.; Zhou, L.Q.; Zhu, Y.W. Identification of the potential risk areas for soil heavy metal pollution based on the source-sink theory. J. Hazard. Mater. 2020, 393, 122424. [Google Scholar] [CrossRef]
- Hu, B.F.; Shao, S.; Ni, H.; Fu, Z.Y.; Hu, L.S.; Zhou, Y.; Min, X.X.; She, S.F.; Chen, S.C.; Huang, M.X.; et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 114961. [Google Scholar] [CrossRef]
- Saby, N.P.A.; Thioulouse, J.; Jolivet, C.C.; Ratié, C.; Boulonne, L.; Bispo, A.; Arrouays, D. Multivariate analysis of the spatial patterns of 8 trace elements using the French soil monitoring network data. Sci. Total Environ. 2009, 407, 5644–5652. [Google Scholar] [CrossRef]
- Liu, Y.; Fei, X.F.; Zhang, Z.; Li, Y.; Tang, J.; Xiao, R. Identifying the sources and spatial patterns of potentially toxic trace elements (PTEs) in Shanghai suburb soils using global and local regression models. Environ. Pollut. 2020, 264, 114171. [Google Scholar] [CrossRef]
- Satarug, S.; Baker, J.R.; Urbenjapol, S.; Haswell-Elkins, M.; Reilly, P.E.; Williams, D.J.; Moore, M.R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 2003, 137, 65–83. [Google Scholar] [CrossRef]
- Smith, A.H.; Goycolea, M.; Haque, R.; Biggs, M.L. Marked increase in bladder and lung cancer mortality in a region of northern Chile due to arsenic in water. Am. J. Epidemiol. 1998, 147, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.F.; Christakos, G.; Xiao, R.; Ren, Z.; Liu, Y.; Lv, X.N. Improved heavy metal mapping and pollution source apportionment in Shanghai City soils using auxiliary information. Sci. Total Environ. 2019, 661, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.L.; Shi, Z.; Zhu, Y.W. Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China. J. Environ. Sci. 2007, 19, 50–54. [Google Scholar] [CrossRef]
- Shao, S.; Hu, B.F.; Fu, Z.Y.; Wang, J.Y.; Lou, G.; Zhou, Y.; Jin, B.; Li, Y.; Shi, Z. Source identification and apportionment of trace elements in soils in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2018, 15, 1240. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.F.; Zhou, Y.; Jiang, Y.F.; Ji, W.J.; Fu, Z.Y.; Shao, S.; Li, S.; Huang, M.X.; Zhou, L.Q.; Shi, Z. Spatio-temporal variation and source changes of potentially toxic elements in soil on a typical plain of the Yangtze River Delta, China (2002–2012). J. Environ. Manag. 2020, 271, 110943. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; He, M.; Christakos, G. Beyond mere pollution source identification: Determination of land covers emitting soil heavy metals by combining PCA/APCS, GeoDetector and GIS analysis. Catena 2020, 185, 104297. [Google Scholar] [CrossRef]
- Xiang, M.T.; Li, Y.; Yang, J.; Li, Y.; Li, F.; Hu, B.F.; Cao, Y. Assessment of Heavy Metal Pollution in Soil and Classification of Pollution Risk Management and Control Zones in the Industrial Developed City. Environ. Manag. 2020. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, H.; Wu, K.; Zhang, Z.; Hou, Y.; Chen, T.; Jin, Q. Evaluation of heavy metal distribution characteristics of agricultural soil–rice system in a high geological background area according to the influence index of comprehensive quality (IICQ). Environ. Sci. Pollut. Res. 2020, 27, 20920–20933. [Google Scholar] [CrossRef]
- Hu, B.F.; Shao, S.; Fu, Z.Y.; Li, Y.; Ni, H.; Chen, S.C.; Zhou, Y.; Jin, B.; Shi, Z. Identifying heavy metal pollution hot spots in soil-rice systems: A case study in South of Yangtze River Delta, China. Sci. Total Environ. 2019, 658, 614–625. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Chakraborty, S.; Bhadoria, P.B.S.; Li, B.; Weindorf, D.C. Assessment of heavy metal and soil organic carbon by portable X-ray fluorescence spectrometry and NixPro™ sensor in landfill soils of India. Geoderma. Reg. 2020, 20, e00249. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, X.; Wang, L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ. 2020, 710, 134953. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.F.; Wang, J.Y.; Jin, B.; Li, Y.; Shi, Z. Assessment of the potential health risks of heavy metals in soils in a coastal industrial region of the Yangtze River Delta. Environ. Sci. Pollut. Res. 2017, 24, 19816–19826. [Google Scholar] [CrossRef] [PubMed]
- Krivoruchko, K. Empirical Bayesian Kriging; Esri: Redlands, CA, USA, 2012. [Google Scholar]
- Onovo, A.; Atobatele, A.; Kalaiwo, A.; Obanubi, C.; James, E.; Gado, P.; Odezugo, G.; Ogundehin, D.; Magaji, D.; Russell, M. Using Supervised Machine Learning and Empirical Bayesian Kriging to reveal Correlates and Patterns of COVID-19 Disease outbreak in sub-Saharan Africa: Exploratory Data Analysis. SSRN Electr. J. 2020. [Google Scholar] [CrossRef]
- Gupta, A.; Kamble, T.; Machiwal, D. Comparison of ordinary and Bayesian kriging techniques in depicting rainfall variability in arid and semi-arid regions of north-west India. Environ. Earth Sci. 2017, 76, 512. [Google Scholar] [CrossRef]
- Giustini, F.; Ciotoli, G.; Rinaldini, A.; Ruggiero, L.; Voltaggio, M. Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy. Sci. Total Environ. 2019, 661, 449–464. [Google Scholar] [CrossRef]
- Ji, W.J.; Li, S.; Chen, S.C.; Shi, Z.; Rossel, R.A.V.; Mouazen, A.M. Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions. Soil Till. Res. 2016, 155, 492–500. [Google Scholar] [CrossRef]
- Li, S.; Shi, Z.; Chen, S.C.; Ji, W.J.; Zhou, L.Q.; Yu, W.; Webster, R. In situ measurements of organic carbon in soil profiles using vis–NIR spectroscopy on the Qinghai–Tibet Plateau. Environ. Sci. Technol. 2015, 49, 4980–4987. [Google Scholar] [CrossRef]
- Caporale, A.G.; Adamo, P.; Capozzi, F.; Langella, G.; Terribile, F.; Vingiani, S. Monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations a ccording to metal properties and sources. Sci. Total Environ. 2018, 643, 516–526. [Google Scholar] [CrossRef]
- Liu, G.; Liu, B.; Yang, L.; Hu, W.; Qu, M.; Lu, F.; Huang, B. Using pXRF to assess the accumulation, sources, and potential ecological risk of potentially toxic elements in soil under two greenhouse vegetable production systems in North China. Environ. Sci. Pollut. Res. 2020, 27, 11105–11115. [Google Scholar] [CrossRef]
- Peinado, F.M.; Ruano, S.M.; González, M.B.; Molina, C.E. A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (XRF). Geoderma 2010, 159, 76–82. [Google Scholar]
- Hu, B.F.; Chen, S.C.; Hu, J.; Xia, F.; Xu, J.F.; Li, Y.; Shi, Z. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS ONE 2017, 12, e0172438. [Google Scholar]
- Wan, M.X.; Hu, W.Y.; Qu, M.K.; Tian, K.; Zhang, H.D.; Wang, Y.; Huang, B. Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils. Ecol. Indic. 2019, 101, 583–594. [Google Scholar]
- Declercq, Y.; Delbecque, N.; De Grave, J.; De Smedt, P.; Finke, P.; Mouazen, A.M.; Nawar, S.; Vandenberghe, D.; Van Meirvenne, M.; Verdoodt, A. A Comprehensive Study of Three Different Portable XRF Scanners to Assess the Soil Geochemistry of An Extensive Sample Dataset. Remote Sens. 2019, 11, 2490. [Google Scholar]
- Kim, H.R.; Kim, K.H.; Yu, S.; Moniruzzaman, M.; Hwang, S.I.; Lee, G.T.; Yun, S.T. Better assessment of the distribution of As and Pb in soils in a former smelting area, using ordinary co-kriging and sequential Gaussian co-simulation of portable X-ray fluorescence (XRF) and ICP-AES data. Geoderma 2019, 341, 26–38. [Google Scholar]
- Xia, F.; Hu, B.F.; Shao, S.; Xu, D.; Zhou, Y.; Zhou, Y.; Zhou, Y.; Huang, M.X.; Li, Y.; Chen, S.C.; et al. Improvement of Spatial Modeling of Cr, Pb, Cd, As and Ni in Soil Based on Portable X-ray Fluorescence (PXRF) and Geostatistics: A Case Study in East China. Int. J. Environ. Res. Public Health 2019, 16, 2694. [Google Scholar]
- Arsenault, R.; Gatien, P.; Renaud, B.; Brissette, F.; Martel, J.L. A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation. J. Hydrol. 2015, 529, 754–767. [Google Scholar]
- Malone, B.P.; Minasny, B.; Odgers, N.P.; McBratney, A.B. Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma 2014, 232, 34–44. [Google Scholar]
- O’Rourke, S.M.; Stockmann, U.; Holden, N.M.; McBratney, A.B.; Minasny, B. An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties. Geoderma 2016, 279, 31–44. [Google Scholar]
- Yin, X.; Yao, C.; Song, J.; Li, Z.; Zhang, C.; Qian, W.; Bi, D.; Li, C.X.; Teng, Y.; Wan, H.D.; et al. Mercury contamination in vicinity of secondary copper smelters in Fuyang, Zhejiang Province, China: Levels and contamination in topsoils. Environ. Pollut. 2009, 157, 1787–1793. [Google Scholar]
- Zhang, X.Y.; Lin, F.F.; Wong, M.T.; Feng, X.L.; Wang, K. Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China. Environ. Monit. Assess. 2009, 154, 439. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.Y.; Chen, S.C.; Xu, H.Y.; Wang, N.; Zhou, Y.; Shi, Z. Data fusion for the measurement of potentially toxic elements in soil using portable spectrometers. Environ. Pollut. 2020, 263, 114649. [Google Scholar]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Modell. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Hu, B.F.; Wang, J.Y.; Fu, T.T.; Li, Y.; Shi, Z. Application of Spatial Analysis on Soil Heavy Metal Contamination: A Review. Chin. J. Soil. Sci. 2017, 48, 1014–1024. (In Chinese) [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hu, B.F.; Zhao, R.Y.; Chen, S.C.; Zhou, Y.; Jin, B.; Li, Y.; Shi, Z. Heavy metal pollution delineation based on uncertainty in a coastal industrial city in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2018, 15, 710. [Google Scholar] [CrossRef] [Green Version]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Zhou, Y.; Jia, Z.; Wang, J.; Chen, L.; Zou, M.; Li, Y.; Zhou, S. Heavy metal distribution, relationship and prediction in a wheat-rice rotation system. Geoderma 2019, 354, 113886. [Google Scholar]
- Yang, L.; Xu, H.; Yu, S. Estimating PM2. 5 concentrations in Yangtze River Delta region of China using random forest model and the Top-of-Atmosphere reflectance. J. Environ. Manag. 2020, 272, 111061. [Google Scholar]
- Gribov, A.; Krivoruchko, K. Empirical Bayesian kriging implementation and usage. Sci. Total Environ. 2020, 722, 137290. [Google Scholar] [CrossRef]
- Granger, C.W.; Ramanathan, R. Improved methods of combining forecasts. J. Forecast. 1984, 3, 197–204. [Google Scholar]
- Team, R. RStudio: Integrated development for R; RStudio, Inc.: Boston, MA, USA, 2015; Volume 42, p. 14. Available online: http://www.rstudio.com (accessed on 6 November 2020).
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Ma, J.; Wei, H.Y.; Shi, T.R. Heavy metals in typical farmland soils of Zhejiang Province: Levels, sources and ecological risks. Ecol. Environ. Sci. 2019, 28, 1233–1241. (In Chinese) [Google Scholar]
- Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew. Sustain. Energ. Rev. 2016, 56, 246–260. [Google Scholar]
- Eyduran, E.; Zaborski, D.; Waheed, A.; Celik, S.; Karadas, K.; Grzesiak, W. Comparison of the predictive capabilities of several data mining algorithms and multiple linear regression in the prediction of body weight by means of body measurements in the indigenous Beetal goat of Pakistan. Pak. J. Zool. 2017, 49, 57–265. [Google Scholar] [CrossRef]
- Lee, H.; Choi, Y.; Suh, J.; Lee, S.H. Mapping copper and lead concentrations at abandoned mine areas using element analysis data from ICP–AES and portable XRF instruments: A comparative study. Int. J. Environ. Res. Public Health 2016, 13, 384. [Google Scholar] [CrossRef]
- Horta, A.; Azevedo, L.; Neves, J.; Soares, A.; Pozza, L. Integrating portable X-ray fluorescence (pXRF) measurement uncertainty for accurate soil contamination mapping. Geoderma 2021, 382, 114712. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonnell, R.A. Creating continuous surfaces from point data. In Principles of Geographic Information Systems; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Dirks, K.N.; Hay, J.E.; Stow, C.D.; Harris, D. High-resolution studies of rainfall on Norfolk Island Part II: Interpolation of rainfall data. J. Hydrol. 1998, 208, 187–193. [Google Scholar]
- Xie, B.; Jia, X.; Qin, Z.; Zhao, C.; Shao, M.A. Comparison of interpolation methods for soil moisture prediction on China’s Loess Plateau. Vadose Zone J. 2020, 19, e20025. [Google Scholar]
- Metahni, S.; Coudert, L.; Gloaguen, E.; Guemiza, K.; Mercier, G.; Blais, J.F. Comparison of different interpolation methods and sequential Gaussian simulation to estimate volumes of soil contaminated by As, Cr, Cu, PCP and dioxins/furans. Environ. Pollut. 2019, 252, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Wang, Y.; Wang, X.; Liu, X.; Zhang, X.; Zhang, S. Comparing interpolation methods to predict soil total phosphorus in the Mollisol area of Northeast China. Catena 2019, 174, 59–72. [Google Scholar] [CrossRef]
- Krivoruchko, K.; Gribov, A. Evaluation of empirical Bayesian kriging. Spat. Stat.-NETH 2019, 32, 100368. [Google Scholar] [CrossRef]
- Yan, B.; Pan, Y.; Zhao, C. Spatial variability and reasonable sampling number of regional soil heavy metals. Trans. Chin. Soc. Agric. Eng. 2008, 24, 260–264. [Google Scholar]
- Zhengping, X.; Xingwei, Y.; Xiangsuo, D.; Xian, L. Spatial Variability of Soil Nutrient and Reasonable Sampling Number. Trans. Chin. Soc. Agric. Eng. 2002, 18, 6–9. [Google Scholar]
- Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Song, D.; Zhuang, D.; Jiang, D.; Fu, J.; Wang, Q. Integrated health risk assessment of heavy metals in Suxian County, South China. Int. J. Environ. Res. Public Health 2015, 12, 7100–7117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, L.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, Y.; Wang, L.; Xiang, B. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China. Environ. Sci. Pollut. Res. 2016, 23, 19330–19340. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, T.; Iancu, G.O.; Pintilei, M.; Chicoș, M.M. Spatial distribution and geochemistry of heavy metals in soils: A case study from the NE area of Vaslui county, Romania. J. Geochem. Explor. 2017, 176, 20–32. [Google Scholar] [CrossRef]
- Lü, J.; Jiao, W.B.; Qiu, H.Y.; Chen, B.; Huang, X.X.; Kang, B. Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You’xi County southeast China. Geoderma 2018, 310, 99–106. [Google Scholar] [CrossRef]
- Wang, S.; Cai, L.M.; Wen, H.H.; Luo, J.; Wang, Q.S.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef]
- Lemière, B. A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry. J. Geochem. Explor. 2018, 188, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Maheu, J.M. Forecasting realized volatility: A Bayesian model-averaging approach. J. Appl. Economet. 2009, 24, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.C.; Mulder, V.L.; Heuvelink, G.B.M.; Poggio, L.; Caubet, M.; Dobarco, M.R.; Walter, C.; Arrouays, D. Model averaging for mapping topsoil organic carbon in France. Geoderma 2020, 366, 114237. [Google Scholar] [CrossRef]
- Zhou, Y.; Xue, J.; Chen, S.C.; Zhou, Y.; Liang, Z.Z.; Wang, N.; Shi, Z. Fine-Resolution Mapping of Soil Total Nitrogen across China Based on Weighted Model Averaging. Remote Sens. 2020, 12, 85. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.J.; Rossel, R.A.V.; Shi, Z. Improved estimates of organic carbon using proximally sensed vis–NIR spectra corrected by piecewise direct standardization. Eur. J. Soil. Sci. 2015, 66, 670–678. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Bellon-Maurel, V.; Roger, J.M.; Gobrecht, A.; Ferrand, L.; Joalland, S. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma 2011, 167, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Weindorf, D.C.; Paulette, L.; Man, T. In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania. Environ. Pollut 2013, 182, 92–100. [Google Scholar] [CrossRef]
- Ji, W.J.; Viscarra Rossel, R.; Shi, Z. Accounting for the effects of water and the environment on proximally sensed vis-NIR spectra and their calibrations. Eur. J. Soil. Sci. 2015, 66, 555–565. [Google Scholar] [CrossRef]
- Nawar, S.; Cipullo, S.; Douglas, R.K.; Coulon, F.; Mouazen, A.M. The applicability of spectroscopy methods for estimating potentially toxic elements in soils: State-of-the-art and future trends. Appl. Spectrosc. Rev. 2020, 55, 525–557. [Google Scholar] [CrossRef]
- Brus, D.J.; de Gruijter, J.J. Estimating of non-ergodic variograms and their sampling variance by design-based sampling strategies. Math. Geol. 1994, 26, 437–454. [Google Scholar] [CrossRef]
- Laslett, G.M. Kriging and splines: An empirical comparison of their predictive performance in some applications. J. Am. Stat. Assoc. 1994, 89, 391–400. [Google Scholar] [CrossRef]
Variable | Min | Median | Mean | Max | SD | CV (%) |
---|---|---|---|---|---|---|
LC-ICP-MS As | 0.20 | 10.65 | 12.45 | 37.37 | 6.51 | 52.29 |
p-XRF As | 1.69 | 12.44 | 12.49 | 31.43 | 4.82 | 38.59 |
LC-ICP-MS Cd | 0.09 | 0.33 | 0.41 | 2.35 | 0.31 | 75.61 |
p-XRF Cd | 0.08 | 0.37 | 0.43 | 2.53 | 0.26 | 60.47 |
LC-ICP-MS Cu | 7.79 | 26.31 | 31.34 | 177.22 | 21.80 | 69.56 |
p-XRF Cu | 3.39 | 26.60 | 31.49 | 177.27 | 21.74 | 69.04 |
LC-ICP-MS Ni | 4.38 | 20.63 | 20.79 | 51.97 | 8.76 | 42.14 |
p-XRF Ni | 0.85 | 21.12 | 21.08 | 52.04 | 8.59 | 40.75 |
LC-ICP-MS Zn | 58.52 | 107.60 | 127.43 | 793.94 | 72.30 | 56.74 |
p-XRF Zn | 54.06 | 109.11 | 127.95 | 893.77 | 72.48 | 56.65 |
Variable | Model Type | Nugget | Sill | Nugget/Sill (%) | Range (m) | R2 |
---|---|---|---|---|---|---|
LC-ICP–MS As | Spherical | 22.99 | 48.64 | 47.27 | 20200 | 0.897 |
LC-ICP–MS Cd | Spherical | 0.01 | 0.172 | 0.76 | 20930 | 0.589 |
LC-ICP–MS Cu | Spherical | 142.0 | 681.1 | 20.85 | 23830 | 0.640 |
LC-ICP–MS Ni | Spherical | 20.80 | 76.59 | 27.16 | 16120 | 0.823 |
LC-ICP–MS Zn | Gaussian | 1730.0 | 9470.0 | 18.27 | 13050 | 0.518 |
p-XRF As | Gaussian | 12.91 | 25.83 | 49.98 | 11190 | 0.805 |
p-XRF Cd | Gaussian | 0.024 | 0.124 | 21.05 | 11800 | 0.533 |
p-XRF Cu | Spherical | 144.0 | 688.9 | 20.90 | 23910 | 0.622 |
p-XRF Ni | Spherical | 28.70 | 76.58 | 37.48 | 18740 | 0.869 |
p-XRF Zn | Gaussian | 1810.0 | 9770.0 | 18.53 | 13090 | 0.498 |
Algorithms | Method | Element | R2 | RMSE (mg kg−1) | RRMSE (%) a | Bias (mg kg−1) |
---|---|---|---|---|---|---|
IDW | LC-ICP-MS | As | 0.38 | 4.71 | 37.83 | 0.21 |
IDW | p-XRF | As | 0.28 | 4.96 | 39.71 | 0.71 |
OK | LC-ICP-MS | As | 0.34 | 4.90 | 39.36 | 0.32 |
OK | p-XRF | As | 0.17 | 5.44 | 43.55 | 0.79 |
EBK | LC-ICP-MS | As | 0.44 | 4.37 | 35.10 | 0.34 |
EBK | p-XRF | As | 0.29 | 4.93 | 39.47 | 0.57 |
IDW | LC-ICP-MS | Cd | 0.65 | 0.18 | 43.90 | −0.01 |
IDW | p-XRF | Cd | 0.59 | 0.19 | 44.19 | 0.01 |
OK | LC-ICP-MS | Cd | 0.65 | 0.19 | 46.34 | −0.04 |
OK | p-XRF | Cd | 0.61 | 0.19 | 44.19 | 0.002 |
EBK | LC-ICP-MS | Cd | 0.58 | 0.19 | 46.34 | −0.005 |
EBK | p-XRF | Cd | 0.58 | 0.19 | 44.19 | 0.01 |
IDW | LC-ICP-MS | Cu | 0.60 | 13.15 | 41.96 | 1.08 |
IDW | p-XRF | Cu | 0.60 | 13.18 | 41.85 | 1.27 |
OK | LC-ICP-MS | Cu | 0.60 | 13.53 | 43.17 | 1.00 |
OK | p-XRF | Cu | 0.59 | 13.40 | 42.55 | 1.22 |
EBK | LC-ICP-MS | Cu | 0.58 | 13.47 | 42.98 | 1.67 |
EBK | p-XRF | Cu | 0.58 | 13.45 | 42.71 | 1.68 |
IDW | LC-ICP-MS | Ni | 0.61 | 5.54 | 26.65 | 0.58 |
IDW | p-XRF | Ni | 0.53 | 6.22 | 29.51 | 1.20 |
OK | LC-ICP-MS | Ni | 0.63 | 5.52 | 26.55 | 0.84 |
OK | p-XRF | Ni | 0.52 | 6.46 | 30.65 | 1.82 |
EBK | LC-ICP-MS | Ni | 0.64 | 5.32 | 25.59 | 0.53 |
EBK | p-XRF | Ni | 0.55 | 6.04 | 28.65 | 0.99 |
IDW | LC-ICP-MS | Zn | 0.67 | 35.39 | 27.77 | 10.51 |
IDW | p-XRF | Zn | 0.64 | 36.60 | 28.60 | 10.36 |
OK | LC-ICP-MS | Zn | 0.59 | 35.80 | 28.09 | 2.73 |
OK | p-XRF | Zn | 0.59 | 35.71 | 27.91 | 2.70 |
EBK | LC-ICP-MS | Zn | 0.64 | 35.79 | 28.09 | 10.13 |
EBK | p-XRF | Zn | 0.63 | 36.27 | 28.35 | 10.41 |
Algorithms | Method | R2 | RMSE (mg kg−1) | RRMSE (%) a | Bias (mg kg−1) |
---|---|---|---|---|---|
Individual method | As | 0.44 | 4.37 | 35.10 | 0.34 |
Model averaging | As | 0.50 | 4.08 | 32.77 | −0.005 |
Improvement (%) | As | 13.64 | −6.64 | −6.64 | −98.53 |
Individual method | Cd | 0.65 | 0.18 | 43.90 | −0.01 |
Model averaging | Cd | 0.68 | 0.17 | 41.46 | −0.0002 |
Improvement (%) | Cd | 4.62 | −5.56 | −5.56 | −98.00 |
Individual method | Cu | 0.60 | 13.53 | 43.17 | 1.00 |
Model averaging | Cu | 0.62 | 12.64 | 40.33 | 0.02 |
Improvement (%) | Cu | 3.33 | −6.58 | −6.58 | −98.00 |
Individual method | Ni | 0.64 | 5.32 | 25.59 | 0.53 |
Model averaging | Ni | 0.67 | 5.09 | 24.48 | 0.002 |
Improvement (%) | Ni | 4.69 | −4.32 | −4.34 | −99.62 |
Individual method | Zn | 0.67 | 35.39 | 27.77 | 10.51 |
Model averaging | Zn | 0.71 | 29.19 | 22.91 | −0.09 |
Improvement (%) | Zn | 5.63 | −17.52 | −17.50 | −99.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, F.; Hu, B.; Zhu, Y.; Ji, W.; Chen, S.; Xu, D.; Shi, Z. Improved Mapping of Potentially Toxic Elements in Soil via Integration of Multiple Data Sources and Various Geostatistical Methods. Remote Sens. 2020, 12, 3775. https://doi.org/10.3390/rs12223775
Xia F, Hu B, Zhu Y, Ji W, Chen S, Xu D, Shi Z. Improved Mapping of Potentially Toxic Elements in Soil via Integration of Multiple Data Sources and Various Geostatistical Methods. Remote Sensing. 2020; 12(22):3775. https://doi.org/10.3390/rs12223775
Chicago/Turabian StyleXia, Fang, Bifeng Hu, Youwei Zhu, Wenjun Ji, Songchao Chen, Dongyun Xu, and Zhou Shi. 2020. "Improved Mapping of Potentially Toxic Elements in Soil via Integration of Multiple Data Sources and Various Geostatistical Methods" Remote Sensing 12, no. 22: 3775. https://doi.org/10.3390/rs12223775
APA StyleXia, F., Hu, B., Zhu, Y., Ji, W., Chen, S., Xu, D., & Shi, Z. (2020). Improved Mapping of Potentially Toxic Elements in Soil via Integration of Multiple Data Sources and Various Geostatistical Methods. Remote Sensing, 12(22), 3775. https://doi.org/10.3390/rs12223775