Recent Crustal Deformation Based on Interpolation of GNSS Velocity in Continental China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. The Interpolation
2.3. Calculation of Strain Rate
3. Results
3.1. Interpolation
3.2. Strain Rate
3.2.1. Principal Strain Rate
3.2.2. The Other Strain Rate
3.3. Error Analysis
4. Discussion
4.1. Tectonic Interpretation
4.2. Earthquake Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, P.Z.; Zhang, G. Academic progress on the mechanism and forecast for continental strong earthquake in the first two years. China Basic Sci. 2000, 10, 4–10. [Google Scholar]
- Rong, Y.; Xu, X.; Shen, Z.-K. A probabilistic seismic hazard model for Mainland China. Earthquake Spectra. Earthq. Spectra 2020, 36 (Suppl. 1), 181–209. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.K. Present day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 2020, 125, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.K.; Wang, M. Crustal deformation along the Altyn Tagh fault system, western China, from GPS. J. Geophys. Res. Solid Earth 2001, 106, 30607–30621. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, P.Z. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science 2001, 294, 574–577. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.M.; Li, J. The present deformation and fault activity of Tianshan Mountain were studied by GPS. Sci. China 2008, 38, 872–880. [Google Scholar]
- Gan, W.; Shen, Z.K. Horizontal crustal movement of Tibetan Plateau from GPS measurements. J. Geod. Geodyn. 2004, 24, 29–35. [Google Scholar]
- Burchfiel, B.C.; Brown, E.T. Crustal Shortening on the Margins of the Tien Shan, Xinjiang, China. Int. Geol. Rev. 2010, 41, 665–700. [Google Scholar] [CrossRef]
- Holt, W.E.; Haines, A.J. Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. J. Geophys. Res. Solid Earth 2000, 105, 19185–19209. [Google Scholar] [CrossRef]
- Bendick, R.; Freymueller, J. Geodetic evidence for a low slip rate in the Altyn Tagh fault system. Nature 2000, 404, 69–72. [Google Scholar] [CrossRef]
- Wang, W.; Qiao, X.; Yang, S. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements. Geophys. J. Int. 2017, 208, 1088–1102. [Google Scholar] [CrossRef]
- Thatcher, W.; Savage, J.C.; Simpson, R.W. The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault. J. Geophys. Res. Solid Earth 2016, 121, 2904–2914. [Google Scholar] [CrossRef] [Green Version]
- Loveless, J.P.; Meade, B.J. Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations. Earth Planet. Sci. Lett. 2011, 303, 11–24. [Google Scholar] [CrossRef] [Green Version]
- England, P.; Molnar, P. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature 1990, 344, 140–142. [Google Scholar] [CrossRef]
- Deng, Q.D.; Zhang, P.Z. Basic characteristics of active tectonics of China. Sci. China 2003, 46, 356–371. [Google Scholar]
- Arnoso, J.; Riccardi, U. Strain Pattern and Kinematics of the Canary Islands from GNSS Time Series Analysis. Remote Sens. 2020, 12, 3297. [Google Scholar] [CrossRef]
- Chen, B.; Dai, W.J. Reconstruction of Wet Refractivity Field Using an Improved Parameterized Tropospheric Tomographic Technique. Remote Sens. 2020, 12, 3034. [Google Scholar] [CrossRef]
- He, X.; Yu, K.G. GNSS-TS-NRS: An Open-Source MATLAB-Based GNSS Time Series Noise Reduction Software. Remote Sens. 2020, 12, 3532. [Google Scholar] [CrossRef]
- Tavani, S.; Pignalosa, A. Photogrammetric 3D Model via Smartphone GNSS Sensor: Workflow, Error Estimate, and Best Practices. Remote Sens. 2020, 12, 3616. [Google Scholar] [CrossRef]
- Bilham, R.; Freymueller, J. GPS measurements of present-day convergence across the Nepal Himalaya. Nature 1997, 386, 61–64. [Google Scholar] [CrossRef]
- Jouanne, F.; Mugnier, J.L. Oblique Convergence in the Himalayas of Western Nepal Deduced from Preliminary Results of GPS Measurements. Geophys. Res. Lett. 1999, 26, 1933–1936. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.K.; Zhao, C.; Yin, A. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. J. Geophys. Res. Solid Earth 2000, 105, 5721–5734. [Google Scholar] [CrossRef]
- Paul, J.; Bürgmann, R.; Gaur, V.K. The motion and active deformation of India. Geophys. Res. Lett. 2001, 28, 647–650. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, P.Z. Present-day crustal movement and tectonic deformation in China continent. Sci. China 2002, 45, 865–874. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Wang, Q. GPS velocity field and active crustal blocks of contemporary tectonic deformation in continent China. Earth Sci. Front. 2002, 9, 187–198. [Google Scholar]
- Chen, Z.B. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. J. Geophys. Res. 2000, 105, 16215–16227. [Google Scholar] [CrossRef]
- Gan, W.; Zhang, P.Z.; Shen, Z.K. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Wang, H. Crustal Deformation in the India-Eurasia Collision Zone From 25 Years of GPS Measurements. J. Geophys. Res. Solid Earth 2017, 122, 9290–9312. [Google Scholar] [CrossRef]
- Haines, A.J.; Wallace, L.M. New Zealand-Wide Geodetic Strain Rates Using a Physics-Based Approach. Geophys. Res. Lett. 2020, 47, e2019GL084606. [Google Scholar] [CrossRef]
- Weiss, J.R.; Walters, R.J. High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data. Geophys. Res. Lett. 2020, 47, e2020GL087376. [Google Scholar] [CrossRef]
- Kahle, H.G.; Cocard, M.; Peter, Y. GPS-derived strain rate field within the boundary zones of the Eurasian, African, and Arabian Plates. J. Geophys. Res. Solid Earth 2000, 105, 23353–23370. [Google Scholar] [CrossRef]
- Wdowinski, S.; Sudman, Y. Geodetic detection of active faults in S. California. Geophys. Res. Lett. 2001, 28, 2321–2324. [Google Scholar] [CrossRef] [Green Version]
- Allmendinger, R. Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics 2007, 26. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.K.; Wang, M. Optimal Interpolation of Spatially Discretized Geodetic Data. Bull. Seismol. Soc. Am. 2015, 105, 2117–2127. [Google Scholar] [CrossRef] [Green Version]
- Wessel, P.; Luis, J.F. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef] [Green Version]
- Melachroinos, S.A.; Lemoine, J.M.; Tregoning, P.; Biancale, R. Quantifying FES2004 S2 tidal model from multiple space-geodesy techniques, GPS and GRACE, over North West Australia. J. Geod. 2009, 83, 915–923. [Google Scholar] [CrossRef]
- Ponte, R.M.; Ray, R.D. Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides. Geophys. Res. Lett. 2002, 29, 61–64. [Google Scholar] [CrossRef]
- Schmid, R.; Dach, R.; Collilieux, X.; Jäggi, A.; Schmitz, M.; Dilssner, F. Absolute IGS antenna phase center model igs08.atx: Status and potential improvements. J. Geodesy 2016, 90, 343–364. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.W. A High-Precision GPS Data Processing and Contemporary Crustal Deformation in China Mainland. Ph.D. Thesis, Tongji University, Shanghai, China, 2018. [Google Scholar]
- Wu, W.W.; Wu, J.C. A Study of Rank Defect and Network Effect in Processing the CMONOC Network on Bernese. Remote Sens. 2018, 10, 357. [Google Scholar] [CrossRef] [Green Version]
- Sandwell, D.T.; Wessel, P. Interpolation of 2-D vector data using constraints from elasticity. Geophys. Res. Lett. 2016, 43, 10703–10709. [Google Scholar] [CrossRef]
- Hackl, M.; Malservisi, R. Strain rate patterns from dense GPS networks. Nat. Hazards Earth Syst. Sci. 2009, 9, 1177–1187. [Google Scholar] [CrossRef] [Green Version]
- Savage, J.C.; Gan, W. Strain accumulation and rotation in the Eastern California Shear Zone. J. Geophys. Res. Solid Earth 2001, 106, 21995–22007. [Google Scholar] [CrossRef]
- Wdowinski, S.; Smith-Konter, B.; Bock, Y.; Sandwell, D. Diffuse interseismic deformation across the Pacific–North America plate boundary. Geology 2007, 35, 311–314. [Google Scholar] [CrossRef]
- Shen, Z.K.; Lü, J.; Wang, M.; Bürgmann, R. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res. Solid Earth 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.Z.; Deng, Q.D. Strong earthquake activities and active blocks in continental China. Sci. China 2003, 33, 12–20. [Google Scholar]
- Zhang, P.Z.; Deng, Q.D. Active faults, earthquake hazards and associated geodynamic processes in continental China. Scie. Sin. Terra 2013, 43, 1607–1616. (In Chinese) [Google Scholar]
Name of the GNSS Network | Number of Continuous Stations | Number of Staging Stations | Time Span | Organization |
---|---|---|---|---|
Crustal Movement Observation Network of China (CMONOC) I | 27 | 1079 | 1999~2017 | CMONOC I |
CMONOC II | 240 | 1078 | 2010~2018 | CMONOC II |
Red river Fault Zone Monitoring Network | 4 | 12 | 2014~2018 | Tongji University, China |
Himalaya South Foot Monitoring Network | 34 | 0 | 2004~2016 | California Institute of Technology, USA |
Zhang-Bo Fault Zone Monitoring Network | 14 | 11 | 2007~2013 | Institute of Earthquake Forecasting, CEA |
Liupanshan Fault Zone Monitoring Network | 10 | 0 | 2013~2016 | Institute of Earthquake Forecasting, CEA |
West Sichuan Net | 0 | 95 | 2010~2016 | Institute of Earthquake Forecasting, CEA |
International Terrestrial Reference Frame (ITFR) 2014 Network | 161 | 0 | 1999~2017 | International Earth Rotation Service |
Northeast Asia | North China | South China | Burma | Tibetan | Western Regions | |
---|---|---|---|---|---|---|
The range of (nstrain/yr) | −1.35~9.10 | −2.46~8.61 | −2.47~13.75 | 11.55~36.22 | −0.70~45.20 | −6.21~28.05 |
The mean of (nstrain/yr) | 2.26 | 2.65 | 1.62 | 24.91 | 18.22 | 3.64 |
The range of (nstrain/yr) | −10.71~2.29 | −10.11~1.22 | −46.65~2.26 | −27.82~−1.53 | −53.090~4.53 | −41.47~0.24 |
The mean of (nstrain/yr) | −2.42 | −3.00 | −3.83 | −17.12 | −17.56 | −9.16 |
The range of (nstrain/yr) | 0.21~7.18 | 0.29~7.34 | 0.26~25.86 | 6.54~32.02 | 1.04~47.68 | 0.50~34.75 |
The mean of (nstrain/yr) | 2.34 | 2.82 | 2.72 | 21.01 | 17.89 | 6.40 |
The range of (nstrain/yr) | −7.91~7.8 | −8.26~8.74 | −41.57~6.25 | −2.90~15.65 | −38.84~28.80 | −31.78~7.38 |
The mean of (nstrain/yr) | −0.16 | −0.35 | −2.21 | 7.78 | 0.65 | −5.53 |
The range of (nstrain/yr) | −7.12~4.93 | −7.41~4.77 | −15.88~6.02 | −16.75~22.00 | −41.77~42.47 | −11.76~17.11 |
The mean of (nstrain/yr) | −1.29 | −1.08 | −0.55 | 7.19 | 0.54 | 2.88 |
The range of (nstrain/yr) | 0.50~11.06 | 0.49~10.39 | 0.55~46.92 | 11.65~45.67 | 8.03~67.86 | 0.82~50.06 |
The mean of (nstrain/yr) | 3.77 | 4.58 | 4.72 | 30.85 | 26.32 | 10.59 |
Error | ME 1 | MAE 1 | RMSE 1 | ME 2 | MAE 2 | RMSE 2 |
---|---|---|---|---|---|---|
The easterly velocity (mm/yr) | 1.08 × 10−6 | 0.4590 | 0.7679 | −0.0148 | 0.5526 | 0.7128 |
The northerly velocity (mm/yr) | −4.19 × 10−6 | 0.4558 | 0.7874 | −0.0565 | 0.6281 | 0.8088 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, W.; Wu, J.; Wu, W. Recent Crustal Deformation Based on Interpolation of GNSS Velocity in Continental China. Remote Sens. 2020, 12, 3753. https://doi.org/10.3390/rs12223753
Bian W, Wu J, Wu W. Recent Crustal Deformation Based on Interpolation of GNSS Velocity in Continental China. Remote Sensing. 2020; 12(22):3753. https://doi.org/10.3390/rs12223753
Chicago/Turabian StyleBian, Weiwei, Jicang Wu, and Weiwei Wu. 2020. "Recent Crustal Deformation Based on Interpolation of GNSS Velocity in Continental China" Remote Sensing 12, no. 22: 3753. https://doi.org/10.3390/rs12223753
APA StyleBian, W., Wu, J., & Wu, W. (2020). Recent Crustal Deformation Based on Interpolation of GNSS Velocity in Continental China. Remote Sensing, 12(22), 3753. https://doi.org/10.3390/rs12223753