Editorial for the Special Issue: Assessment of Renewable Energy Resources with Remote Sensing
Abstract
:1. Aims and Goals
2. Overview, Data, and Methods
3. Brief Discussion of the Published Articles in the Special Issue
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CIESOL | Centro de Investigación en Energía Solar (University of Almería - Spain) |
CNPq | Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil) |
HORS | Hazaki Oceanographical Research Station |
IMAR | Institute of Marine Sciences |
LABREN | Laboratório de Modelagem e Estudos de Recursos Renováveis de Energia (Brazil) |
INPE | Instituto Nacional de Pesquisas Espaciais (Brazilian Institute for Space Research) |
LiDAR | Light Detection and Ranging |
Unifesp | Universidade Federal de São Paulo (Brazilian Federal University of São Paulo) |
MDPI | Multidisciplinary Digital Publishing Institute |
PV | Photovoltaic system |
SDG | Sustainable Development Goals |
SIO | Solar Irradiance Observatory at the Geophysics Institute of the National Autonomous University |
SSR | Surface solar radiation |
References
- Xiong, G.; Zhang, J.; Shi, D.; Zhu, L.; Yuan, X.; Yao, G. Modified Search Strategies Assisted Crossover Whale Optimization Algorithm with Selection Operator for Parameter Extraction of Solar Photovoltaic Models. Remote Sens. 2019, 11, 2795. [Google Scholar] [CrossRef] [Green Version]
- Mondragón, R.; Alonso-Montesinos, J.; Riveros-Rosas, D.; Valdés, M.; Estévez, H.; González-Cabrera, A.E.; Stremme, W. Attenuation Factor Estimation of Direct Normal Irradiance Combining Sky Camera Images and Mathematical Models in an Inter-Tropical Area. Remote Sens. 2020, 12, 1212. [Google Scholar] [CrossRef] [Green Version]
- Shimada, S.; Goit, J.P.; Ohsawa, T.; Kogaki, T.; Nakamura, S. Coastal Wind Measurements Using a Single Scanning LiDAR. Remote Sens. 2020, 12, 1347. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Montesinos, J. Real-Time Automatic Cloud Detection Using a Low-Cost Sky Camera. Remote Sens. 2020, 12, 1382. [Google Scholar] [CrossRef]
- Sáez Blázquez, C.; Carrasco García, P.; Nieto, I.M.; Maté-González, M.Á.; Martín, A.F.; González-Aguilera, D. Characterizing Geological Heterogeneities for Geothermal Purposes through Combined Geophysical Prospecting Methods. Remote Sens. 2020, 12, 1948. [Google Scholar] [CrossRef]
- Park, J.; Moon, J.; Jung, S.; Hwang, E. Multistep-Ahead Solar Radiation Forecasting Scheme Based on the Light Gradient Boosting Machine: A Case Study of Jeju Island. Remote Sens. 2020, 12, 2271. [Google Scholar] [CrossRef]
- Alkadri, M.F.; De Luca, F.; Turrin, M.; Sariyildiz, S. A Computational Workflow for Generating A Voxel-Based Design Approach Based on Subtractive Shading Envelopes and Attribute Information of Point Cloud Data. Remote Sens. 2020, 12, 2561. [Google Scholar] [CrossRef]
- Gonçalves, A.R.; Assireu, A.T.; Martins, F.R.; Casagrande, M.S.G.; Mattos, E.V.; Costa, R.S.; Passos, R.B.; Pereira, S.V.; Pes, M.P.; Lima, F.J.L.; et al. Enhancement of Cloudless Skies Frequency over a Large Tropical Reservoir in Brazil. Remote Sens. 2020, 12, 2793. [Google Scholar] [CrossRef]
- Young, I.R.; Kirezci, E.; Ribal, A. The Global Wind Resource Observed by Scatterometer. Remote Sens. 2020, 12, 2920. [Google Scholar] [CrossRef]
- Khalyasmaa, A.I.; Eroshenko, S.A.; Tashchilin, V.A.; Ramachandran, H.; Piepur Chakravarthi, T.; Butusov, D.N. Industry Experience of Developing Day-Ahead Photovoltaic Plant Forecasting System Based on Machine Learning. Remote Sens. 2020, 12, 3420. [Google Scholar] [CrossRef]
- Lindfors, A.V.; Hertsberg, A.; Riihelä, A.; Carlund, T.; Trentmann, J.; Müller, R. On the Land-Sea Contrast in the Surface Solar Radiation (SSR) in the Baltic Region. Remote Sens. 2020, 12, 3509. [Google Scholar] [CrossRef]
- ONU, United Nations Organization. The Sustainable Development Goals Report; ONU, United Nations Organization: New York, NY, USA, 2016. [Google Scholar]
- Blanco, G.; Gerlagh, R.; Suh, S.; Barrett, J.; de Coninck, H.C.; Morejon, C.F.D.; Mathur, R.; Nakicenovic, N.; Ahenkora, A.O.; Pan, J.; et al. Drivers, Trends and Mitigation. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Jackson, R.B.; Friedlingstein, P.; Andrew, R.M.; Canadell, J.G.; Le Quéré, C.; Peters, G.P. Persistent fossil fuel growth threatens the Paris Agreement and planetary health. Env. Res. Lett. 2019, 14, 121001. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency. World Energy Outlook 2019; International Energy Agency: Paris, France, 2019.
- International Renewable Energy Agency Renewable Energy Statistics 2019; International Renewable Energy Agency: Abu Dhabi, Arab Emirates, 2019.
- Blaga, R.; Paulesco, M. Quantifiers for the solar irradiance variability: A new perspective. Sol. Energy 2018, 174, 606–616. [Google Scholar] [CrossRef]
- Kondziella, H.; Bruckner, T. Flexibility requirements of renewable energy based electricity systems—A review of research results and methodologies. Renew. Sustain. Energy Rev. 2016, 53, 10–22. [Google Scholar] [CrossRef]
Research Article | Energy Resource | Remote Sensing Data and Methods | Study Area |
---|---|---|---|
Xiong et al. [1] | PV power | Improved variant of the whale optimization algorithm based on the parameters of PV modules | Guiyang, China |
Mondragón et al. [2] | Solar energy | MLRegression, PolRegression, and neural networks based on DNIobservations and all-sky images | SIO in Mexico City |
Shimada et al. [3] | Wind energy | Two-parameter velocity volume processing (VVP) method based on LiDAR measurements | HORS in Japan |
Alonso-Montesinos [4] | Solar energy | Cloud identification using threshold criteria applied to all-sky images | CIESOL in Spain |
Sáez Blázquez et al. [5] | Geothermal energy | Time domain electromagnetic method and electrical resistivity tomography | Central Spain |
Park et al. [6] | PV power | Multistep-ahead (MSA) forecasting using meteorological data and historical global solar radiation data | Jeju Island in Korea |
Alkadri et al. [7] | Solar energy | SOLENapproach based on 3D terrestrial laser scanning datasets | Citarip, Indonesia |
Gonçalves et al. [8] | Solar energy | modeling approaches using the GOES-16 visible imagery, ISCCPdatabase products, and meteorological ground observations | Central Brazil |
Young et al. [9] | Wind energy | The global basin-scale and near-coastal wind using a calibrated multi-mission scatterometer dataset | Global coverage |
Khalyasmaa et al. [10] | PV power | Machine learning algorithms based on open-source meteorological data and PV system parameters | Astrahan, Russia |
Lindfors et al. [11] | Solar energy | Statistical analysis of climate data from two satellite, CLARA-A2and SARAH-2and ground-based pyranometer measurements | Baltic Region |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, F.R. Editorial for the Special Issue: Assessment of Renewable Energy Resources with Remote Sensing. Remote Sens. 2020, 12, 3748. https://doi.org/10.3390/rs12223748
Martins FR. Editorial for the Special Issue: Assessment of Renewable Energy Resources with Remote Sensing. Remote Sensing. 2020; 12(22):3748. https://doi.org/10.3390/rs12223748
Chicago/Turabian StyleMartins, Fernando Ramos. 2020. "Editorial for the Special Issue: Assessment of Renewable Energy Resources with Remote Sensing" Remote Sensing 12, no. 22: 3748. https://doi.org/10.3390/rs12223748
APA StyleMartins, F. R. (2020). Editorial for the Special Issue: Assessment of Renewable Energy Resources with Remote Sensing. Remote Sensing, 12(22), 3748. https://doi.org/10.3390/rs12223748