Editorial for the Special Issue: Assessment of Renewable Energy Resources with Remote Sensing
Abstract
1. Aims and Goals
2. Overview, Data, and Methods
3. Brief Discussion of the Published Articles in the Special Issue
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CIESOL | Centro de Investigación en Energía Solar (University of Almería - Spain) |
CNPq | Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil) |
HORS | Hazaki Oceanographical Research Station |
IMAR | Institute of Marine Sciences |
LABREN | Laboratório de Modelagem e Estudos de Recursos Renováveis de Energia (Brazil) |
INPE | Instituto Nacional de Pesquisas Espaciais (Brazilian Institute for Space Research) |
LiDAR | Light Detection and Ranging |
Unifesp | Universidade Federal de São Paulo (Brazilian Federal University of São Paulo) |
MDPI | Multidisciplinary Digital Publishing Institute |
PV | Photovoltaic system |
SDG | Sustainable Development Goals |
SIO | Solar Irradiance Observatory at the Geophysics Institute of the National Autonomous University |
SSR | Surface solar radiation |
References
- Xiong, G.; Zhang, J.; Shi, D.; Zhu, L.; Yuan, X.; Yao, G. Modified Search Strategies Assisted Crossover Whale Optimization Algorithm with Selection Operator for Parameter Extraction of Solar Photovoltaic Models. Remote Sens. 2019, 11, 2795. [Google Scholar] [CrossRef]
- Mondragón, R.; Alonso-Montesinos, J.; Riveros-Rosas, D.; Valdés, M.; Estévez, H.; González-Cabrera, A.E.; Stremme, W. Attenuation Factor Estimation of Direct Normal Irradiance Combining Sky Camera Images and Mathematical Models in an Inter-Tropical Area. Remote Sens. 2020, 12, 1212. [Google Scholar] [CrossRef]
- Shimada, S.; Goit, J.P.; Ohsawa, T.; Kogaki, T.; Nakamura, S. Coastal Wind Measurements Using a Single Scanning LiDAR. Remote Sens. 2020, 12, 1347. [Google Scholar] [CrossRef]
- Alonso-Montesinos, J. Real-Time Automatic Cloud Detection Using a Low-Cost Sky Camera. Remote Sens. 2020, 12, 1382. [Google Scholar] [CrossRef]
- Sáez Blázquez, C.; Carrasco García, P.; Nieto, I.M.; Maté-González, M.Á.; Martín, A.F.; González-Aguilera, D. Characterizing Geological Heterogeneities for Geothermal Purposes through Combined Geophysical Prospecting Methods. Remote Sens. 2020, 12, 1948. [Google Scholar] [CrossRef]
- Park, J.; Moon, J.; Jung, S.; Hwang, E. Multistep-Ahead Solar Radiation Forecasting Scheme Based on the Light Gradient Boosting Machine: A Case Study of Jeju Island. Remote Sens. 2020, 12, 2271. [Google Scholar] [CrossRef]
- Alkadri, M.F.; De Luca, F.; Turrin, M.; Sariyildiz, S. A Computational Workflow for Generating A Voxel-Based Design Approach Based on Subtractive Shading Envelopes and Attribute Information of Point Cloud Data. Remote Sens. 2020, 12, 2561. [Google Scholar] [CrossRef]
- Gonçalves, A.R.; Assireu, A.T.; Martins, F.R.; Casagrande, M.S.G.; Mattos, E.V.; Costa, R.S.; Passos, R.B.; Pereira, S.V.; Pes, M.P.; Lima, F.J.L.; et al. Enhancement of Cloudless Skies Frequency over a Large Tropical Reservoir in Brazil. Remote Sens. 2020, 12, 2793. [Google Scholar] [CrossRef]
- Young, I.R.; Kirezci, E.; Ribal, A. The Global Wind Resource Observed by Scatterometer. Remote Sens. 2020, 12, 2920. [Google Scholar] [CrossRef]
- Khalyasmaa, A.I.; Eroshenko, S.A.; Tashchilin, V.A.; Ramachandran, H.; Piepur Chakravarthi, T.; Butusov, D.N. Industry Experience of Developing Day-Ahead Photovoltaic Plant Forecasting System Based on Machine Learning. Remote Sens. 2020, 12, 3420. [Google Scholar] [CrossRef]
- Lindfors, A.V.; Hertsberg, A.; Riihelä, A.; Carlund, T.; Trentmann, J.; Müller, R. On the Land-Sea Contrast in the Surface Solar Radiation (SSR) in the Baltic Region. Remote Sens. 2020, 12, 3509. [Google Scholar] [CrossRef]
- ONU, United Nations Organization. The Sustainable Development Goals Report; ONU, United Nations Organization: New York, NY, USA, 2016. [Google Scholar]
- Blanco, G.; Gerlagh, R.; Suh, S.; Barrett, J.; de Coninck, H.C.; Morejon, C.F.D.; Mathur, R.; Nakicenovic, N.; Ahenkora, A.O.; Pan, J.; et al. Drivers, Trends and Mitigation. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Jackson, R.B.; Friedlingstein, P.; Andrew, R.M.; Canadell, J.G.; Le Quéré, C.; Peters, G.P. Persistent fossil fuel growth threatens the Paris Agreement and planetary health. Env. Res. Lett. 2019, 14, 121001. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2019; International Energy Agency: Paris, France, 2019.
- International Renewable Energy Agency Renewable Energy Statistics 2019; International Renewable Energy Agency: Abu Dhabi, Arab Emirates, 2019.
- Blaga, R.; Paulesco, M. Quantifiers for the solar irradiance variability: A new perspective. Sol. Energy 2018, 174, 606–616. [Google Scholar] [CrossRef]
- Kondziella, H.; Bruckner, T. Flexibility requirements of renewable energy based electricity systems—A review of research results and methodologies. Renew. Sustain. Energy Rev. 2016, 53, 10–22. [Google Scholar] [CrossRef]
Research Article | Energy Resource | Remote Sensing Data and Methods | Study Area |
---|---|---|---|
Xiong et al. [1] | PV power | Improved variant of the whale optimization algorithm based on the parameters of PV modules | Guiyang, China |
Mondragón et al. [2] | Solar energy | MLRegression, PolRegression, and neural networks based on DNIobservations and all-sky images | SIO in Mexico City |
Shimada et al. [3] | Wind energy | Two-parameter velocity volume processing (VVP) method based on LiDAR measurements | HORS in Japan |
Alonso-Montesinos [4] | Solar energy | Cloud identification using threshold criteria applied to all-sky images | CIESOL in Spain |
Sáez Blázquez et al. [5] | Geothermal energy | Time domain electromagnetic method and electrical resistivity tomography | Central Spain |
Park et al. [6] | PV power | Multistep-ahead (MSA) forecasting using meteorological data and historical global solar radiation data | Jeju Island in Korea |
Alkadri et al. [7] | Solar energy | SOLENapproach based on 3D terrestrial laser scanning datasets | Citarip, Indonesia |
Gonçalves et al. [8] | Solar energy | modeling approaches using the GOES-16 visible imagery, ISCCPdatabase products, and meteorological ground observations | Central Brazil |
Young et al. [9] | Wind energy | The global basin-scale and near-coastal wind using a calibrated multi-mission scatterometer dataset | Global coverage |
Khalyasmaa et al. [10] | PV power | Machine learning algorithms based on open-source meteorological data and PV system parameters | Astrahan, Russia |
Lindfors et al. [11] | Solar energy | Statistical analysis of climate data from two satellite, CLARA-A2and SARAH-2and ground-based pyranometer measurements | Baltic Region |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, F.R. Editorial for the Special Issue: Assessment of Renewable Energy Resources with Remote Sensing. Remote Sens. 2020, 12, 3748. https://doi.org/10.3390/rs12223748
Martins FR. Editorial for the Special Issue: Assessment of Renewable Energy Resources with Remote Sensing. Remote Sensing. 2020; 12(22):3748. https://doi.org/10.3390/rs12223748
Chicago/Turabian StyleMartins, Fernando Ramos. 2020. "Editorial for the Special Issue: Assessment of Renewable Energy Resources with Remote Sensing" Remote Sensing 12, no. 22: 3748. https://doi.org/10.3390/rs12223748
APA StyleMartins, F. R. (2020). Editorial for the Special Issue: Assessment of Renewable Energy Resources with Remote Sensing. Remote Sensing, 12(22), 3748. https://doi.org/10.3390/rs12223748