Partitioning Global Surface Energy and Their Controlling Factors Based on Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. FLUXNET Observations
2.2. Vegetation and Climate Datasets
2.3. Random Forest Model
2.4. Morris Sensitivity Method
2.5. Experimental Design
2.6. Model Evaluation
3. Results
3.1. Evaluation of the Capability of RF in Predicting LE and H
3.2. Important Predictor Variables in Predicting LE and H
3.3. Inter-Annual Variations in LE and H
3.4. Contributions of Individual Factors to H and LE Variations
4. Discussion
4.1. Comparisons with Previous Studies
4.2. The Sensitivity of Predictor Variables to H and LE Variations
4.3. Inter-Annual Trends of LE and H and Their Dominant Factors
5. Conclusions
- (1)
- The established RF models in this study have a high potential in predicting and monitoring the surface energy flux variations. However, their predicted performance is different among PFTs. The variations of LE can be explained from 0.66 to 0.89, while the H can be explained from 0.53 to 0.90 across 10 PFTs, indicated by R2. Meanwhile, the RMSE ranges from 12.20 W/m2 to 21.94 W/m2 for the LE and from 12.05 W/m2 to 22.34 W/m2 for the H at a monthly scale, respectively.
- (2)
- The important influencing factors are different in LE and H based on Morris sensitive method. Particularly, The SR, LAI and TEM are important factors in LE, while SR is important in H across 10 PFTs in this study. Besides, the important factors are divergent with respect to PFT-level.
- (3)
- A contrasting trend was presented for LE and H: a positive trend in LE with a rate of 0.054~0.073 W/m2 per year and a negative trend in H with a rate of 0.005~0.013 W/m2 per year during 1982–2016 and these contrasting trends are largely controlled by the variation of CO2. Our study emphasizes the need to better account for the influence of elevated CO2 in energy partitioning to improve surface energy fluxes estimations in future studies.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wilson, K.B.; Baldocchi, D.D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Dolman, H.; Falge, E.; Field, C.; Goldstein, A.; Granier, A. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resour. Res. 2002, 38, 30–31. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Li, S. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Zhai, J.; Liu, J.; Sun, C. The moderating or amplifying biophysical effects of afforestation on co2-induced cooling depend on the local background climate regimes in china. Agric. For. Meteorol. 2018, 260, 193–203. [Google Scholar] [CrossRef]
- Rigden, A.J.; Li, D. Attribution of surface temperature anomalies induced by land use and land cover changes. Geophys. Res. Lett. 2017, 44, 6814–6822. [Google Scholar] [CrossRef]
- Siler, N.; Roe, G.H.; Armour, K.C.; Feldl, N. Revisiting the surface-energy-flux perspective on the sensitivity of global precipitation to climate change. Clim. Dynam. 2019, 52, 3983–3995. [Google Scholar] [CrossRef] [Green Version]
- Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T.; Lobell, D.; Delire, C.; Mirin, A. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 2007, 104, 6550–6555. [Google Scholar] [CrossRef] [Green Version]
- Bathiany, S.; Claussen, M.; Brovkin, V.; Raddatz, T.; Gayler, V. Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences 2010, 7, 1383–1399. [Google Scholar] [CrossRef] [Green Version]
- Ukkola, A.M.; Prentice, I.C.; Keenan, T.F.; Van Dijk, A.I.; Viney, N.R.; Myneni, R.B.; Bi, J. Reduced streamflow in water-stressed climates consistent with CO 2 effects on vegetation. Nat. Clim. Chang. 2016, 6, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Peng, J.; Kharbouche, S.; Muller, J.-P.; Danne, O.; Blessing, S.; Giering, R.; Gobron, N.; Ludwig, R.; Müller, B.; Leng, G. Influences of leaf area index and albedo on estimating energy fluxes with HOLAPS framework. J. Hydrol. 2020, 580, 124245. [Google Scholar] [CrossRef]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Baik, J.; Choi, M. Developing a soil water index-based Priestley–Taylor algorithm for estimating evapotranspiration over East Asia and Australia. Agric. For. Meteorol. 2019, 279, 107760. [Google Scholar] [CrossRef]
- Wang, K.; Wang, P.; Li, Z.; Cribb, M.; Sparrow, M. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J. Geophys. Res. Atmos. 2007, 112, D15107. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Zhao, S.; Zhang, Y.; Qin, Q.; Cheng, J.; Jia, K.; Xie, X.; Zhang, N.; Liu, M. Validation and application of the modified satellite-based Priestley-Taylor algorithm for mapping terrestrial evapotranspiration. Remote Sens. 2014, 6, 880–904. [Google Scholar] [CrossRef] [Green Version]
- Jacob, F.; Olioso, A.; Gu, X.F.; Su, Z.; Seguin, B. Mapping surface fluxes using airborne visible, near infrared, thermal infrared remote sensing data and a spatialized surface energy balance model. Agronomie 2002, 22, 669–680. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–99. [Google Scholar] [CrossRef]
- Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S.I.; McCabe, M.; Wood, E.F.; Rossow, W.; Balsamo, G.; Betts, A.; Dirmeyer, P. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. Atmos. 2011, 116, D02102. [Google Scholar] [CrossRef]
- Dai, Y.; Zeng, X.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, A.S.; Dirmeyer, P.A.; Houser, P.R.; Niu, G. The common land model. Bull. Am. Meteorol. Soc. 2003, 84, 1013–1024. [Google Scholar] [CrossRef] [Green Version]
- Bonan, G.B. Land Surface Model (LSM version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and Users Guide; Technical Note; National Center for Atmospheric Research: Boulder, CO, USA, 1996. [Google Scholar]
- Stöckli, R.; Lawrence, D.; Niu, G.Y.; Oleson, K.; Thornton, P.E.; Yang, Z.L.; Bonan, G.; Denning, A.; Running, S.W. Use of FLUXNET in the Community Land Model development. J. Geophys. Res. Biogeosci. 2008, 113, G01025. [Google Scholar] [CrossRef] [Green Version]
- Bakketun, Å. Data Assimilation of Satellite Soil Moisture Retrievals in the Land Surface Model SURFEX. Master’s Thesis, University of Oslo, Oslo, Norway, 2017. [Google Scholar]
- Li, J.; Duan, Q.; Gong, W.; Ye, A.; Dai, Y.; Miao, C.; Di, Z.; Tong, C.; Sun, Y. Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis. Hydrol. Earth Syst. Sci. 2013, 17, 3279. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, L.; Dong, J.; Bai, J.; Yuan, X.; Song, S.; Zhao, H.; Chen, X.; Li, Y. Process refinement contributed more than parameter optimization to improve the CoLM’s performance in simulating the carbon and water fluxes in a grassland. Agric. For. Meteorol. 2020, 291, 108067. [Google Scholar] [CrossRef]
- Khanna, J.; Medvigy, D. Strong control of surface roughness variations on the simulated dry season regional atmospheric response to contemporary deforestation in Rondônia, Brazil. J. Geophys. Res. Atmos. 2014, 119, 13067–13078. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. Atmos. 2011, 116, D20104. [Google Scholar] [CrossRef]
- Freitas, S.C.; Trigo, I.F.; Bioucas-Dias, J.M.; Gottsche, F.-M. Quantifying the uncertainty of land surface temperature retrievals from SEVIRI/Meteosat. IEEE T Geosci. Remote 2009, 48, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Hua, W.; Chen, H.; Sun, S. Uncertainty in land surface temperature simulation over China by CMIP3/CMIP5 models. Theor. Appl. Clim. 2014, 117, 463–474. [Google Scholar] [CrossRef]
- Jung, M.; Koirala, S.; Weber, U.; Ichii, K.; Gans, F.; Camps-Valls, G.; Papale, D.; Schwalm, C.; Tramontana, G.; Reichstein, M. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 2019, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Feng, P.; Waters, C.; Cleverly, J.; Li Liu, D.; Yu, Q. Quantifying the impacts of pre-occurred ENSO signals on wheat yield variation using machine learning in Australia. Agric. For. Meteorol. 2020, 291, 108043. [Google Scholar] [CrossRef]
- Meyer, H.; Reudenbach, C.; Wöllauer, S.; Nauss, T. Importance of spatial predictor variable selection in machine learning applications–Moving from data reproduction to spatial prediction. Ecol. Model. 2019, 411, 108815. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Guo, Z.; Liu, S.; He, X.; Meng, Y.; Xu, Z.; Xia, Y.; Xiao, J.; Zhang, Y.; Ma, Y. Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. J. Geophys. Res. Atmos. 2018, 123, 8674–8690. [Google Scholar] [CrossRef]
- Yao, J.; Gu, L.; Yang, C.; Chen, H.; Wang, J.; Ding, Y.; Li, R.; Zhao, L.; Xiao, Y.; Qiao, Y. Estimation of surface energy fluxes in the permafrost region of the Tibetan Plateau based on in situ measurements and the surface energy balance system model. Int. J. Climatol. 2020, 40, 5783–5800. [Google Scholar] [CrossRef]
- Zeng, Z.; Peng, L.; Piao, S. Response of terrestrial evapotranspiration to Earth’s greening. Curr. Opin. Environ. Sustain. 2018, 33, 9–25. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W.; Hong, Y.; Gourley, J.J.; Yu, Z. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 2015, 5, 15956. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.R.; Myneni, R.B. Global data sets of vegetation leaf area index (LAI) 3g and fraction of photosynthetically active radiation (FPAR) 3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 2013, 5, 927–948. [Google Scholar]
- Liu, Y.; Liu, R.; Chen, J.M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. Biogeosci. 2012, 117, G04003. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Xiang, Y.; Zhao, X.; Song, J. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote 2016, 54, 5301–5318. [Google Scholar] [CrossRef]
- Viovy, N. CRUNCEP version 7-atmospheric forcing data for the community land model. In Research Data Archive at the National Center for Atmospheric Research; Computational and Information Systems Laboratory: Boulder, CO, USA, 2018. [Google Scholar]
- Pieter, T. ESRL’s Global Monitoring Laboratory (GML) of the National Oceanic and Atmospheric Administration (NOAA). Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html (accessed on 21 September 2020).
- Fletcher, A.L.; Sinclair, T.R.; Allen, L.H., Jr. Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’and commercial soybean. Environ. Exp. Bot. 2007, 61, 145–151. [Google Scholar] [CrossRef]
- Buck, A.L. New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. 1981, 20, 1527–1532. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Forzieri, G.; Miralles, D.G.; Ciais, P.; Alkama, R.; Ryu, Y.; Duveiller, G.; Zhang, K.; Robertson, E.; Kautz, M.; Martens, B. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Chang. 2020, 10, 356–362. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, L.; Wang, Y.-P.; Canadell, J.G.; Chiew, F.H.; Beringer, J.; Li, L.; Miralles, D.G.; Piao, S.; Zhang, Y. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, J.; Kirchgaessner, A.; Bevan, S.; Elvidge, A.; Kuipers Munneke, P.; Luckman, A.; Orr, A.; Renfrew, I.; van Den Broeke, M. The impact of föhn winds on surface energy balance during the 2010–2011 melt season over Larsen C Ice Shelf, Antarctica. J. Geophys. Res. Atmos. 2017, 122, 12062–12076. [Google Scholar] [CrossRef]
- Morris, M.D. Factorial sampling plans for preliminary computational experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Campolongo, F.; Cariboni, J.; Saltelli, A. An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 2007, 22, 1509–1518. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Y.-P.; Ziehn, T.; Dai, Y. An efficient method for global parameter sensitivity analysis and its applications to the Australian community land surface model (CABLE). Agric. For. Meteorol. 2013, 182, 292–303. [Google Scholar] [CrossRef]
- Pal, R. Predictive Modeling of Drug Sensitivity; Academic Press: New York, NY, USA, 2016. [Google Scholar]
- Dodge, Y. The Concise Encyclopedia of Statistics; Springer: Berlin, Germany, 2008. [Google Scholar]
- Pedro, D. A unified bias-variance decomposition and its applications. In Proceedings of the 17th International Conference on Machine Learning, Stanford, CA, USA, 29 June–2 July 2000; pp. 231–238. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013; Volume 112. [Google Scholar]
- Yuan, X.; Hamdi, R.; Ochege, F.U.; Kurban, A.; De Maeyer, P. The sensitivity of global surface air temperature to vegetation greenness. Int. J. Climatol. 2020. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; De Jeu, R. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Martens, B.; Gonzalez Miralles, D.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.; Verhoest, N. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model. Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Pan, S.; Tian, H.; Dangal, S.R.; Yang, Q.; Yang, J.; Lu, C.; Tao, B.; Ren, W.; Ouyang, Z. Responses of global terrestrial evapotranspiration to climate change and increasing atmospheric CO2 in the 21st century. Earth’s Future 2015, 3, 15–35. [Google Scholar] [CrossRef]
- Ishida, K.; Ohara, N.; Kavvas, M.; Chen, Z.; Anderson, M. Impact of air temperature on physically-based maximum precipitation estimation through change in moisture holding capacity of air. J. Hydrol. 2018, 556, 1050–1063. [Google Scholar] [CrossRef]
- Eltahir, E.A. A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res. 1998, 34, 765–776. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; VanLoocke, A. Terrestrial ecosystems in a changing environment: A dominant role for water. Annu. Rev. Plant. Biol. 2015, 66, 599–622. [Google Scholar] [CrossRef] [Green Version]
- Eamus, D.; Jarvis, P.G. The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 1989; Volume 19, pp. 1–55. [Google Scholar]
- Valayamkunnath, P.; Sridhar, V.; Zhao, W.; Allen, R.G. Intercomparison of surface energy fluxes, soil moisture, and evapotranspiration from eddy covariance, large-aperture scintillometer, and modeling across three ecosystems in a semiarid climate. Agric. For. Meteorol. 2018, 248, 22–47. [Google Scholar] [CrossRef]
- Zhang, Y.; Peña-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.Y. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Dai, A. The uncertainties and causes of the recent changes in global evapotranspiration from 1982 to 2010. Clim. Dynam. 2017, 49, 279–296. [Google Scholar] [CrossRef]
Method | LE (W/m2) | H (W/m2) | Reference |
---|---|---|---|
Random forest | 42.27 ± 1.25 | 36.52 ± 0.52 | This study |
Mean of multiple machine learning method estimations (FLUXCOM) | 44.48 ± 0.16 | 37.08 ± 0.33 | Jung et al. [29] |
Model tree ensemble (MTE) | 38.84 ± 0.40 | × | Jung et al. [56] |
Global Land Evaporation Amsterdam Model (GLEAM) | 39.54 ± 0.51 | × | Martens et al. [57] |
Process-based model (CoLM) | 40.37 ± 1.21 | 37.14 ± 1.11 | Yuan et al. [55] |
MODIS improved ET algorithm | 38.51 ± 0.50 | × | Mu et al. [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Uchenna Ochege, F.; De Maeyer, P.; Kurban, A. Partitioning Global Surface Energy and Their Controlling Factors Based on Machine Learning. Remote Sens. 2020, 12, 3712. https://doi.org/10.3390/rs12223712
Yuan X, Uchenna Ochege F, De Maeyer P, Kurban A. Partitioning Global Surface Energy and Their Controlling Factors Based on Machine Learning. Remote Sensing. 2020; 12(22):3712. https://doi.org/10.3390/rs12223712
Chicago/Turabian StyleYuan, Xiuliang, Friday Uchenna Ochege, Philippe De Maeyer, and Alishir Kurban. 2020. "Partitioning Global Surface Energy and Their Controlling Factors Based on Machine Learning" Remote Sensing 12, no. 22: 3712. https://doi.org/10.3390/rs12223712
APA StyleYuan, X., Uchenna Ochege, F., De Maeyer, P., & Kurban, A. (2020). Partitioning Global Surface Energy and Their Controlling Factors Based on Machine Learning. Remote Sensing, 12(22), 3712. https://doi.org/10.3390/rs12223712