Monitoring the Spatial and Temporal Variations in The Water Surface and Floating Algal Bloom Areas in Dongting Lake Using a Long-Term MODIS Image Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. MODIS and Landsat Data
2.2.2. In Situ Data Acquisition
2.3. Methods
2.3.1. Remote Sensing Data Processing
2.3.2. Index-Based Threshold Algorithms for Detecting Water and Algal Bloom Pixels
MNDWI-Based Threshold Algorithm for Detecting Water Pixels
FAI and CMI-Based Threshold Algorithm for Detecting Algal Blooms
Threshold Determination
2.3.3. Using the DL-NN to Optimize the Index-Based Threshold Algorithms
DL-NN
Training and Testing the DL-NN
2.3.4. Accuracy Assessment
3. Results
3.1. Verification of the Water Surface and Algal Bloom Area Extraction Results
3.1.1. Comparison with Concurrent Landsat 7 ETM+ Observations
3.1.2. Comparison with Water Level Data
3.2. Characteristics of the Variations in the Water Area of Dongting Lake
3.2.1. Analysis of the Interannual and Seasonal Changes in the Water Surface Area
3.2.2. Analysis of the Monthly Spatial Changes
3.2.3. Analysis of the Interannual Spatial Changes
3.3. Characteristics of the Variations in the Algal Bloom Area in Dongting Lake
3.3.1. Seasonal Variations in the Algal Bloom Area
3.3.2. Interannual Variations in the Algal Bloom Area
3.3.3. Intensity Analysis of Algal Blooms in the Summer and Autumn Seasons
4. Discussion
4.1. Environmental Drivers of Interannual Water Body and Algal Bloom Dynamics
4.2. Environmental Drivers of Monthly Water Body and Algal Bloom Dynamics
4.3. Potential Impact of the Three Gorges Dam on the Water Area Changes
4.4. Implications and Prospects
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hou, X.; Feng, L.; Duan, H.; Chen, X.; Sun, D.; Shi, K. Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China. Remote Sens. Environ. 2017, 190, 107–121. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Y.; Tong, T.S.D. Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam. Remote Sens. Environ. 2014, 152, 251–269. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Jiang, W.; Jia, K.; Rao, P.; Lv, J. Analysis of the Dynamic Changes of the Baiyangdian Lake Surface Based on a Complex Water Extraction Method. Water 2018, 10, 1616. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, G.; Kang, W.; Hu, K.; Wang, L. Impoundment intensity determines temporal patterns of hydrological fluctuation, carbon cycling and algal succession in a dammed lake of Southwest China. Water Res. 2019, 148, 162–175. [Google Scholar] [CrossRef]
- Hinkel, K.M.; Jones, B.M.; Eisner, W.R.; Cuomo, C.J.; Beck, R.A.; Frohn, R. Methods to assess natural and anthropogenic thaw lake drainage on the western arctic coastal plain of northern Alaska. J. Geophys. Res. Earth Surf. 2007, 112, F02S16. [Google Scholar] [CrossRef] [Green Version]
- Ravilious, K. When the lakes run dry. New Sci. 2016, 229, 8–9. [Google Scholar] [CrossRef]
- Schindler, D.W. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol. Oceanogr. 2009, 54, 2349–2358. [Google Scholar] [CrossRef]
- Yu, G.; Shen, H. Lake water changes in response to climate change in northern china: Simulations and uncertainty analysis. Quat. Int. 2010, 212, 44–56. [Google Scholar] [CrossRef]
- Davies-Colley, R.J.; Smith, D.G. Turbidity, suspended sediment, and water clarity: A review. J. Am. Water Resour. Assoc. 2001, 37, 1085–1101. [Google Scholar] [CrossRef]
- Codd, G.A.; Morrison, L.F.; Metcalf, J.S. Cyanobacterial toxins: Risk management for health protection. Toxicol. Appl. Pharmacol. 2005, 203, 264–272. [Google Scholar] [CrossRef]
- Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.; Qin, B.; Li, Y.; Gardner, W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 2011, 45, 1973–1983. [Google Scholar] [CrossRef]
- Weirich, C.A.; Robertson, D.M.; Miller, T.R. Physical, biogeochemical, and meteorological factors responsible for interannual changes in cyanobacterial community composition and biovolume over two decades in a eutrophic lake. Hydrobiologia 2019, 828, 165–182. [Google Scholar] [CrossRef]
- Barton, I.J.; Bathols, J.M. Monitoring floods with AVHRR. Remote Sens. Environ. 1989, 30, 89–94. [Google Scholar] [CrossRef]
- Rao, P.; Jiang, W.; Hou, Y.; Chen, Z.; Jia, K. Dynamic change analysis of surface water in the Yangtze River Basin based on MODIS products. Remote Sens. 2018, 10, 1025. [Google Scholar] [CrossRef] [Green Version]
- Schaffer-Smith, D.; Swenson, J.J.; Barbaree, B.; Reiter, M.E. Three decades of Landsat-derived spring surface water dynamics in an agricultural wetland mosaic; Implications for migratory shorebirds. Remote Sens. Environ. 2017, 193, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; Van De Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813. [Google Scholar] [CrossRef]
- Frazier, P.S.; Page, K.J. Water body detection and delineation with Landsat TM data. Photogramm. Eng. Remote Sens. 2000, 66, 1461–1467. [Google Scholar] [CrossRef]
- Yang, K.; Yao, F.; Wang, J.; Luo, J.; Shen, Z.; Wang, C.; Song, C. Recent dynamics of alpine lakes on the endorheic Changtang Plateau from multi-mission satellite data. J. Hydrol. 2017, 552, 633–645. [Google Scholar] [CrossRef]
- Sakamoto, T.; Nguyen, V.N.; Kotera, A.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sens. Environ. 2007, 109, 295–313. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-histogram. IEEE Trans. Syst. ManCybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Jiang, W.; Tang, Z.; Li, J.; Lv, J.; Chen, Z.; Jia, K. Spatio-Temporal change of lake water extent in Wuhan urban agglomeration based on Landsat images from 1987 to 2015. Remote Sens. 2017, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Jia, K.; Jiang, W.; Li, J.; Tang, Z. Spectral matching based on discrete particle swarm optimization: A new method for terrestrial water body extraction using multi-temporal Landsat 8 images. Remote Sens. Environ. 2018, 209, 1–18. [Google Scholar] [CrossRef]
- Gstaiger, V.; Huth, J.; Gebhardt, S.; Wehrmann, T.; Kuenzer, C. Multi-sensoral and automated derivation of inundated areas using TerraSAR-X and ENVISAT ASAR data. Int. J. Remote Sens. 2012, 33, 7291–7304. [Google Scholar] [CrossRef]
- Ding, X.W.; Li, X.F. Monitoring of the water-area variations of Lake Dongting in China with ENVISAT ASAR images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 894–901. [Google Scholar] [CrossRef]
- Papa, F.; Prigent, C.; Rossow, W.B.; Legresy, B.; Remy, F. Inundated wetland dynamics over boreal regions from remote sensing: The use of Topex-Poseidon dual-frequency radar altimeter observations. Int. J. Remote Sens. 2006, 27, 4847–4866. [Google Scholar] [CrossRef]
- Seiler, R.; Schmidt, J.; Diallo, O.; Csaplovics, E. Flood monitoring in a semi-arid environment using spatially high resolution radar and optical data. J. Environ. Manag. 2009, 90, 2121–2129. [Google Scholar] [CrossRef]
- Smith, L.C. Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. Process. 1997, 11, 1427–1439. [Google Scholar] [CrossRef]
- DiBaldassarre, G.; Schumann, G.; Brandimarte, L.; Bates, P. Timely low resolution SAR imagery to support floodplain modelling: A case study review. Surv. Geophys. 2011, 32, 255–269. [Google Scholar] [CrossRef]
- Long, S.; Fatoyinbo, T.E.; Policelli, F. Flood extent mapping for Namibia using change detection and thresholding with SAR. Environ. Res. Lett. 2014, 9, 035002. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Chini, M.; Pierdicca, N.; Guerriero, L.; Ferrazzoli, P. Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation. Remote Sens. Environ. 2011, 115, 990–1002. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, J.; Li, P.; Zhang, L. Seasonal inundation monitoring and vegetation pattern mapping of the Erguna floodplain by means of a RADARSAT-2 fully polarimetric time series. Remote Sens. Environ. 2014, 152, 426–440. [Google Scholar] [CrossRef]
- Reinart, A.; Kutser, T. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. Remote Sens. Environ. 2006, 102, 74–85. [Google Scholar] [CrossRef]
- Navalgund, R.R.; Jayaraman, V.; Roy, P.S. Remote sensing applications: An overview. Curr. Sci. 2007, 93, 1747–1766. [Google Scholar]
- Shen, L.; Xu, H.; Guo, X. Satellite remote sensing of harmful algal blooms (HABS) and a potential synthesized framework. Sensors 2012, 12, 7778–7803. [Google Scholar] [CrossRef] [Green Version]
- Kutser, T. Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters. Int. J. Remote Sens. 2007, 30, 4401–4425. [Google Scholar] [CrossRef]
- Patissier, D.B.; Gower, J.F.R.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kutser, T.; Metsamaa, L.; Strömbeck, N.; Vahtmaë, E. Monitoring cyanobacterial blooms by satellite remote sensing. Estuar. Coast. Shelf Sci. 2006, 67, 303–312. [Google Scholar] [CrossRef]
- Bresciani, M.; Adamo, M.; De Carolis, G.; Matta, E.; Pasquariello, G.; Vaičiūtė, D.; Giardino, C. Monitoring blooms and surface accumulation of cyanobacteria in the curonian lagoon by combining MERIS and ASAR data. Remote Sens. Environ. 2014, 146, 124–135. [Google Scholar] [CrossRef]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Bresciani, M.; Giardino, C.; Bartoli, M.; Tavernini, S.; Bolpagni, R.; Nizzoli, D. Recognizing harmful algal bloom based on remote sensing reflectance band ratio. J. Appl. Remote Sens. 2011, 5, 053556. [Google Scholar] [CrossRef]
- Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 2004, 49, 2179–2189. [Google Scholar] [CrossRef]
- Duan, H.; Ma, R.; Hu, C. Evaluation of remote sensing algorithms for cyanobacterial pigment retrievals during spring bloom formation in several lakes of East China. Remote Sens. Environ. 2012, 126, 126–135. [Google Scholar] [CrossRef]
- Duan, H.; Ma, R.; Xu, X.; Kong, F.; Zhang, S.; Kong, W.; Hao, J.; Shang, L. Two-decade reconstruction of algal blooms in China’s lake Taihu. Environ. Sci. Technol. 2009, 43, 3522–3528. [Google Scholar] [CrossRef]
- Kahru, M.; Savchuk, O.P.; Elmgren, R. Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: Interannual and spatial variability. Mar. Ecol. Prog. Ser. 2007, 343, 15–23. [Google Scholar] [CrossRef]
- Kahru, M.; Elmgren, R. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 2014, 11, 3619–3633. [Google Scholar] [CrossRef] [Green Version]
- Gower, J. Red tide monitoring using AVHRR HRPT imagery from a local receiver. Remote Sens. Environ. 1994, 48, 309–318. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Tomlinson, M.C. Remote sensing of harmful algal blooms. Remote Sens. Coast. Aquat. Environ. 2005, 7, 277–296. [Google Scholar] [CrossRef]
- Holligan, P.M.; Viollier, M.; Harbour, D.S.; Camus, P.; Champagne-Philippe, M. Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 1983, 304, 339–342. [Google Scholar] [CrossRef]
- Garcia, R.A.; Fearns, P.; Keesing, J.K.; Liu, D. Quantification of floating macroalgae blooms using the scaled algae index. J. Geophys. Res. Ocean. 2013, 118, 26–42. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; He, M. Origin and offshore extent of floating algae in Olympic sailing area. EosTrans. Am. Geophys. Union 2008, 89, 302–303. [Google Scholar] [CrossRef]
- Alem, A.E.; Chokmani, K.; Laurion, I.; Adlouni, S.E. An adaptive model to monitor chlorophyll-a in inland waters in southern Quebec using downscaled MODIS imagery. Remote Sens. 2014, 6, 6446–6471. [Google Scholar] [CrossRef] [Green Version]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Ma, R.; Yu, K.; Li, D.; Shang, S. Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Loiselle, S.A.; Zhu, L.; Feng, L.; Zhang, Y.; Ma, R. Distribution and incidence of algal blooms in Lake Taihu. Aquat. Sci. 2015, 77, 9–16. [Google Scholar] [CrossRef]
- Matthews, M.W.; Odermatt, D. Improved algorithm for routine monitoring of cyanobacteria and eutrophication in inland and near-coastal waters. Remote Sens. Environ. 2015, 156, 374–382. [Google Scholar] [CrossRef]
- Hu, C.; Muller-Karger, F.E.; Taylor, C.; Carder, K.L.; Kelble, C.; Johns, E.; Heil, C.A. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sens. Environ. 2005, 97, 311–321. [Google Scholar] [CrossRef]
- Gower, J.; Doerffer, R.; Borstad, G.A. Interpretation of the 685nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS. Int. J. Remote Sens. 1999, 20, 1771–1786. [Google Scholar] [CrossRef]
- Frolov, S.; Kudela, R.M.; Bellingham, J.G. Monitoring of harmful algal blooms in the era of diminishing resources: A case study of the U.S. West Coast. Harmful Algae 2013, 21–22. [Google Scholar] [CrossRef]
- Gower, J.F.R.; King, S.; Borstad, G.; Brown, L. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Int. J. Remote Sens. 2005, 26, 2005–2012. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Goncalves, P. Global monitoring of plankton blooms using MERIS MCI. Int. J. Remote Sens. 2008, 29, 6209–6216. [Google Scholar] [CrossRef]
- Du, Y.; Cai, S.; Zhang, X.; Zhao, Y. Interpretation of the environmental change of Dongting Lake, middle reach of Yangtze River, China, by 210Pb measurement and satellite image analysis. Geomorphology 2001, 41, 171–181. [Google Scholar] [CrossRef]
- Wu, G.P.; Liu, Y.B. Mapping Dynamics of Inundation Patterns of Two Largest River-Connected Lakes in China: A Comparative Study. Remote Sens. 2016, 8, 560. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Q.; Yao, T.; Chen, W.; Zheng, G.; Shum, C.K.; Yang, K.; Piao, S.; Sheng, Y.; Yi, S.; Li, J.; et al. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sens. Environ. 2019, 221, 386–404. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Zeng, G.; Laing, J.; Huang, L.; Hua, S.; Li, F.; Zhu, Y.; Wu, H.; Liu, J.; He, X.; et al. Variation of water level in Dongting Lake over a 50-year period: Implications for the impacts of anthropogenic and climatic factors. J. Hydrol. 2015, 525, 450–456. [Google Scholar] [CrossRef]
- Yu, Y.W.; Mei, X.; Dai, Z.; Gao, J.; Li, J.; Wang, J.; Lou, Y. Hydromorphological processes of Dongting Lake in China between 1951 and 2014. J. Hydrol. 2018, 562, 254–266. [Google Scholar] [CrossRef]
- Duan, H.; Tao, M.; Loiselle, S.A.; Zhao, W.; Cao, Z.; Ma, R.; Tang, X. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source. Water Res. 2017, 122, 455–470. [Google Scholar] [CrossRef]
- Yin, L.; Jiang, N.; Yang, Y. Dynamic change of Lake Taihu area during the past15 years based on Remote Sensing Technique. J. Lake Sci. 2005, 17. (In Chinese) [Google Scholar] [CrossRef]
- Park, Y.; Pyo, J.; Kwon, Y.S.; Cha, Y.; Lee, H.; Kang, T.; Cho, K.H. Evaluating physico-chemical influences on cyanobacterial blooms using hyperspectral images in inland water, Korea. Water Res. 2017, 126, 319–328. [Google Scholar] [CrossRef]
- Mikelsons, K.; Wang, M.; Jiang, L.; Bouali, M. Destriping algorithm for improved satellite-derived ocean color product imagery. Opt. Express 2014, 22, 28058–28070. [Google Scholar] [CrossRef]
- Bouali, M.; Ignatov, A. Adaptive Reduction of Striping for Improved Sea Surface Temperature Imagery from Suomi National Polar-Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS). J. Atmos. Ocean. Technol. 2014, 31, 150–163. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcrette, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Yang, H.B.; Wang, Z.M.; Zhao, H.L.; Guo, Y. Water body extraction methods study based on RS and GIS. Procedia Environ. Sci. 2011, 10, 2619–2624. [Google Scholar] [CrossRef] [Green Version]
- Oyama, Y.; Matsushita, B.; Fukushima, T. Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands. Remote Sens. Environ. 2015, 157, 35–47. [Google Scholar] [CrossRef]
- Liang, Q.C.; Zhang, Y.C.; Ma, R.H.; Steven, L.; Li, J.; Hu, M.Q. A MODIS-Based Novel Method to Distinguish Surface Cyanobacterial Scums and Aquatic Macrophytes in Lake Taihu. Remote Sens. 2017, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Cannizzaro, J.; Carder, K.L.; Karger, F.E.M.; Hardya, R. Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data. Remote Sens. Environ. 2010, 114, 2048–2058. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Pyo, J.; Duan, H.; Baek, S.; Kim, M.S.; Jeon, T.; Kwon, Y.S.; Cho, K.H. A convolutional neural network regression for quantifying cyanobacteria using hyperspectral imagery. Remote Sens. Environ. 2019, 233, 111350. [Google Scholar] [CrossRef]
- Daxini, S.D.; Prajapati, J.M. Numerical shape optimization based on meshless method and stochastic optimization technique. Eng. Comput. 2019, 36, 565–586. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Zhao, X. Dramatic inundation changes of china’s two largest freshwater lakes linked to the three gorges dam. Environ. Sci. Technol. 2013, 47, 9628–9634. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Bao, Z.; Zhou, M.; Qiao, S.; Xie, S. Temporal-spatial evolution of water quality in Lake Dongting, China. J. Lake Sci. 2007, 19, 677–682. (In Chinese) [Google Scholar]
- Xiong, J.; Yu, F.; Tian, Q.; Huang, D.; Li, L. The evolution of water quality and nutrient condition in Lake Dongting in recent 30 years. J. Lake Sci. 2016, 28, 1217–1225. (In Chinese) [Google Scholar]
- Carey, C.C.; Ibelings, B.W.; Hoffmann, E.P.; Hamilton, D.P.; Brookes, J.D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012, 46, 1394–1407. [Google Scholar] [CrossRef]
- Ji, H.X.; Wu, G.; Liu, Y. Sharp change of lake levels during the two extreme droughts and its hydroclimatic processes in Lake Dongting, China. J. Lake Sci. 2016, 28, 207–216. (In Chinese) [Google Scholar]
- Jing, Y.; Zhang, Y.; Hu, M.; Chu, Q.; Ma, R. MODIS-Satellite-Based Analysis of Long-Term Temporal-Spatial Dynamics and Drivers of Algal Blooms in a Plateau Lake Dianchi, China. Remote Sens. 2019, 11, 2582. [Google Scholar] [CrossRef] [Green Version]
- Bi, B.; Liu, X.; Guo, X.; Lu, S. Occurrence and risk assessment of heavy metals in water, sediment, and fish from Dongting Lake, China. Environ. Sci. Pollut. Res. 2018, 25, 34076–34090. [Google Scholar] [CrossRef]
- Zhang, M.; Duan, H.; Shi, X.; Yu, Y.; Kong, F. Contributions of meteorology to the phenology of cyanobacterial blooms: Implications for future climate change. Water Res. 2012, 46, 442–452. [Google Scholar] [CrossRef]
- Kanoshina, I.; Lips, U.; Leppänen, J.M. The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae 2003, 2, 29–41. [Google Scholar] [CrossRef]
- Yang, S.L.; Milliman, J.D.; Li, P.; Xu, K. 50,000 dams later: Erosion of the Yangtze River and its delta. Glob. Planet. Chang. 2011, 75, 14–20. [Google Scholar] [CrossRef]
- Yang, S.L.; Milliman, J.D.; Xu, K.H.; Deng, B.; Zhang, X.Y.; Luo, X.X. Downstream sedimentary and geomorphic impacts of the three gorges dam on the Yangtze River. Earth-Sci. Rev. 2014, 138, 469–486. [Google Scholar] [CrossRef]
- Yang, S.L.; Xu, K.H.; Milliman, J.D.; Yang, H.F.; Wu, C.S. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Sci. Rep. 2015, 5, 12581. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, J.; Zhang, Y.; Li, J.; Feng, L.; Zhang, Y.; Shi, K.; Brookes, J.D.; Jeppesen, E. Influence of the three gorges reservoir on the shrinkage of china’s two largest freshwater lakes. Glob. Planet. Chang. 2019, 177, 45–55. [Google Scholar] [CrossRef]
- Lai, X.; Jiang, J.; Huang, Q. Effects of the normal operation of Three Gorges Reservoir on wetland inundation in Dongting Lake, China: A modelling study. Hydrol. Sci. J. 2013, 58, 1467–1477. [Google Scholar] [CrossRef] [Green Version]
- Li, J.B.; Chang, J.; Lu, D.Q.; Zhu, X.; Lu, C.Z.; Zhou, Y.Y.; Deng, C.X. The Hydrological Effect between Jingjiang River and Dongting Lake during Initial Period of Three Gorges Project Operation. Acta Geogr. Sin. 2009, 64, 1342–1352. (In Chinese) [Google Scholar] [CrossRef]
- Yu, S.C.; Yu, D.Q.; Wang, L.C.; Li, C.A.; He, Q.H.; Xiang, F.F. Remote Sensing Study of Dongting Lake Beach Changes before and after the Operation of the Three Gorges Reservoir. Earth Sci. 2019, 1–12. (In Chinese) [Google Scholar] [CrossRef]
- Bowling, L.C.; Blais, S.; Sinotte, M. Heterogeneous spatial and temporal cyanobacterial distributions in Missisquoi Bay, Lake Champlain: An analysis of a 9 year data set. J. Great Lakes Res. 2015, 41, 164–179. [Google Scholar] [CrossRef]
- Xia, R.; Zhang, Y.A.; Wang, G.S.; Zhang, Y.Y.; Dou, M.; Hou, X.K.; Qiao, Y.; Wang, Q.; Yang, Z. Multi-factor identification and modelling analyses for managing large river algal blooms. Environ. Pollut. 2019, 254, 113056. [Google Scholar] [CrossRef] [PubMed]
Nodes Layers | 100 | 200 | 300 | 400 | 500 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | R | M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
3 | 5.23 | 4.23 | 0.9993 | 4.82 | 4.40 | 0.9995 | 6.58 | 4.93 | 0.9991 | 7.40 | 8.84 | 0.9982 | 7.78 | 11.02 | 0.9976 |
4 | 4.90 | 4.65 | 0.9994 | 4.50 | 4.43 | 0.9995 | 4.32 | 4.18 | 0.9994 | 22.06 | 31.10 | 0.9859 | 33.31 | 40.82 | 0.9797 |
5 | 8.21 | 8.24 | 0.9989 | 6.28 | 6.19 | 0.9992 | 14.04 | 20.49 | 0.9932 | 12.72 | 18.01 | 0.9950 | 26.20 | 36.50 | 0.9799 |
6 | 5.26 | 5.39 | 0.9993 | 7.09 | 9.02 | 0.9984 | 17.13 | 19.65 | 0.9949 | 25.08 | 29.65 | 0.9874 | 14.66 | 24.64 | 0.9893 |
7 | 6.55 | 8.11 | 0.9987 | 7.97 | 8.82 | 0.9984 | 10.29 | 13.88 | 0.9963 | 21.32 | 33.71 | 0.9843 | 47.31 | 58.15 | 0.9542 |
8 | 6.02 | 5.46 | 0.9991 | 6.93 | 8.29 | 0.9984 | 21.10 | 24.98 | 0.9917 | 77.67 | 96.98 | 0.8657 | 65.21 | 81.93 | 0.9083 |
9 | 6.23 | 5.91 | 0.9990 | 6.85 | 9.46 | 0.9982 | 25.25 | 34.63 | 0.9791 | 9.55 | 10.94 | 0.9976 | 28.16 | 36.09 | 0.9725 |
10 | 5.98 | 5.43 | 0.9991 | 6.90 | 7.55 | 0.9988 | 20.89 | 24.30 | 0.9918 | 26.02 | 32.06 | 0.9831 | 71.69 | 135.73 | 0.7503 |
Nodes Layers | 100 | 200 | 300 | 400 | 500 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | R | M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
3 | 2.72 | 1.77 | 0.999972 | 2.89 | 4.80 | 0.999918 | 2.89 | 3.67 | 0.999943 | 3.11 | 9.77 | 0.999723 | 3.11 | 5.70 | 0.999889 |
4 | 2.75 | 2.00 | 0.999970 | 2.95 | 6.19 | 0.999877 | 2.96 | 4.92 | 0.999914 | 3.19 | 9.79 | 0.999722 | 3.94 | 24.72 | 0.998377 |
5 | 2.80 | 2.54 | 0.999963 | 3.12 | 17.37 | 0.99918 | 3.12 | 6.46 | 0.999864 | 3.97 | 19.56 | 0.998952 | 4.33 | 24.07 | 0.998435 |
6 | 2.76 | 2.04 | 0.999969 | 3.27 | 16.23 | 0.999285 | 3.51 | 14.64 | 0.999403 | 3.76 | 16.50 | 0.999257 | 3.80 | 10.71 | 0.999661 |
7 | 2.84 | 2.66 | 0.999960 | 3.02 | 3.90 | 0.999936 | 3.58 | 22.21 | 0.998685 | 3.73 | 20.37 | 0.998871 | 4.49 | 29.12 | 0.997736 |
8 | 2.89 | 2.74 | 0.999958 | 3.15 | 4.18 | 0.999928 | 3.40 | 6.28 | 0.999866 | 4.15 | 25.00 | 0.998330 | 4.10 | 12.49 | 0.999546 |
9 | 2.99 | 4.56 | 0.999922 | 3.25 | 5.97 | 0.999879 | 3.42 | 10.17 | 0.999698 | 3.80 | 16.63 | 0.999248 | 5.08 | 47.22 | 0.994226 |
10 | 2.90 | 4.67 | 0.999921 | 3.47 | 11.59 | 0.999615 | 3.67 | 16.18 | 0.999275 | 4.32 | 24.50 | 0.998390 | 4.50 | 27.37 | 0.997972 |
Nodes Layers | 100 | 200 | 300 | 400 | 500 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | R | M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
3 | 4.48 | 2.46 | 0.999860 | 4.31 | 2.40 | 0.999864 | 4.27 | 2.49 | 0.999861 | 4.56 | 3.67 | 0.999782 | 4.80 | 4.77 | 0.999683 |
4 | 4.61 | 2.60 | 0.999849 | 4.32 | 2.32 | 0.999867 | 4.44 | 2.97 | 0.999831 | 4.59 | 3.78 | 0.999772 | 5.24 | 4.19 | 0.999728 |
5 | 4.75 | 2.86 | 0.999829 | 4.46 | 2.42 | 0.999857 | 4.64 | 3.23 | 0.999807 | 4.91 | 4.8 | 0.999676 | 5.23 | 4.66 | 0.999681 |
6 | 4.55 | 2.48 | 0.999852 | 4.54 | 2.67 | 0.999845 | 4.59 | 2.76 | 0.999836 | 4.99 | 5.43 | 0.999613 | 5.26 | 7.49 | 0.999352 |
7 | 4.52 | 2.65 | 0.999843 | 4.47 | 2.55 | 0.999850 | 4.67 | 3.09 | 0.999813 | 5.05 | 3.6 | 0.999765 | 5.68 | 6.68 | 0.999444 |
8 | 4.65 | 2.71 | 0.999836 | 4.64 | 3.04 | 0.999818 | 5.11 | 5.34 | 0.999616 | 5.36 | 3.75 | 0.999740 | 5.64 | 5.82 | 0.999541 |
9 | 4.60 | 2.73 | 0.999837 | 4.51 | 2.38 | 0.999856 | 5.23 | 4.17 | 0.999730 | 5.33 | 3.58 | 0.999757 | 5.61 | 4.94 | 0.999634 |
10 | 4.49 | 2.39 | 0.999856 | 4.76 | 3.00 | 0.999819 | 4.79 | 3.19 | 0.999806 | 5.17 | 3.8 | 0.999746 | 5.63 | 4.79 | 0.999643 |
Four Tributaries (FT) | Three Channels (TH) | Annual Mean Runoff (FT and TH) | |
---|---|---|---|
1999–2002 | 1815.000 | 625.300 | 2440.300 |
2003 | 1754.100 | 568.712 | 2322.812 |
2004 | 1499.100 | 524.299 | 2023.399 |
2005 | 1511.000 | 643.370 | 2154.370 |
2006 | 1553.850 | 182.586 | 1736.436 |
2007 | 1404.500 | 543.626 | 1948.126 |
2008 | 1513.100 | 528.710 | 2041.810 |
2009 | 1346.000 | 444.894 | 1790.894 |
2010 | 1817.500 | 566.020 | 2383.520 |
2011 | 1027.500 | 276.176 | 1303.676 |
2012 | 1801.800 | 653.402 | 2455.202 |
2013 | 1552.600 | 396.913 | 1949.513 |
2014 | 1799.400 | 553.553 | 2352.953 |
2015 | 1852.400 | 352.497 | 2204.897 |
2016 | 2152.800 | 474.610 | 2627.410 |
2017 | 1719.500 | 471.228 | 2190.728 |
2003–2017 | 1620.343 | 478.706 | 2099.0497 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, M.; Mao, K.; Shen, X.; Xu, T.; Yan, Y.; Yuan, Z. Monitoring the Spatial and Temporal Variations in The Water Surface and Floating Algal Bloom Areas in Dongting Lake Using a Long-Term MODIS Image Time Series. Remote Sens. 2020, 12, 3622. https://doi.org/10.3390/rs12213622
Cao M, Mao K, Shen X, Xu T, Yan Y, Yuan Z. Monitoring the Spatial and Temporal Variations in The Water Surface and Floating Algal Bloom Areas in Dongting Lake Using a Long-Term MODIS Image Time Series. Remote Sensing. 2020; 12(21):3622. https://doi.org/10.3390/rs12213622
Chicago/Turabian StyleCao, Mengmeng, Kebiao Mao, Xinyi Shen, Tongren Xu, Yibo Yan, and Zijin Yuan. 2020. "Monitoring the Spatial and Temporal Variations in The Water Surface and Floating Algal Bloom Areas in Dongting Lake Using a Long-Term MODIS Image Time Series" Remote Sensing 12, no. 21: 3622. https://doi.org/10.3390/rs12213622
APA StyleCao, M., Mao, K., Shen, X., Xu, T., Yan, Y., & Yuan, Z. (2020). Monitoring the Spatial and Temporal Variations in The Water Surface and Floating Algal Bloom Areas in Dongting Lake Using a Long-Term MODIS Image Time Series. Remote Sensing, 12(21), 3622. https://doi.org/10.3390/rs12213622