SAR Target Classification Based on Sample Spectral Regularization
Abstract
:1. Introduction
- We propose SSR and SSR to improve the feature discriminability by reducing the difference between the large and small singular values. The proposed SSR is at sample-level and can implement better feature discriminability than that at batch-level, which makes the classifier easier to recognize the targets of different classes.
- Based on the proposed regularization method, we propose a transfer-learning pipeline to solve the sample restriction problem in SAR target classification, which can leverage the prior knowledge from the simulated SAR data as well as has better feature discriminability.
- We further investigate the difference of various spectral regularizations. The experimental results indicate that reducing the difference between the large and small singular values at sample-level is best effective. Besides, we analyze the impact of spectral regularization on singular values.
2. Method
2.1. Problem Setting
2.2. Feature Discriminability
2.3. Sample Spectral Regularization
2.4. Transfer Learning with Sample Spectral Regularization
Algorithm 1 Pre-training process |
Input: Labeled data of the simulated SAR dataset , feature extractor M, classifier , learning rate |
Output: Pre-trained feature extractor M |
1: Randomly initialize M, |
2: while not converged do |
3: Sample b samples from |
4: Compute loss |
5: Update M and with gradient descent: |
6: |
7: end while |
Algorithm 2 Fine-tuning process |
Input: Labeled data of the real SAR dataset , pre-trained feature extractor M, classifier , learning rate |
Output: Fine-tuned feature extractor M, fine-tuned classifier |
1: Initialized M with the pre-trained parameters, randomly initialize |
2: while not converged do |
3: Sample b samples from |
4: Compute loss |
5: Update M and with gradient descent: |
6: |
7: end while |
2.5. An Intuitive Understanding
2.6. Implementation Details
3. Experiment
3.1. Datasets
3.2. Training Details
3.3. SSR with Limited Training Data
3.4. SSR with Sufficient Training Data
3.5. SVD Analysis
3.6. Noise Robustness
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novak, L.M.; Owirka, G.J.; Brower, W.S.; Weaver, A.L. The automatic target-recognition system in SAIP. Linc. Lab. J. 1997, 10, 187–202. [Google Scholar]
- Novak, L.M.; Owirka, G.J.; Brower, W.S. Performance of 10- and 20-target MSE classifiers. IEEE Trans. Aerosp. Electron. Syst. 2000, 36, 1279–1289. [Google Scholar]
- Novak, L.M.; Halversen, S.D.; Owirka, G.J.; Hiett, M. Effects of polarization and resolution on SAR ATR. IEEE Trans. Aerosp. Electron. Syst. 1997, 33, 102–116. [Google Scholar] [CrossRef]
- Ikeuchi, K.; Wheeler, M.D.; Yamazaki, T.; Shakunaga, T. Model-based SAR ATR system. Proc. SPIE 1996, 2757, 376–387. [Google Scholar]
- Ross, T.D.; Bradley, J.J.; Hudson, L.J.; O’Connor, M.P. SAR ATR: So what’s the problem? An MSTAR perspective. In Algorithms for Synthetic Aperture Radar Imagery VI, Proceedings of the AEROSENSE ’99, Orlando, FL, USA, 5–9 April 1999; SPIE: Bellingham, WA USA, 1999; Volume 3721, pp. 662–672. [Google Scholar] [CrossRef]
- Hummel, R. Model-based ATR using synthetic aperture radar. In Proceedings of the IEEE International Radar Conference, Alexandria, VA, USA, 12 May 2000; pp. 856–861. [Google Scholar]
- Diemunsch, J.R.; Wissinger, J. Moving and stationary target acquisition and recognition (MSTAR) model-based automatic target recognition: Search technology for a robust ATR. Proc. SPIE 1998, 3370, 481–492. [Google Scholar]
- Zhao, Q.; Principe, J.C. Support vector machines for SAR automatic target recognition. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 643–654. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Liu, Z.; Todorovic, S.; Li, J. Adaptive boosting for SAR automatic target recognition. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 112–125. [Google Scholar] [CrossRef]
- O’Sullivan, J.A.; DeVore, M.D.; Kedia, V.; Miller, M.I. SAR ATR performance using a conditionally Gaussian model. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 91–108. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, U.; Monga, V.; Raj, R.G. SAR automatic target recognition using discriminative graphical models. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 591–606. [Google Scholar] [CrossRef]
- Wagner, S. Combination of convolutional feature extraction and support vector machines for radar ATR. In Proceedings of the 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014; pp. 1–6. [Google Scholar]
- Morgan, D.A. Deep convolutional neural networks for ATR from SAR imagery. In Algorithms for Synthetic Aperture Radar Imagery XXII, Proceedings of the SPIE DEFENSE + SECURITY, Baltimore, MD, USA, 20–24 April 2015; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9475, p. 94750F. [Google Scholar]
- Chen, S.; Wang, H.; Xu, F.; Jin, Y.Q. Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 4806–4817. [Google Scholar] [CrossRef]
- Keydel, E.R.; Lee, S.W.; Moore, J.T. MSTAR extended operating conditions: A tutorial. Proc. SPIE 1996, 2757, 228–242. [Google Scholar]
- Shijie, J.; Ping, W.; Peiyi, J.; Siping, H. Research on data augmentation for image classification based on convolution neural networks. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 4165–4170. [Google Scholar]
- Alexander, R.; Henry R, E.; Zeshan, H.; Jared, D.; Christopher, R. Learning to Compose Domain-Specific Transformations for Data Augmentation. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 3236–3246. [Google Scholar]
- Cubuk, E.D.; Zoph, B.; Mané, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning Augmentation Strategies From Data. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 113–123. [Google Scholar]
- Auer, S. 3D Synthetic Aperture Radar Simulation for Interpreting Complex Urban Reflection Scenarios; Deutsche Geodätische Kommission; Verlag der Bayerischen Akademie der Wissenschaften: München, Germany, 2011. [Google Scholar]
- Hammer, H.; Schulz, K. Coherent simulation of SAR images. In Proceedings of the SPIE Image Signal Process. Remote Sens. XV, Berlin, Germany, 31 August–3 September 2009; Volume 7477, pp. 74771G-1–74771G-9. [Google Scholar]
- Balz, T.; Stilla, U. Hybrid GPU-Based Single- and Double-Bounce SAR Simulation. IEEE Trans. Geosci. Remote. Sens. 2009, 47, 3519–3529. [Google Scholar] [CrossRef]
- Liu, L.; Pan, Z.; Qiu, X.; Peng, L. SAR Target Classification with CycleGAN Transferred Simulated Samples. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4411–4414. [Google Scholar]
- Cui, Z.; Zhang, M.; Cao, Z.; Cao, C. Image Data Augmentation for SAR Sensor via Generative Adversarial Nets. IEEE Access 2019, 7, 42255–42268. [Google Scholar] [CrossRef]
- Cao, C.; Cao, Z.; Cui, Z. LDGAN: A Synthetic Aperture Radar Image Generation Method for Automatic Target Recognition. IEEE Trans. Geosci. Remote. Sens. 2020, 58, 3495–3508. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, G.; Leng, Y.; Leung, H. Synthetic Aperture Radar Image Generation With Deep Generative Models. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 912–916. [Google Scholar] [CrossRef]
- Malmgren-Hansen, D.; Kusk, A.; Dall, J.; Nielsen, A.A.; Engholm, R.; Skriver, H. Improving SAR Automatic Target Recognition Models With Transfer Learning From Simulated Data. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 1484–1488. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.; Mu, X.; He, X.; Wang, J.; Zhu, M. SAR Target Image Classification Based on Transfer Learning and Model Compression. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 412–416. [Google Scholar] [CrossRef]
- Rostami, M.; Kolouri, S.; Eaton, E.; Kim, K. Deep Transfer Learning for Few-Shot SAR Image Classification. Remote Sens. 2019, 11, 1374. [Google Scholar] [CrossRef] [Green Version]
- Rostami, M.; Kolouri, S.; Eaton, E.; Kim, K. SAR Image Classification Using Few-Shot Cross-Domain Transfer Learning. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 907–915. [Google Scholar]
- Huang, Z.; Pan, Z.; Lei, B. Transfer Learning with Deep Convolutional Neural Network for SAR Target Classification with Limited Labeled Data. Remote Sens. 2017, 9, 907. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Pan, Z.; Lei, B. What, Where, and How to Transfer in SAR Target Recognition Based on Deep CNNs. IEEE Trans. Geosci. Remote. Sens. 2020, 58, 2324–2336. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhang, G.; Leung, H. SAR Target Recognition Based on Cross-Domain and Cross-Task Transfer Learning. IEEE Access 2019, 7, 153391–153399. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, G.; Xu, Y.; Leung, H. SAR Target Recognition Based on Probabilistic Meta-Learning. IEEE Geosci. Remote. Sens. Lett. 2020, 1–5. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Long, M.; Wang, J. Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 1081–1090. [Google Scholar]
- Chen, X.; Wang, S.; Fu, B.; Long, M.; Wang, J. Catastrophic Forgetting Meets Negative Transfer: Batch Spectral Shrinkage for Safe Transfer Learning. In Advances in Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 1908–1918. [Google Scholar]
- Kusk, A.; Abulaitijiang, A.; Dall, J. Synthetic SAR Image Generation using Sensor, Terrain and Target Models. In Proceedings of the EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016; pp. 1–5. [Google Scholar]
- Qiao, S.; Liu, C.; Shen, W.; Yuille, A. Few-Shot Image Recognition by Predicting Parameters from Activations. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7229–7238. [Google Scholar]
- Dong, G.; Kuang, G. SAR Target Recognition Via Sparse Representation of Monogenic Signal on Grassmann Manifolds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1308–1319. [Google Scholar] [CrossRef]
- Dong, G.; Kuang, G.; Wang, N.; Zhao, L.; Lu, J. SAR Target Recognition via Joint Sparse Representation of Monogenic Signal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3316–3328. [Google Scholar] [CrossRef]
- Liu, M.; Chen, S.; Wu, J.; Lu, F.; Wang, J.; Yang, T. Configuration Recognition via Class-Dependent Structure Preserving Projections With Application to Targets in SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2134–2146. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, S.; Dong, G.; Zhao, L.; Kuang, G. Target recognition in SAR image based on robust locality discriminant projection. IET Radar Sonar Navig. 2018, 12, 1285–1293. [Google Scholar] [CrossRef]
- Min, R.; Lan, H.; Cao, Z.; Cui, Z. A Gradually Distilled CNN for SAR Target Recognition. IEEE Access 2019, 7, 42190–42200. [Google Scholar] [CrossRef]
- Cho, J.H.; Park, C.G. Multiple Feature Aggregation Using Convolutional Neural Networks for SAR Image-Based Automatic Target Recognition. IEEE Geosci. Remote. Sens. Lett. 2018, 15, 1882–1886. [Google Scholar] [CrossRef]
Target | T72 | BMP2 | BTR70 | BTR60 | 2S1 | BRDM2 | D7 | T62 | ZIL131 | ZSU234 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Target ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Number | Training | 232 | 233 | 233 | 256 | 299 | 298 | 299 | 299 | 299 | 299 |
17 | |||||||||||
Number | Test | 196 | 196 | 196 | 195 | 274 | 274 | 274 | 273 | 274 | 274 |
15 |
Target | Bulldozer | Bus | Car | Humvee | Motorbike | Tank | Track | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Target ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
Number | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 | 504 |
ID | Pre-Training Stage | Finetuning Stage | Test Accuracy (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
× | BSP | SSR | SSR | × | BSP | SSR | SSR | ||
1 | √ | 75.5 | |||||||
2 | √ | √ | 80.2 | ||||||
3 | √ | 76.1 | |||||||
4 | √ | 76.6 | |||||||
5 | √ | 77.8 | |||||||
6 | √ | √ | 82.2 | ||||||
7 | √ | √ | 83.4 | ||||||
8 | √ | √ | 84.5 | ||||||
9 | √ | √ | 80.7 | ||||||
10 | √ | √ | 81.6 | ||||||
11 | √ | √ | 83.2 | ||||||
12 | √ | √ | 88.8 |
Split | Depression Angles | ZSU234 | BRDM2 | 2S1 |
---|---|---|---|---|
Training | 17 | 299 | 298 | 299 |
Test | 30 | 288 | 287 | 288 |
Test | 45 | 303 | 303 | 303 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Zhang, T.; Diao, W.; Sun, X.; Zhao, L.; Fu, K.; Wu, Y. SAR Target Classification Based on Sample Spectral Regularization. Remote Sens. 2020, 12, 3628. https://doi.org/10.3390/rs12213628
Liang W, Zhang T, Diao W, Sun X, Zhao L, Fu K, Wu Y. SAR Target Classification Based on Sample Spectral Regularization. Remote Sensing. 2020; 12(21):3628. https://doi.org/10.3390/rs12213628
Chicago/Turabian StyleLiang, Wei, Tengfei Zhang, Wenhui Diao, Xian Sun, Liangjin Zhao, Kun Fu, and Yirong Wu. 2020. "SAR Target Classification Based on Sample Spectral Regularization" Remote Sensing 12, no. 21: 3628. https://doi.org/10.3390/rs12213628
APA StyleLiang, W., Zhang, T., Diao, W., Sun, X., Zhao, L., Fu, K., & Wu, Y. (2020). SAR Target Classification Based on Sample Spectral Regularization. Remote Sensing, 12(21), 3628. https://doi.org/10.3390/rs12213628