Unplanned Natural Experiments: The Case of Remote Sensing of Primary Production and Its Environmental Correlations in the Negev
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Environmental Factors
2.2.1. Precipitation (P)
2.2.2. Land Cover and Land Use (L)
2.2.3. Topography (T)
2.2.4. Interannual Variation (V)
2.3. Land Capability Classes
2.4. Net Primary Production
2.5. Regression of NPP on Environmental Variables
2.6. Summary of Processing Steps
3. Results
3.1. Environmental Variables
3.1.1. Precipitation (P)
3.1.2. Land Cover and Land Use (L)
3.1.3. Topography (T)
3.1.4. Inter-Annual Variation (V)
3.2. Land Capability Classification
3.3. Landsat Measurements of Annual NPP
3.4. NPP of Study Area
3.4.1. Geographical
3.4.2. Significance of Environmental Variables
3.4.3. Significance of Categories within Environmental Variables
4. Discussion
4.1. Methodology
4.2. NPP of Cover Types
4.3. Regional C Sequestration
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Balaghi, R.; Tychon, B.; Eerens, H.; Jlibene, M. Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 438–452. [Google Scholar] [CrossRef] [Green Version]
- Rishmawi, K.; Prince, S.D. Environmental and anthropogenic degradation of vegetation in the Sahel from 1982 to 2006. Remote Sens. 2016, 8, 948. [Google Scholar] [CrossRef] [Green Version]
- Prince, S.D. Challenges for remote sensing of the Sustainable Development Goal SDG 15.3.1 productivity indicator. Remote Sens. Environ. 2019, 234, 111428. [Google Scholar] [CrossRef]
- Smith, W.K.; Dannenberg, M.P.; Yan, D.; Herrmann, S.; Barnes, M.L.; Barron-Gafford, G.A.; Biederman, J.A.; Ferrenberg, S.; Fox, A.M.; Hudson, A.; et al. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sens. Environ. 2019, 233, 111401. [Google Scholar] [CrossRef]
- Trabucco, A.; Zomer, R.J. Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial. Available online: https://cgiarcsi.community/data/global-aridity-and-pet-database/ (accessed on 2 September 2020).
- Nicholson, S.E. Dryland Climatology; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Jacobs, A.F.G.; Heusinkveld, B.G.; Berkowicz, S.M. Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel. Int. J. Biometeorol. 2000, 43, 184–190. [Google Scholar] [CrossRef]
- Kidron, G.J.; Yair, A.; Danin, A. Dew variability within a small arid drainage basin in the Negev Highlands, Israel. Q. J. R. Meteorol. Soc. 2000, 126, 63–80. [Google Scholar] [CrossRef]
- Kidron, G.J. Angle and aspect dependent dew and fog precipitation in the Negev desert. J. Hydrol. 2005, 301, 66–74. [Google Scholar] [CrossRef]
- Zangvil, A. Six years of dew observations in the Negev Desert, Israel. J. Arid Environ. 1996, 32, 361–371. [Google Scholar] [CrossRef]
- Ward, D.; Saltz, D.; Olsvig-Whittaker, L. Distinguishing signal from noise: Long-term studies of vegetation in Makhtesh Ramon erosion cirque, Negev desert, Israel. Plant Ecol. 2000, 150, 27–36. [Google Scholar] [CrossRef]
- Ward, D.; Saltz, D.; Ngairorue, B.T. Spatio-temporal rainfall variation and stock management in arid Namibia. J. Range Manag. 2004, 57, 130–140. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Central Bureau of Statistics. National Geographic Information (NGI) Land-Use Layer; State of Israel: Jerusalem, Israel, 2007.
- Central Bureau of Statistics. National Geographic Information (NGI) Land-Use Layer; State of Israel: Jerusalem, Israel, 2002.
- Bunce, R.G.H.; Barr, C.J.; Gillespie, M.K.; Howard, D.C. The ITE land classification: Providing an environmental stratification of Great Britain. Environ. Monit. Assess. 1996, 39–46. [Google Scholar] [CrossRef]
- Zonneveld, I.S. The land unit-A fundamental concept in landscape ecology, and its applications. Landsc. Ecol. 1989, 3, 67–86. [Google Scholar] [CrossRef]
- Running, S.; Zhao, M. MYD17A3HGF MODIS/Aqua Net Primary Production Gap-Filled Yearly L4 Global 500 m SIN Grid V006. Available online: https://catalog.data.gov/dataset/modis-aqua-net-primary-production-gap-filled-yearly-l4-global-500m-sin-grid-v006 (accessed on 2 September 2020).
- Goldreich, Y. Temporal variations of rainfall in Israel. Clim. Res. 1995, 5, 167–169. [Google Scholar] [CrossRef] [Green Version]
- Ziv, B.; Saaroni, H.; Pargament, R.; Harpaz, T.; Alpert, P. Trends in rainfall regime over Israel, 1975–2010, and their relationship to large-scale variability. Reg. Environ. Change 2014, 14, 1751–1764. [Google Scholar] [CrossRef]
- Prince, S.D.; Safriel, U.; Karnieli, A. Impacts of Land Use on Negev Rangelands: An. Exploratory Study. Final Report to the Mid-East. Program., International Programs; United States Forest Service: College Park, MD, USA, 2013; p. 20742.
- Boer, M.M.; Puigdefábregas, J. Predicting potential vegetation index values as a reference for the assessment and monitoring of dryland condition. Int. J. Remote Sens. 2003, 24, 1135–1141. [Google Scholar] [CrossRef]
- Thornton, P.E. User’s Guide for Biome-BGC, Version 4.1.1. Available online: https://daac.ornl.gov/daacdata/model_archive/BIOME_BGC/biome_bgc_4.1.1/comp/bgc_users_guide_411.pdf (accessed on 27 August 2020).
- Gao, F.; Masek, J.G.; Wolfe, R.E.; Huang, C. Building a consistent medium resolution satellite data set using moderate resolution imaging spectroradiometer products as reference. J. Appl. Remote Sens. 2010, 4, 043526. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P.; Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Evenari, M.; Shanan, L.; Tadmor, N. The Negev The Challenge of a Desert; Harvard University Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Hill, A.; Dawson, T.; Shelef, O.; Rachmilevitch, S. The role of dew in Negev Desert plants. Oecologia 2015, 178, 317–327. [Google Scholar] [CrossRef]
- Sternberg, M.; Shoshany, M. Influence of slope aspect on Mediterranean woody formations: Comparison of a semiarid and an arid site in Israel. Ecol. Res. 2001, 16, 335–345. [Google Scholar] [CrossRef]
- Gelfand, I.; Grünzweig, J.M.; Yakir, D. Slowing of nitrogen cycling and increasing nitrogen use efficiency following afforestation of semi-arid shrubland. Oecologia 2012, 168, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Helman, D.; Mussery, A.; Lensky, I.M.; Leu, S. Detecting changes in biomass productivity in a different land management regimes in drylands using satellite-derived vegetation index. Soil Use Manag. 2014, 30, 32–39. [Google Scholar] [CrossRef]
- Del Grosso, S.; Parton, W.; Stohlgren, T.; Zheng, D.; Bachelet, D.; Prince, S.; Hibbard, K.; Olson, R. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 2008, 89, 2117–2126. [Google Scholar] [CrossRef]
- Zhang, G.G.; Kang, Y.M.; Han, G.D.; Mei, H.; Sakurai, K. Grassland degradation reduces the carbon sequestration capacity of the vegetation and enhances the soil carbon and nitrogen loss. Acta Agric. Scand. Sect. B Soil Plant Sci. 2011, 61, 356–364. [Google Scholar] [CrossRef]
Category | L | P | T | V |
---|---|---|---|---|
1 | 24% | 3% | 12% | 43% |
2 | 23% | 4% | 29% | 39% |
3 | 12% | 6% | 17% | 15% |
4 | 15% | 6% | 28% | 4% |
5 | 0% | 10% | 14% | |
6 | 0% | 10% | ||
7 | 0% | 15% | ||
8 | 6% | 18% | ||
9 | 4% | 19% | ||
10 | 17% | 9% |
(a) | Independent Variable(s) | F | F Rank | Probability | r2 | r2 Rank | |
Pixel level | Observed (NPPobs) | NPPobs = f(V) | 2.52 × 107 | 1 | *** | 0.536 | 3 |
NPPobs = f(P) | 1.44 × 107 | 2 | *** | 0.180 | 5 | ||
NPPobs = f(L) | 7.41 × 106 | 3 | *** | 0.404 | 4 | ||
NPPobs = f(Y),f(P),f(T) | 3.96 × 106 | 4 | *** | 0.581 | 2 | ||
NPPobs = f(Y),f(P),f(T),f(V) | 3.86 × 106 | 5 | *** | 0.585 | 1 | ||
NPPobs = f(T) | 3.91 × 105 | 6 | *** | 0.023 | 6 | ||
NPPobs = f(Y) | 7.37 × 105 | 7 | *** | 0.011 | 7 | ||
Average | 7.99 × 106 | 0.331 | |||||
Potential (NPPpot) | NPPpot = f(V) | 9.83 × 107 | 1 | *** | 0.818 | 3 | |
NPPpot = f(P) | 2.03 × 107 | 2 | *** | 0.237 | 5 | ||
NPPpot = f(L) | 1.84 × 107 | 3 | *** | 0.866 | 2 | ||
NPPpot = f(Y),f(P),f(T) | 1.83 × 107 | 4 | *** | 0.870 | 1 | ||
NPPpot = f(Y),f(P),f(T),f(V) | 1.72 × 107 | 5 | *** | 0.612 | 4 | ||
NPPpot = f(T) | 6.72 × 105 | 6 | *** | 0.039 | 6 | ||
NPPpot = f(Y) | 7.85 × 104 | 7 | *** | 0.012 | 7 | ||
Average | 2.48 × 107 | 0.493 | |||||
(b) | Independent Variable(s) | F | F Rank | Probability | r2 | r2 Rank | |
Land Capability level (LCC) | Observed (NPPobs) | NPPobs = f(V) | 2.29 × 103 | 1 | *** | 0.645 | 3 |
NPPobs = f(P) | 1.05 × 103 | 2 | *** | 0.218 | 5 | ||
NPPobs = f(L) | 6.13 × 102 | 3 | *** | 0.796 | 1 | ||
NPPobs = f(Y),f(P),f(T) | 6.00 × 102 | 4 | *** | 0.785 | 2 | ||
NPPobs = f(Y),f(P),f(T),f(V) | 2.87 × 102 | 5 | *** | 0.313 | 4 | ||
NPPobs = f(T) | 1.60 × 102 | 6 | *** | 0.037 | 6 | ||
NPPobs = f(Y) | 3.00 × 100 | 7 | *** | 0.002 | 7 | ||
Average | 6.94 × 102 | 0.399 | |||||
Potential (NPPpot) | NPPpot = f(V) | 3.31 × 103 | 1 | *** | 0.725 | 3 | |
NPPpot = f(P) | 9.53 × 102 | 2 | *** | 0.202 | 5 | ||
NPPpot = f(Y),f(P),f(T),f(V) | 7.92 × 102 | 3 | *** | 0.834 | 1 | ||
NPPpot = f(Y),f(P),f(T) | 7.86 × 102 | 4 | *** | 0.827 | 2 | ||
NPPpot = f(L) | 3.22 × 102 | 5 | *** | 0.338 | 4 | ||
NPPpot = f(Y) | 1.10 × 101 | 6 | *** | 0.027 | 6 | ||
NPPpot = f(T) | 6.00 × 100 | 7 | *** | 0.005 | 7 | ||
Average | 8.84 × 102 | 0.423 |
Variables and Their Categories in Pixel Level Regressions | Regression Coefficients and Significance | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | All Except Precipitation | Variation | Topography | Land Cover | Precipitation | Year | ||||||||
Coef | P | Coef | P | Coef | P | Coef | P | Coef | P | Coef | P | Coef | P | |
Intercept | 219 | *** | 422 | *** | 382 | *** | 1648 | *** | 623 | 3439 | −384 | −1121 | 1049 | 1962 |
Variation 2 | 543 | *** | 623 | *** | 776 | *** | ||||||||
Variation 3 | 2806 | *** | 2945 | *** | 3329 | *** | ||||||||
Variation 4 | 4158 | *** | 4316 | *** | 4686 | *** | ||||||||
Topography 2 | −39 | *** | −40 | *** | −543 | *** | ||||||||
Topography 3 | 63 | *** | 39 | *** | −1027 | *** | ||||||||
Topography 4 | −39 | *** | −34 | *** | −431 | *** | ||||||||
Topography 5 | 78 | *** | 54 | *** | −1017 | *** | ||||||||
Land Cover 2 | 386 | *** | 391 | *** | 2753 | *** | ||||||||
Land Cover 3 | −130 | *** | −75 | *** | 210 | *** | ||||||||
Land Cover 4 | 8 | *** | 82 | *** | 383 | *** | ||||||||
Land Cover 8 | 1657 | *** | 1723 | *** | 2587 | *** | ||||||||
Land Cover 9 | 433 | *** | 485 | *** | 769 | *** | ||||||||
Land Cover 10 | −1 | *** | −66 | *** | −52 | *** | ||||||||
Precipitation | 40 | *** | 233 | *** | ||||||||||
Year 2002 | −10 | *** | −10 | *** | −10 | *** | ||||||||
Year 2003 | 83 | *** | 83 | *** | 83 | *** | ||||||||
Year 2004 | −37 | *** | −37 | *** | −37 | *** | ||||||||
Year 2005 | 128 | *** | 128 | *** | 128 | *** | ||||||||
Year 2006 | −196 | *** | −196 | *** | −196 | *** | ||||||||
Year 2007 | 60 | *** | 60 | *** | 60 | *** | ||||||||
Year 2008 | −132 | *** | −132 | *** | −132 | *** | ||||||||
Year 2009 | −221 | *** | −221 | *** | −221 | *** | ||||||||
Year 2010 | −209 | *** | −209 | *** | −209 | *** | ||||||||
Year 2012 | 236 | *** | 236 | *** | 236 | *** |
Variables and Their Categories in LCC Level Regressions | Regression Coefficients and Significance | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | All Except Precipitation | Variation | Topography | Land Cover | Precipitation | Year | ||||||||
Coef | P | Coef | P | Coef | P | Coef | P | Coef | P | Coef | P | Coef | P | |
Intercept | 196 | *** | 503 | *** | 967 | *** | 1433 | *** | 902 | *** | −388 | *** | 1494 | *** |
Variation 2 | 614 | *** | 709 | *** | 967 | *** | ||||||||
Variation 3 | 2386 | *** | 2540 | *** | 2777 | *** | ||||||||
Variation 4 | 4240 | *** | 4378 | *** | 4618 | *** | ||||||||
Topography 2 | −42 | NS | −55 | NS | 10 | NS | ||||||||
Topography 3 | 22 | NS | 4 | NS | −250 | ** | ||||||||
Topography 4 | −46 | NS | −54 | NS | 46 | NS | ||||||||
Topography 5 | 69 | NS | 58 | NS | −174 | * | ||||||||
Land Cover 2 | 273 | *** | 302 | *** | 1598 | *** | ||||||||
Land Cover 3 | −48 | NS | −15 | NS | −264 | *** | ||||||||
Land Cover 4 | −22 | NS | 31 | NS | 151 | * | ||||||||
Land Cover 8 | 1577 | *** | 1656 | *** | 2182 | *** | ||||||||
Land Cover 9 | 314 | *** | 390 | *** | 207 | * | ||||||||
Land Cover 10 | 17 | NS | 2 | NS | −123 | * | ||||||||
Precipitation | 57 | *** | 263 | *** | ||||||||||
Year 2002 | −56 | NS | −56 | NS | −56 | NS | ||||||||
Year 2003 | 90 | * | 90 | * | 90 | NS | ||||||||
Year 2004 | −94 | * | −94 | * | −94 | NS | ||||||||
Year 2005 | 167 | *** | 167 | *** | 167 | NS | ||||||||
Year 2006 | −445 | *** | −445 | *** | −445 | *** | ||||||||
Year 2007 | −69 | NS | −69 | NS | −69 | NS | ||||||||
Year 2008 | −273 | *** | −273 | *** | −273 | ** | ||||||||
Year 2009 | −441 | *** | −441 | *** | −441 | *** | ||||||||
Year 2010 | −403 | *** | −403 | *** | −403 | *** | ||||||||
Year 2012 | 304 | *** | 304 | *** | 304 | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prince, S.D.; Jackson, H. Unplanned Natural Experiments: The Case of Remote Sensing of Primary Production and Its Environmental Correlations in the Negev. Remote Sens. 2020, 12, 3581. https://doi.org/10.3390/rs12213581
Prince SD, Jackson H. Unplanned Natural Experiments: The Case of Remote Sensing of Primary Production and Its Environmental Correlations in the Negev. Remote Sensing. 2020; 12(21):3581. https://doi.org/10.3390/rs12213581
Chicago/Turabian StylePrince, Stephen D., and Hasan Jackson. 2020. "Unplanned Natural Experiments: The Case of Remote Sensing of Primary Production and Its Environmental Correlations in the Negev" Remote Sensing 12, no. 21: 3581. https://doi.org/10.3390/rs12213581
APA StylePrince, S. D., & Jackson, H. (2020). Unplanned Natural Experiments: The Case of Remote Sensing of Primary Production and Its Environmental Correlations in the Negev. Remote Sensing, 12(21), 3581. https://doi.org/10.3390/rs12213581