Geomatics and EO Data to Support Wildlife Diseases Assessment at Landscape Level: A Pilot Experience to Map Infectious Keratoconjunctivitis in Chamois and Phenological Trends in Aosta Valley (NW Italy)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Veterinary Ground Samples
2.3. EO and Geographical Digital Data
2.4. Land Cover Data
2.5. Methodology
- Analysis 1: testing PM and ET trends from NTS and ETS
- Analysis 2: IKC prevalence vs. PMs/ET
3. Results
- Analysis 1: testing PM and ET trends from NTS and ETS
- Analysis 2: IKC prevalence vs. PMs/ET
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Acronyms | Description |
ASL | Local Sanitary Enterprise (translated) |
CeRMAS | National Reference Center for Wildlife Diseases (Italy) |
DISAFA | Department of Agricultural, Forest and Food Sciences |
DOY | Day of Year |
DTM | Digital Terrain Model |
EO Data | Earth Observation Data |
EOS | End of Season |
ET | Evapotranspiration |
ETS | Evapotranspiration Time Series |
FAV | Altimetry band-class |
GEE | Google Earth Engine |
IKC | Infectious keratoconjunctivitis |
IZS PLV | Istituto Zooprofilattico Sperimentale Piemonte Liguria e Valle d’Aosta |
JPL | Jet Propulsion Laboratory |
LOS | Length of Season |
LST | Land Surface Temperature |
MAXVI | Maximum of NDVI |
NASA | National Aeronautics and Space Administration |
NDVI | Normalized Difference Vegetation Index |
NTS | NDVI Time Series |
PCR | Polymerase Chain Reaction |
PMs | Phenological metrics |
Pr | Prevalence (of a disease) |
RFD | Regional Forestry Districts |
SOS | Start of Season |
SRTM | Shuttle Radar Topography Mission |
Unito | University of Turin |
VDA | Aosta Valley |
References
- Hay, S.; Snow, R.; Rogers, D. From Predicting Mosquito Habitat to Malaria Seasons Using Remotely Sensed Data: Practice, Problems and Perspectives. Parasitol. Today 1998, 14, 306–313. [Google Scholar] [CrossRef]
- Hendrickx, G.; Biesemans, J.; De Deken, R. The use of GIS in veterinary parasitology. GIS Spat. Anal. Vet. Sci. 2009, 145–176. [Google Scholar] [CrossRef]
- Kazmi, S.J.H.; Usery, E.L. Application of remote sensing and gis for the monitoring of diseases: A unique research agenda for geographers. Remote Sens. Rev. 2001, 20, 45–70. [Google Scholar] [CrossRef]
- Durr, P.A.; Gatrell, A.C. (Eds.) GIS and spatial analysis in veterinary science. Cabi 2004, 1–33. [Google Scholar]
- Housman, I.W.; Chastain, R.A.; Finco, M.V. An Evaluation of Forest Health Insect and Disease Survey Data and Satellite-Based Remote Sensing Forest Change Detection Methods: Case Studies in the United States. Remote Sens. 2018, 10, 1184. [Google Scholar] [CrossRef]
- Correia, V.R.D.M.; Carvalho, M.S.; Sabroza, P.C.; Vasconcelos, C.H. Remote sensing as a tool to survey endemic diseases in Brazil. Cad. Saúde Pública 2004, 20, 891–904. [Google Scholar] [CrossRef][Green Version]
- Kiang, R. Malaria Modeling and Surveillance. Benchmark Rep. 2009, 1–5. [Google Scholar]
- Anyamba, A.; Chretien, J.-P.; Britch, S.C.; Soebiyanto, R.P.; Small, J.L.; Jepsen, R.; Forshey, B.M.; Sanchez, J.L.; Smith, O.; Odette, M.; et al. Global Disease Outbreaks Associated with the 2015–2016 El Niño Event. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Kalluri, S.; Gilruth, P.; Rogers, D.; Szczur, M. Surveillance of Arthropod Vector-Borne Infectious Diseases Using Remote Sensing Techniques: A Review. PLoS Pathog. 2007, 3, e116. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Estrada-Sánchez, A.; De La Fuente, J. A global set of Fourier-transformed remotely sensed covariates for the description of abiotic niche in epidemiological studies of tick vector species. Parasites Vectors 2014, 7, 302. [Google Scholar] [CrossRef]
- Wang, J.; Jia, P.; Cuadros, D.F.; Xu, M.; Wang, X.; Guo, W.; Portnov, B.A.; Bao, Y.; Yu, S.; Song, G.; et al. A Remote Sensing Data Based Artificial Neural Network Approach for Predicting Climate-Sensitive Infectious Disease Outbreaks: A Case Study of Human Brucellosis. Remote Sens. 2017, 9, 1018. [Google Scholar] [CrossRef]
- Hartemink, N.; Vanwambeke, S.O.; Purse, B.V.; Gilbert, M.; Van Dyck, H. Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks. Biol. Rev. 2014, 90, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Olivero, J.; Fa, J.E.; Real, R.; Márquez, A.L.; Farfán, M.A.; Vargas, J.M.; Gaveau, D.; Salim, M.A.; Park, D.; Suter, J.; et al. Recent loss of closed forests is associated with Ebola virus disease outbreaks. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.A. Plant Pathosystems; Springer: Berlin/Heidelberg, Germany, 1976; pp. 15–31. [Google Scholar]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef]
- Rinaldi, L.; Musella, V.; Biggeri, A.; Cringoli, G. New insights into the application of geographical information systems and remote sensing in veterinary parasitology. Geospat. Health 2006, 1, 33. [Google Scholar] [CrossRef]
- Jebara, K.B. The role of Geographic Information System (GIS) in the control and prevention of animal diseases. Conf. OIE 2007, 1, 175–183. [Google Scholar]
- Barile, M.F.; Del Giudice, R.A.; Tully, J.G. Isolation and Characterization of Mycoplasma conjunctivae sp. n. from Sheep and Goats with Keratoconjunctivitis. Infect. Immun. 1972, 5, 70–76. [Google Scholar] [CrossRef]
- Giacometti, M.; Janovsky, M.; Jenny, H.; Nicolet, J.; Belloy, L.; Goldschmidt-Clermont, E.; Frey, J. Mycoplasma conjunctivae infection is not maintained in alpine chamois in eastern switzerland. J. Wildl. Dis. 2002, 38, 297–304. [Google Scholar] [CrossRef]
- Giangaspero, M.; Orusa, R.; Nicholas, R.A.; Harasawa, R.; Ayling, R.D.; Churchward, C.; Whatmore, A.M.; Bradley, D.; Robetto, S.; Sacchi, L.; et al. Characterization of mycoplasma isolated from an ibex (capra ibex) suffering from keratoconjunctivitis in northern italy. J. Wildl. Dis. 2010, 46, 1070–1078. [Google Scholar] [CrossRef]
- Degiorgis, M.P.; Frey, J.; Nicolet, J.; Abdo, E.M.; Fatzer, R.; Schlatter, Y.; Reist, S.; Janovsky, M.; Giacometti, M. An outbreak of infectious keratoconjunctivitis in Alpine chamois (Rupicapra r. rupicapra) in Simmental-Gruyères. Schweiz Arch Tierheilkd 2000, 142, 520–527. [Google Scholar]
- Grattarola, C.; Frem, E.M.; Orusa, R.; Nicolet, M.G. Ker’atoconjunctivitis in. Vet. Rec. 1999, 145, 588–589. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, M.; Janovsky, M.; Belloy, L.; Frey, J. Infectious keratoconjunctivitis of ibex, chamois and other Caprinae. Rev. Sci. Tech. Off. Int. Epizoot. 2002, 21, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Mavrot, F.; Vilei, E.M.; Marreros, N.; Signer, C.; Frey, J.; Ryser-Degiorgis, M.-P. Occurrence, quantification, and genotyping of Mycoplasma conjunctivae in wild caprinae with and without infectious keratoconjunctivitis. J. Wildl. Dis. 2012, 48, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Hars, J.; Gauthier, D. Suivi de l’évolution de la kérato-conjonctivite sur le peuplement d’ongulés sauvages du Parc National de la Vanoise en 1983. Trav. Sci. Parc. Nat. Vanoise 1984, 14, 157–210. [Google Scholar]
- Tschopp, R.; Frey, J.; Zimmermann, L.; Giacometti, M. Outbreaks of infectious keratoconjunctivitis in alpine chamois and ibex in Switzerland between 2001 and 2003. Vet. Rec. 2005, 157, 13–18. [Google Scholar] [CrossRef]
- Nesti, I.; Posillico, M.; Lovari, S. Ranging behaviour and habitat selection of Alpine chamois. Ethol. Ecol. Evol. 2010, 22, 215–231. [Google Scholar] [CrossRef]
- Arnal, M.; Herrero, J.; De La Fe, C.; Revilla, M.; Prada, C.; Martínez-Durán, D.; Gómez-Martin, Á.; Fernández-Arberas, O.; Amores, J.; Contreras, A.; et al. Dynamics of an Infectious Keratoconjunctivitis Outbreak by Mycoplasma conjunctivae on Pyrenean Chamois Rupicapra p. pyrenaica. PLoS ONE 2013, 8, e61887. [Google Scholar] [CrossRef]
- Giangaspero, M.; Domenis, L.; Robetto, S.; Orusa, R. Histological and virological findings in severe meningoencephalitis associated with border disease virus in Alpine chamois (Rupicapra rupicapra rupicapra) in Aosta Valley, Italy. Open Vet. J. 2019, 9, 81–87. [Google Scholar] [CrossRef]
- Abbona, F.; Venturino, E. An eco-epidemic model for infectious keratoconjunctivitis caused by Mycoplasma conjunctivae in domestic and wild herbivores, with possible vaccination strategies. Math. Methods Appl. Sci. 2016, 41, 2269–2280. [Google Scholar] [CrossRef]
- Ambroselli, S. Istat working papers. ISTAT 2019, 24, 47–49. [Google Scholar]
- Rubel, F.; Brugger, K.; Haslinger, K.; Auer, I. The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorol. Z. 2017, 26, 115–125. [Google Scholar] [CrossRef]
- Sergio, F.; Pedrini, P. Biodiversity gradients in the Alps: The overriding importance of elevation. Biodivers. Conserv. 2007, 16, 3243–3254. [Google Scholar] [CrossRef]
- Fischer, M.; Rudmann-Maurer, K.; Weyand, A.; Stöcklin, J. Agricultural Land Use and Biodiversity in the Alps. Mt. Res. Dev. 2008, 28, 148–155. [Google Scholar] [CrossRef]
- Zimmermann, P.; Tasser, E.; Leitinger, G.; Tappeiner, U. Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agric. Ecosyst. Environ. 2010, 139, 13–22. [Google Scholar] [CrossRef]
- Balestrieri, A.; Remonti, L.; Ferrari, N.; Ferrari, A.; Valvo, T.L.; Robetto, S.; Orusa, R. Sarcoptic mange in wild carnivores and its co-occurrence with parasitic helminths in the Western Italian Alps. Eur. J. Wildl. Res. 2006, 52, 196–201. [Google Scholar] [CrossRef]
- Renna, M.; Ravetto Enri, S.; Probo, M.; Lussiana, C.; Malfatto, V.; Battaglini, L.M.; Lonati, M.; Lombardi, G. Alpine grasslands: Relations among botanical and chemical variables affecting animal product quality. In Proceedings of the 19th Meeting of the FAO CIHEAM Mountain Pastures Network–Mountain Pastures and Livestock Farming Facing Uncertainty: Environmental, Technical and Socio-Economic Challenges, Zaragoza, Spain, 14–16 June 2016. [Google Scholar]
- Cavallero, A.; Aceto, P.; Gorlier, A.; Lombardi, G.; Lonati, M.; Martinasso, B.; Tagliatori, C. I Tipi Pastorali Delle Alpi Piemontesi; Alberto Perdisia Editore Divisione Università: Bologna, Italy, 2007; pp. 1–467. [Google Scholar]
- Probo, M.; Lonati, M.; Pittarello, M.; Bailey, D.W.; Garbarino, M.; Gorlier, A.; Lombardi, G. Implementation of a rotational grazing system with large paddocks changes the distribution of grazing cattle in the south-western Italian Alps. Rangel. J. 2014, 36, 445–458. [Google Scholar] [CrossRef]
- Zimmermann, L.; Jambresic, S.; Giacometti, M.; Frey, J. Specificity of Mycoplasma conjunctivae strains for alpine chamois Rupicapra r. rupicapra. Wildl. Biol. 2008, 14, 118–124. [Google Scholar] [CrossRef]
- Vilei, E.M.; Bonvin-Klotz, L.; Zimmermann, L.; Ryser-Degiorgis, M.-P.; Giacometti, M.; Frey, J. Validation and diagnostic efficacy of a TaqMan real-time PCR for the detection of Mycoplasma conjunctivae in the eyes of infected Caprinae. J. Microbiol. Methods 2007, 70, 384–386. [Google Scholar] [CrossRef]
- Belloy, L.; Janovsky, M.; Vilei, E.M.; Pilo, P.; Giacometti, M.; Frey, J. Molecular Epidemiology of Mycoplasma conjunctivae in Caprinae: Transmission across Species in Natural Outbreaks. Appl. Environ. Microbiol. 2003, 69, 1913–1919. [Google Scholar] [CrossRef]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MOD13Q1.006 (accessed on 28 April 2020).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Schafer, R.W. What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A. Savitzky-Golay Smoothing Filters. Comput. Phys. 1990, 4, 669. [Google Scholar] [CrossRef]
- O’Connor, A.; Lausten, K.; Okubo, B.; Harris, T. ENVI Services Engine: Earth and planetary image processing for the cloud. Am. Geophys. Union Poster IN21C-1490 2012, 45, 34–49. [Google Scholar]
- Running, S.; Mu, Q.; Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006 NASA EOSDIS Land Processes DAAC. EGU 2017. [Google Scholar] [CrossRef]
- Cai, J.; Liu, Y.; Lei, T.; Pereira, L.S. Estimating reference evapotranspiration with the FAO Penman–Monteith equation using daily weather forecast messages. Agric. For. Meteorol. 2007, 145, 22–35. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Orusa, T.; Mondino, E.B. Landsat 8 thermal data to support urban management and planning in the climate change era: A case study in Torino area, NW Italy. Remote Sens. Technol. Appl. Urban Environ. IV 2019, 11157. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Werner, M. Shuttle Radar Topography Mission (SRTM) Mission Overview. Frequenz 2001, 55, 75–79. [Google Scholar] [CrossRef]
- Bossard, M.; Feranec, J.; Otahel, J. CORINE land cover technical guide: Addendum 2000. Researchgate 2000, 40, 1–105. [Google Scholar]
- Büttner, G.; Feranec, J.; Jaffrain, G.; Mari, L.; Maucha, G.; Soukup, T. The CORINE land cover 2000 project. EARSeL eProc. 2004, 3, 331–346. [Google Scholar]
- Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_CORINE_V20_100m (accessed on 1 January 2019).
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- QGIS Delopment Team. QGIS geographic information system. Open Source Geospat. Found. Project 2016, 1, 59. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Sarvia, F.; De Petris, S.; Mondino, E.B. Multi-scale remote sensing to support insurance policies in agriculture: From mid-term to instantaneous deductions. GIScience Remote Sens. 2020, 57, 770–784. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Tan, B.; Morisette, J.T.; Wolfe, R.E.; Gao, F.; Ederer, G.A.; Nightingale, J.; Pedelty, J.A. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 361–371. [Google Scholar] [CrossRef]
- Eklundh, L.; Jönsson, P. A new spatio-temporal smoother for extracting vegetation seasonality with TIMESAT. In Proceedings of the 35th International Symposium on Remote Sensing of Environment, Beijing, China, 22–26 April 2013. [Google Scholar]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Su, Y.; Jiang, B.; Wang, X. Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data. Remote Sens. 2014, 6, 11518–11532. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Lessio, A.; Gomarasca, M.A. A fast operative method for NDVI uncertainty estimation and its role in vegetation analysis. Eur. J. Remote Sens. 2016, 49, 137–156. [Google Scholar] [CrossRef]
- Cremonese, E.; Filippa, G.; Galvagno, M.; Siniscalco, C.; Oddi, L.; Di Cella, U.M.; Migliavacca, M. Heat wave hinders green wave: The impact of climate extreme on the phenology of a mountain grassland. Agric. For. Meteorol. 2017, 247, 320–330. [Google Scholar] [CrossRef]
- Migliavacca, M.; Galvagno, M.; Cremonese, E.; Rossini, M.; Meroni, M.; Sonnentag, O.; Cogliati, S.; Manca, G.; Diotri, F.; Busetto, L.; et al. Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agric. For. Meteorol. 2011, 151, 1325–1337. [Google Scholar] [CrossRef]
- Julitta, T.; Cremonese, E.; Migliavacca, M.; Colombo, R.; Galvagno, M.; Siniscalco, C.; Rossini, M.; Fava, F.; Cogliati, S.; Di Cella, U.M.; et al. Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agric. For. Meteorol. 2014, 198–199, 116–125. [Google Scholar] [CrossRef]
- Migliavacca, M.; Reichstein, M.; Richardson, A.D.; Mahecha, M.D.; Cremonese, E.; Delpierre, N.; Galvagno, M.; Law, B.E.; Wohlfahrt, G.; Black, T.A.; et al. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests. Glob. Chang. Biol. 2014, 21, 363–376. [Google Scholar] [CrossRef]
- Colombo, R.; Busetto, L.; Fava, F.; Di Mauro, B.; Migliavacca, M.; Cremonese, E.; Galvagno, M.; Rossini, M.; Meroni, M.; Cogliati, S.; et al. Phenological monitoring of grassland and larch in the Alps from Terra and Aqua MODIS images. Ital. J. Remote Sens. 2011, 83–96. [Google Scholar] [CrossRef]
- Colombo, R.; Busetto, L.; Migliavacca, M.; Cremonese, E.; Meroni, M.; Galvagno, M.; Rossini, M.; Siniscalco, C.; Di Cella, U.M. On the spatial and temporal variability of Larch phenological cycle in mountainous areas. Ital. J. Remote Sens. 2009, 41, 79–96. [Google Scholar] [CrossRef]
- Filippa, G.; Cremonese, E.; Galvagno, M.; Migliavacca, M.; Di Cella, U.M.; Petey, M.; Siniscalco, C. Five years of phenological monitoring in a mountain grassland: Inter-annual patterns and evaluation of the sampling protocol. Int. J. Biometeorol. 2015, 59, 1927–1937. [Google Scholar] [CrossRef]
- Diolaiuti, G.A.; Bocchiola, D.; Vagliasindi, M.; D’Agata, C.; Smiraglia, C. The 1975–2005 glacier changes in Aosta Valley (Italy) and the relations with climate evolution. Prog. Phys. Geogr. Earth Environ. 2012, 36, 764–785. [Google Scholar] [CrossRef]
- Haeberli, W.; Hoelzle, M.; Paul, F.; Zemp, M. Integrated monitoring of mountain glaciers as key indicators of global climate change: The European Alps. Ann. Glaciol. 2007, 46, 150–160. [Google Scholar] [CrossRef]
- Calanca, P.; Roesch, A.; Jasper, K.; Wild, M. Global Warming and the Summertime Evapotranspiration Regime of the Alpine Region. Clim. Chang. 2006, 79, 65–78. [Google Scholar] [CrossRef]
- Goulden, M.L.; Bales, R.C. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion. Proc. Natl. Acad. Sci. USA 2014, 111, 14071–14075. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.I.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14. [Google Scholar] [CrossRef]
- O’Neill, D.W.; Fanning, A.L.; Lamb, W.F.; Steinberger, J.K. A good life for all within planetary boundaries. Nat. Sustain. 2018, 1, 88–95. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nat. Cell Biol. 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
Altitude Ranges (m a.s.l.) | Area (km2) | Area (%) |
---|---|---|
343–500 | 6.6 | 0.2 |
500–1000 | 236.4 | 7.2 |
1000–1500 | 372.7 | 11.4 |
1500–2000 | 669.9 | 20.5 |
2000–2500 | 994.6 | 30.5 |
2500–3000 | 768.3 | 23.6 |
3000–3500 | 176.6 | 5.4 |
3500–4810 | 35.5 | 1.1 |
CLC2018 Class Code | Description | Area (km2) | Area (%) | CLC2018 Class Code | Description | Area (km2) | Area (%) |
---|---|---|---|---|---|---|---|
111 | Continuous urban fabric | 1.56 | 0.05 | 311 | Broad-leaved forest | 58.12 | 1.78 |
112 | Discontinuous urban fabric | 35.27 | 1.08 | 312 | Coniferous forest | 577.98 | 17.71 |
121 | Industrial or commercial units | 8.72 | 0.27 | 313 | Mixed forest | 104.41 | 3.20 |
122 | Road and rail networks and associated land | 0.25 | 0.01 | 321 | Natural grasslands | 86.04 | 2.64 |
124 | Airports | 0.42 | 0.01 | 322 | Moors and heathland | 106.29 | 3.26 |
131 | Mineral extraction sites | 0.66 | 0.02 | 324 | Transitional woodland-shrub | 424.84 | 13.02 |
132 | Dump sites | 0.27 | 0.01 | 332 | Bare rocks | 652.61 | 20.00 |
212 | Permanently irrigated land | 0.27 | 0.01 | 333 | Sparsely vegetated areas | 804.78 | 24.67 |
221 | Vineyards | 3.57 | 0.11 | 335 | Glaciers and permanent snow | 129.56 | 3.97 |
222 | Fruit trees and berry plantations | 2.17 | 0.07 | 411 | Inland marshes | 0.54 | 0.02 |
231 | Pastures | 94.06 | 2.88 | 511 | River | 0.17 | 0.01 |
242 | Complex cultivation patterns | 18.61 | 0.57 | 512 | Lakes | 3.24 | 0.10 |
243 | Land principally occupied by agriculture, with significant areas of natural vegetation | 148.42 | 4.55 |
Class Code | Altitude Range (m) |
---|---|
FAV1 | <1000 |
FAV2 | 1000–2000 |
FAV3 | 2000–3000 |
Year 1 | Year Analyzed 2 | IKC Disease Prevalence (%) | Number of Samples Analyzed | Positive to IKC |
---|---|---|---|---|
2009–2010 | 2010 | 2.0 | 302 | 6 |
2010–2011 | 2011 | 4.7 | 191 | 9 |
2011–2012 | 2012 | 2.0 | 150 | 3 |
2012–2013 | 2013 | 5.1 | 158 | 8 |
2013–2014 | 2014 | 1.1 | 190 | 2 |
2014–2015 | 2015 | 2.6 | 152 | 4 |
2015–2016 | 2016 | 16.4 | 159 | 26 |
2016–2017 | 2017 | 6.1 | 114 | 7 |
2017–2018 | 2018 | 7.4 | 108 | 8 |
2018–2019 | 2019 | 0.0 | 100 | 0 |
Yearly | SOS (DOY) | EOS (DOY) | LOS (n. of Days) | MAXVI | ET (kg·m−2·8 d−1) |
FAV1 | −2.04 | 2.64 | 4.70 | 0.005 | 0.06 |
FAV2 | −2.09 | 2.59 | 4.81 | 0.004 | 0.04 |
FAV3 | −3.11 | 2.59 | 6.40 | 0.003 | 0.06 |
Cumulated 2000–2019 | SOS (DOY) | EOS (DOY) | LOS (n. of Days) | MAXVI | ET (Kg m−2) |
FAV1 | −38.76 | 50.16 | 89.34 | 0.089 | 1.14 |
FAV2 | −39.77 | 49.29 | 91.41 | 0.072 | 0.78 |
FAV3 | −59.17 | 49.26 | 121.69 | 0.057 | 1.11 |
Classes | SOS | EOS | LOS | MAXVI | Yearly Cumulative ET | |||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | p-Value | R2 | p-Value | R2 | p-Value | R2 | p-Value | R2 | p-Value | |
FAV1 | 0.06 | 0.83 | 0.85 | 0.003 * | 0.26 | 0.41 | 0.06 | 0.90 | 0.89 | 0.004 * |
FAV2 | 0.51 | 0.11 | 0.13 | 0.65 | 0.76 | 0.01 * | 0.16 | 0.68 | 0.80 | 0.005 * |
FAV3 | 0.46 | 0.16 | 0.28 | 0.35 | 0.71 | 0.02 * | 0.31 | 0.32 | 0.65 | 0.003 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orusa, T.; Orusa, R.; Viani, A.; Carella, E.; Borgogno Mondino, E. Geomatics and EO Data to Support Wildlife Diseases Assessment at Landscape Level: A Pilot Experience to Map Infectious Keratoconjunctivitis in Chamois and Phenological Trends in Aosta Valley (NW Italy). Remote Sens. 2020, 12, 3542. https://doi.org/10.3390/rs12213542
Orusa T, Orusa R, Viani A, Carella E, Borgogno Mondino E. Geomatics and EO Data to Support Wildlife Diseases Assessment at Landscape Level: A Pilot Experience to Map Infectious Keratoconjunctivitis in Chamois and Phenological Trends in Aosta Valley (NW Italy). Remote Sensing. 2020; 12(21):3542. https://doi.org/10.3390/rs12213542
Chicago/Turabian StyleOrusa, Tommaso, Riccardo Orusa, Annalisa Viani, Emanuele Carella, and Enrico Borgogno Mondino. 2020. "Geomatics and EO Data to Support Wildlife Diseases Assessment at Landscape Level: A Pilot Experience to Map Infectious Keratoconjunctivitis in Chamois and Phenological Trends in Aosta Valley (NW Italy)" Remote Sensing 12, no. 21: 3542. https://doi.org/10.3390/rs12213542
APA StyleOrusa, T., Orusa, R., Viani, A., Carella, E., & Borgogno Mondino, E. (2020). Geomatics and EO Data to Support Wildlife Diseases Assessment at Landscape Level: A Pilot Experience to Map Infectious Keratoconjunctivitis in Chamois and Phenological Trends in Aosta Valley (NW Italy). Remote Sensing, 12(21), 3542. https://doi.org/10.3390/rs12213542