Next Article in Journal
Influence of Urban Scale and Urban Expansion on the Urban Heat Island Effect in Metropolitan Areas: Case Study of Beijing–Tianjin–Hebei Urban Agglomeration
Previous Article in Journal
Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM)
Previous Article in Special Issue
Retrieval and Validation of XCO2 from TanSat Target Mode Observations in Beijing
Open AccessArticle

Impact of Molecular Spectroscopy on Carbon Monoxide Abundances from TROPOMI

1
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Methodik der Fernerkundung, 82234 Oberpfaffenhofen, Germany
2
Ludwig-Maximilians-Universität München, Lehrstuhl für Physik der Atmosphäre, 80333 Munich, Germany
3
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, 82234 Oberpfaffenhofen, Germany
4
Institute of Environmental Physics (IUP), University of Bremen, 28359 Bremen, Germany
5
Karlsruhe Institute of Technology, IMK-IFU, 82467 Garmisch-Partenkirchen, Germany
6
Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA-IPSL), Sorbonne Université, CNRS, Observatoire de Paris, PSL Université, 75005 Paris, France
*
Author to whom correspondence should be addressed.
Remote Sens. 2020, 12(21), 3486; https://doi.org/10.3390/rs12213486
Received: 27 August 2020 / Revised: 16 October 2020 / Accepted: 19 October 2020 / Published: 23 October 2020
The impact of SEOM–IAS (Scientific Exploitation of Operational Missions–Improved Atmospheric Spectroscopy) spectroscopic information on CO columns from TROPOMI (Tropospheric Monitoring Instrument) shortwave infrared (SWIR) observations was examined. HITRAN 2016 (High Resolution Transmission) and GEISA 2015 (Gestion et Etude des Informations Spectroscopiques Atmosphériques 2015) were used as a reference upon which the spectral fitting residuals, retrieval errors and inferred quantities were assessed. It was found that SEOM–IAS significantly improves the quality of the CO retrieval by reducing the residuals to TROPOMI observations. The magnitude of the impact is dependent on the climatological region and spectroscopic reference used. The difference in the CO columns was found to be rather small, although discrepancies reveal, for selected scenes, in particular, for observations with elevated molecular concentrations. A brief comparison to Total Column Carbon Observing Network (TCCON) and Network for the Detection of Atmospheric Composition Change (NDACC) also demonstrated that both spectroscopies cause similar columns; however, the smaller retrieval errors in the SEOM with Speed-Dependent Rautian and line-Mixing (SDRM) inferred CO turned out to be beneficial in the comparison of post-processed mole fractions with ground-based references. View Full-Text
Keywords: infrared; radiative transfer; molecular absorption; line-by-line; line profiles infrared; radiative transfer; molecular absorption; line-by-line; line profiles
Show Figures

Graphical abstract

MDPI and ACS Style

Hochstaffl, P.; Schreier, F.; Birk, M.; Wagner, G.; G. Feist, D.; Notholt, J.; Sussmann, R.; Té, Y. Impact of Molecular Spectroscopy on Carbon Monoxide Abundances from TROPOMI. Remote Sens. 2020, 12, 3486. https://doi.org/10.3390/rs12213486

AMA Style

Hochstaffl P, Schreier F, Birk M, Wagner G, G. Feist D, Notholt J, Sussmann R, Té Y. Impact of Molecular Spectroscopy on Carbon Monoxide Abundances from TROPOMI. Remote Sensing. 2020; 12(21):3486. https://doi.org/10.3390/rs12213486

Chicago/Turabian Style

Hochstaffl, Philipp; Schreier, Franz; Birk, Manfred; Wagner, Georg; G. Feist, Dietrich; Notholt, Justus; Sussmann, Ralf; Té, Yao. 2020. "Impact of Molecular Spectroscopy on Carbon Monoxide Abundances from TROPOMI" Remote Sens. 12, no. 21: 3486. https://doi.org/10.3390/rs12213486

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop