Does Ecological Water Replenishment Help Prevent a Large Wetland from Further Deterioration? Results from the Zhalong Nature Reserve, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Characterizing Inundation Frequency
2.4. Trend Analysis of NDVI and Climatic Factors
Relative Abundance
3. Result
3.1. Inundation Regime Changes
3.1.1. Characteristics of Water Surface Area Dynamics
3.1.2. Changes of Inundation Frequency
3.2. Changes of Vegetation Pre- and Post-Ecological Water Replenishment
3.3. Relative Contribution of Hydrological Factors to Changes in Vegetation NDVI and Water Area
4. Discussion
4.1. Eco-Hydrological Response of Wetlands to Ecological Water Replenishment
4.2. Vegetation Response to Inundation Frequency Variation
4.3. Strategies for Scientific Ecological Water Replenishment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 4th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2007. [Google Scholar]
- Todd, M.J.; Muneepeerakul, R.; Pumo, D.; Azaele, S.; Miralles-Wilhelm, F.; Rinaldo, A.; Rodriguez-Iturbea, I. Hydrological drivers of wetland vegetation community distribution within Everglades National Park, Florida. Adv. Water Resour. 2010, 33, 1279–1289. [Google Scholar] [CrossRef]
- Lang, M.W.; Kim, V.; McCarty, G.W.; Li, X.; Yeo, I.-Y.; Huang, C.; Du, L. Improved Detection of Inundation below the Forest Canopy using Normalized LiDAR Intensity Data. Remote Sens. 2020, 12, 707. [Google Scholar] [CrossRef] [Green Version]
- Torbick, N.; Persson, A.; Olefeldt, D.; Frolking, S.; Salas, W.; Hagen, S.; Crill, P.; Li, C. High Resolution Mapping of Peatland Hydroperiod at a High-Latitude Swedish Mire. Remote Sens. 2012, 4, 1974–1994. [Google Scholar] [CrossRef] [Green Version]
- Barzen, J.; Engels, M.; Burnham, J.; Harris, J.; Wu, G. Potential Impacts of Poyang Lake Projects on the Quantity and Distribution of Wintering Waterbirds; International Crane Foundation: Baraboo, WI, USA, 2009. [Google Scholar]
- Euliss, N.H.; Mushet, D.M. Water-level fluctuation in wetlands as a function of landscape condition in the prairie pothole region. Wetlands 1996, 16, 587–593. [Google Scholar] [CrossRef]
- Van der Kamp, G.; Stolte, W.J.; Clark, R.G. Drying out of small prairie wetlands after conversion of their catchments from cultivation to permanent brome grass. Hydrol. Sci. J. 1999, 44, 387–397. [Google Scholar] [CrossRef]
- Boutin, C.; Keddy, P.A. A functional classification of wetland plants. J. Veg. Sci. 1993, 4, 591–600. [Google Scholar] [CrossRef]
- Kingsford, R.T. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral. Ecol. 2000, 25, 109–127. [Google Scholar] [CrossRef]
- Foti, R.; Del Jesus, M.; Rinaldo, A.; Rodriguez-Iturbe, I. Hydroperiod regime controls the organization of plant species in wetlands. Proc. Natl. Acad. Sci. USA 2012, 109, 19596–19600. [Google Scholar] [CrossRef] [Green Version]
- Muster, S.; Heim, B.; Abnizova, A.; Boike, J. Water body distributions across scales: A remote sensing based comparison of three arctic tundra wetlands. Remote Sens. 2013, 5, 1498–1523. [Google Scholar] [CrossRef] [Green Version]
- Mcginness, H.M.; Arthur, A.D.; Davies, M. Flood regimes driving vegetation and bird community transitions in semiarid floodplain woodlands. Ecohydrology 2018, 11, e1954. [Google Scholar] [CrossRef]
- Nagler, P.L.; Doody, T.M.; Glenn, E.P.; Jarchow, C.J.; Barreto-Muñoz, A.; Didan, K. Wide-area estimates of evapotranspiration by red gum (Eucalyptus camaldulensis) and associated vegetation in the Murray-Darling River Basin, Australia. Hydrol. Process. 2016, 30, 1376–1387. [Google Scholar] [CrossRef]
- Kendy, E.; Flessa, K.W.; Schlatter, K.J.; de la Parra, C.A.; Hinojosa Huerta, O.M.; Carrillo-Guerrero, Y.K.; Guillen, E. Leveraging environmental flows to reform water management policy: Lessons learned from the 2014 Colorado River Delta pulse flow. Ecol Eng. 2017, 106, 683–694. [Google Scholar] [CrossRef]
- Shafroth, P.B.; Schlatter, K.J.; Gomez-Sapiens, M.; Lundgren, E.; Grabau, M.R.; Ramírez-Hernández, J.; Rodriguez-Burgeueno, J.E.; Flessa, K.W. A large-scale environmental flow experiment for riparian restoration in the Colorado River Delta. Ecol. Eng. 2017, 106, 645–660. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, W.Q.; Yin, J.M.; Wang, X.Y. Ecological water level and supplementing water plan in Baiyangdian wetland. J. Agric. Univ. Hebei 2010, 33, 107–109, 118. (In Chinese) [Google Scholar]
- Liu, B.; Peng, X.K.; Shu, L.C.; Peng, B.; Wang, R.L. An Analysis of Effect of Three Water Ecological Diversions on Groundwater of Qingshuigou Wetlands in the Yellow River Delta. Wetl. Sci. 2015, 13, 393–399. (In Chinese) [Google Scholar]
- Guo, Z.L.; Zhang, Y.G.; Liu, L. Discussion about the Strategy of Ecological Water Supplement to Hengshui Lake Wetland of Hebei. Wetl. Sci. Manag. 2019, 15, 27–30. (In Chinese) [Google Scholar]
- Han, M.; Sun, Y.N.; Xu, S.G. Characteristics and driving factors of marsh changes in Zhalong wetland of China. Environ. Monit. Assess. 2007, 127, 363–381. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Wang, Z.; Ge, C. Time Budgets of Wintering Red-Crowned Cranes: Effects of Habitat, Age and Family Size. Wetlands 2013, 33, 227–232. [Google Scholar] [CrossRef]
- Wu, C.; Chen, W. Indicator system construction and health assessment of wetland ecosystem-Taking Hongze Lake Wetland, China as an example. Ecol. Indic. 2020, 112, 106164. [Google Scholar] [CrossRef]
- Wang, L.; Dronova, I.; Gong, P.; Yang, W.B.; Li, Y.R.; Liu, Q. A new time series vegetation-water index of phenological-hydrological trait across species and functional types for Poyang Lake wetland ecosystem. Remote Sens. Environ. 2012, 125, 49–63. [Google Scholar] [CrossRef]
- Wan, R.; Dai, X.; Shankman, D. Vegetation Response to Hydrological Changes in Poyang Lake, China. Wetlands 2019, 39, 99–112. [Google Scholar] [CrossRef]
- Shen, G.; Yang, X.; Jin, Y.; Xu, B.; Zhou, Q. Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China. Ecol. Indic. 2019, 104, 48–58. [Google Scholar] [CrossRef]
- Wu, Q.S.; Lane, C.R.; Li, X.C.; Zhao, K.G.; Zhou, Y.Y.; Clinton, N.; DeVries, B.; Golden, H.E.; Lang, M.W. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. Remote Sens. Environ. 2019, 228, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.F.; Kingsford, R.T.; Lu, Y.; Cox, S.J.; Sims, N.C.; Hunter, S.J. Mapping inundation in the heterogeneous floodplain wetlands of the Macquarie Marshes, using Landsat Thematic Mapper. J. Hydrol. 2015, 524, 194–213. [Google Scholar] [CrossRef]
- Feng, X.Q.; Zhang, G.X.; Jun Xu, Y. Simulation of hydrological processes in the Zhalong wetland within a river basin, Northeast China, Hydrol. Earth Syst. Sci. 2013, 17, 2797–2807. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Wang, Z.; Du, B.; Li, L.; Tian, Y.; Jia, M.; Zeng, Y.; Song, K.; Jiang, M.; Wang, Y. National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. Isprs J. Photogramm. 2020, 164, 11–25. [Google Scholar] [CrossRef]
- Na, X.; Zang, S.; Wu, C.; Tian, Y.; Li, W. Hydrological Regime Monitoring and Mapping of the Zhalong Wetland through Integrating Time Series Radarsat-2 and Landsat Imagery. Remote Sens. 2018, 10, 702. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.M.; Wang, Y.J.; Liu, F.G.; Bo, L.; Wang, Z.L. Influence of the runoff variation in Wuyuer River catchment from 1951 to 2015 on the succession of the Zhalong saline marsh. J. Water Resour. Water Eng. 2018, 29, 1–6. (In Chinese) [Google Scholar]
- Pekel, J.; Cottam, A.; Gorelick, N.; Belward, A. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Busker, T.; de Roo, A.; Gelati, E.; Schwatke, C.; Adamovic, M.; Bisselink, B.; Pekel, J.; Cottam, A. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sic. 2019, 23, 669–690. [Google Scholar] [CrossRef] [Green Version]
- Bhagwat, T.; Klein, I.; Huth, J.; Leinenkugel, P. Volumetric Analysis of Reservoirs in Drought-Prone Areas Using Remote Sensing Products. Remote Sens. 2019, 11, 1974. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, I.; Padarian, J.; van Ogtrop, F.; Vervoort, R.W. Comparison of surface water volume estimation methodologies that couple surface reflectance data and digital terrain models. Water 2019, 11, 780. [Google Scholar] [CrossRef] [Green Version]
- Borro, M.; Morandeira, N.; Salvia, M.; Minotti, P.; Perna, P.; Kandus, P. Mapping shallow lakes in a large South American floodplain: A frequency approach on multi temporal Landsat TM/ETM data. J. Hydrol. 2014, 512, 39–52. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y. Mapping Dynamics of inundation patterns of two largest river-connected lakes in China: A comparative study. Remote Sens. 2016, 8, 560. [Google Scholar] [CrossRef] [Green Version]
- Inman, V.L.; Lyons, M.B. Automated Inundation Mapping Over Large Areas Using Landsat Data and Google Earth Engine. Remote Sens. 2020, 12, 1348. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.H.; Venevsky, S.; Wu, C.; Wang, M.H. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; You, Q.; Fang, N.; Xu, L.; Zhou, Y.; Wu, N.; Ni, C.; Liu, Y.; Liu, G.; Yang, T.; et al. Assessment of wetland health status of Poyang Lake using vegetation-based indices of biotic integrity. Ecol. Indic. 2018, 90, 79–89. [Google Scholar] [CrossRef]
- Wu, Y.F.; Zhang, G.X.; Shen, H.; Xu, Y.J.; Batur, B. Attribute analysis of aridity variability in north Xinjiang, China. Adv. Meteorol. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.H.; He, X.Y.; Wang, Z.M.; Tian, Y.L.; Xiang, H.X.; Yu, H.; Man, W.; Jia, M.M.; Ren, C.Y.; Zheng, H.F. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Xu, C.C.; Chen, Y.N.; Yang, Y.H.; Hao, Y.M. Hydrology and water resources variation and its response to regional climate change in Xinjiang. J. Geogr. Sci. 2010, 20, 599–612. [Google Scholar] [CrossRef]
- Feng, X.Q.; Zhang, G.X.; Xu, Y.J. Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China. Water Res. Manag. 2011, 25, 677–689. [Google Scholar] [CrossRef]
- Auble, G.T.; Friedman, J.M.; Scot, M.L. Relating riparian vegetation to presentand future streamflows. Ecol. Appl. 1994, 4, 544–554. [Google Scholar] [CrossRef]
- De Jager, N.R.; Thomsen, M.; Yin, Y. Threshold effects of flood duration on thevegetation and soils of the Upper Mississippi River floodplain, USA. For. Ecol. Manag. 2012, 270, 135–146. [Google Scholar] [CrossRef]
- Wang, R.N.; Peng, W.Q.; Liu, X.B. Wu, W.Q.; Han, Z.; Jiang, C.L. Analysis of responses of typical vegetation in Nanji Wetland National Nature Reserve of Poyang Lake to water depth and submergence frequency. J. China Inst. Water Resour. Hydropower Res. 2018, 6, 528–535. (In Chinese) [Google Scholar]
- Mauchamp, A.; Blanch, S.; Grillas, P. Effects of submergence on the growth of Phragmites australis seedlings. Aquat. Bot. 2001, 69, 147–164. [Google Scholar] [CrossRef]
- Engloner, A.I. Annual Growth Dynamics and Morphological Differences of Reed (Phragmites australis [Cov.] Trin. ex Steudel) in Relation to Water Supply. Flora 2004, 199, 256–262. [Google Scholar] [CrossRef]
SNDVI | NDVI Trend Description | T-Test |
---|---|---|
≥0.001 | Significant improvement | p < 0.01 |
0.0001–0.001 | Slight improvement | p < 0.05 |
−0.0001–0.0001 | Stable or non-vegetated | |
−0.001−0.0001 | Slight degradation | p < 0.05 |
−0.001 ≤ | Significant degradation | p < 0.01 |
Post-EWR | Non-Water | 0–10 | 10–20 | 20–30 | 30–50 | 50–100 | Total (km2) | |
---|---|---|---|---|---|---|---|---|
Pre-EWR | ||||||||
Non-water | 1560.08 | 25.34 | 19.08 | 8.36 | 4.88 | 0.89 | 1618.62 | |
0–10 | 3.15 | 28.63 | 30.17 | 9.16 | 3.69 | 1.95 | 76.75 | |
10–20 | 15.29 | 52.13 | 35.72 | 45.28 | 10.04 | 2.20 | 160.66 | |
20–30 | 12.00 | 53.08 | 20.26 | 50.20 | 13.94 | 3.42 | 152.91 | |
30–50 | 4.17 | 20.88 | 8.55 | 11.34 | 10.92 | 7.11 | 62.98 | |
50–100 | 0.39 | 2.68 | 2.76 | 3.49 | 7.40 | 75.51 | 92.22 | |
Total (km2) | 1595.09 | 182.75 | 116.54 | 127.82 | 50.87 | 91.08 | 2164.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Liu, S.; Wu, Y.; Xu, Y.J.; Chen, S.; Pang, S.; Gao, Z.; Zhang, G. Does Ecological Water Replenishment Help Prevent a Large Wetland from Further Deterioration? Results from the Zhalong Nature Reserve, China. Remote Sens. 2020, 12, 3449. https://doi.org/10.3390/rs12203449
Chen L, Liu S, Wu Y, Xu YJ, Chen S, Pang S, Gao Z, Zhang G. Does Ecological Water Replenishment Help Prevent a Large Wetland from Further Deterioration? Results from the Zhalong Nature Reserve, China. Remote Sensing. 2020; 12(20):3449. https://doi.org/10.3390/rs12203449
Chicago/Turabian StyleChen, Liwen, Sixin Liu, Yanfeng Wu, Y. Jun Xu, Shengbo Chen, Shiliang Pang, Zongting Gao, and Guangxin Zhang. 2020. "Does Ecological Water Replenishment Help Prevent a Large Wetland from Further Deterioration? Results from the Zhalong Nature Reserve, China" Remote Sensing 12, no. 20: 3449. https://doi.org/10.3390/rs12203449
APA StyleChen, L., Liu, S., Wu, Y., Xu, Y. J., Chen, S., Pang, S., Gao, Z., & Zhang, G. (2020). Does Ecological Water Replenishment Help Prevent a Large Wetland from Further Deterioration? Results from the Zhalong Nature Reserve, China. Remote Sensing, 12(20), 3449. https://doi.org/10.3390/rs12203449