Effects of Land Cover Changes on Sediment and Nutrient Balance in the Catchment with Cascade-Dammed Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Materials
2.2.1. Corine Land Cover Database
2.2.2. Water Quality and Water Flow Data
2.2.3. Digital Elevation Model for Mechanical Denudation Analysis
2.3. Methods
2.3.1. Land Use/Land Cover Changes
2.3.2. Sediment and Nutrients Flux Dynamics
2.3.3. Topographic Indicators
3. Results
3.1. CLC Changes
3.2. Water Quality Changes
3.2.1. SSL Transport Dynamics
3.2.2. Phosphorus and Nitrogen Flux Dynamics
3.3. Topographic Indexes Analysis
4. Discussion
5. Conclusions
- Changes in land use in the Brda River catchment area in the period 1990–2018 consisted of an increase in artificial surfaces (A) by 1.8% and forests and semi-natural areas (F) by 1.3%, at the cost of intensive agricultural areas (aI) loss by 2.1%. These are relatively minor changes resulting from the extensification of agriculture, afforestation, and urbanization of the catchment. This corresponds to the generally observed trends in Poland and Europe.
- The results of the water quality research indicate that the reduction of intensive agricultural areas (aI) results in the reduction of the area pressure. In the analyzed period, there was a decrease in loads of suspended sediments and nutrients inflowed to the analyzed reservoirs, resulting in an increase in the ecological status of waters. The decrease in the dynamics of the denudation process is also caused by the afforestation process (an increase of the forests and semi-natural areas—F).
- Hydrological transformations of the Brda River catchment (commission of the cascade of reservoirs) contribute to the improvement of some indicators taken into account in the assessment of the ecological status of waters. Thus, strong transformations of the catchment area may prosaically have the opposite environmental effect.
- Morphometric and physical indicators: LSF, MRN, TWI, and SPI in comparison with changes in CLC land use showed no significant correlation. A detailed analysis of the loads trapping efficiency (β), taking into account the regime mode of reservoirs, showed that only land use changes occurring directly in river valleys can be reflected in water quality.
- Change in the CLC land use can be an indirect indicator to identify pressures affecting water quality in the catchment area. The results of the presented research indicate that the analysis of land cover changes may be applied for the assessment of the state of river water bodies. The current approach to point data collection on water quality needs to be revised as this connection is not straightforward in the case of heavy hydrotechnical changes in the catchment area. Artificial damming of water occurs in many river systems around the world, which makes it difficult to search for dependence of water quality on land use changes. For large rivers, remote sensing methods based on Landsat or Sentinel images can be used to collect water quality data, which can help fill important gaps in spatially varying sediment and nutrient loads in the waters. For smaller rivers, no possibility of using remote sensing results in only one solution—data collection by field campaign to configure the hydrodynamic and sediment transport models, allowing to consider the interactions between classifying factors.
- In the face of climate change and the growth the number of reservoirs on rivers, our research shows the necessity of using new research methods to assess the impact of land cover changes on the quality of water in catchments with dammed waters and reservoirs, because they are probably key elements in future decision-making cycle.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lobera, G.; Besné, P.; Vericat, D.; López-Tarazón, J.; Tena, A.; Aristi, I.; Díez, J.; Ibisate, A.; Larrañaga, A.; Elosegi, A.; et al. Geomorphic status of regulated rivers in the Iberian Peninsula. Sci. Total Environ. 2015, 508, 101–114. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and Flow Regulation of the World’s Large River Systems. Science 2005, 308, 405–408. [Google Scholar]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed on 21 October 2019).
- Harper, D. What is eutrophication? In Eutrophication of Freshwaters; Harper, D., Ed.; Springer: Dordrecht, The Netherlands, 1992; pp. 1–28. [Google Scholar]
- Khan, M.; Mohammad, F. Eutrophication: Challenges and Solutions. In Eutrophication: Causes, Consequences and Control; Ansari, A., Gill, S., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 1–15. [Google Scholar]
- Schindler, D.W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 2006, 51, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Matysik, M.; Absalon, D.; Habel, M.; Maerker, M. Surface Water Quality Analysis Using CORINE Data: An Application to Assess Reservoirs in Poland. Remote. Sens. 2020, 12, 979. [Google Scholar] [CrossRef] [Green Version]
- Scopesi, C.; Rellini, I.; Maerker, M.; Firpo, M. Effects of landcover changes on flood generation in a small Mediterranean catchment (T. Teiro, Italy). Rendiconti Online della Società Geologica Italiana 2012, 21, 431–433. [Google Scholar]
- Saito, Y.; Yang, Z.; Hori, K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: A review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology 2001, 41, 219–231. [Google Scholar] [CrossRef]
- Crone, T.J.; Tolstoy, M. Magnitude of the 2010 Gulf of Mexico Oil Leak. Science 2010, 330, 634. [Google Scholar] [CrossRef] [Green Version]
- Panico, A.; Lanzano, G.; Salzano, E.; de Magistris, F.S.; Fabbocino, G. Seismic Vulnerability of Wastewater Treatment Plants. Chem. Eng. Trans. 2013, 32, 13–18. [Google Scholar]
- Bentivoglio, F.; Calizza, E.; Rossi, D.; Carlino, P.; Careddu, G.; Rossi, L.; Costantini, M.L. Site-scale isotopic variations along a river course help localize drainage basin influence on river food webs. Hydrobiologia 2015, 770, 257–272. [Google Scholar] [CrossRef]
- Johnson, L.; Richards, C.; Host, G.; Arthur, J. Landscape influences on water chemistry in Midwestern stream ecosystems. Freshw. Biol. 1997, 37, 193–208. [Google Scholar] [CrossRef]
- Allan, J.D.; Flecker, A.S. Biodiversity Conservation in Running Waters. Bioscience 1993, 43, 32–43. [Google Scholar] [CrossRef]
- Dube, T.; Sibanda, M.; Bangamwabo, V.; Shoko, C.; Dube, T.; Mbulisi, S. Establishing the link between urban land cover change and the proliferation of aquatic hyacinth (Eichhornia crassipes) in Harare Metropolitan, Zimbabwe. Phys. Chem. Earth. 2018, 108, 19–27. [Google Scholar] [CrossRef]
- Dosdogru, F.; Kalin, L.; Wang, R.; Yen, H. Potential impacts of land use/cover and climate changes on ecologically relevant flows. J. Hydrol. 2020, 584, 124654. [Google Scholar] [CrossRef]
- Trolle, D.; Nielsen, A.; Andersen, M.S.; Thodsen, H.; Olesen, J.E.; Børgesen, C.D.; Refsgaard, J.C.; Sonnenborg, T.O.; Karlsson, I.B.; Christensen, J.P.; et al. Effects of changes in land use and climate on aquatic ecosystems: Coupling of models and decomposition of uncertainties. Sci. Total Environ. 2019, 657, 627–633. [Google Scholar] [CrossRef]
- Uuemaa, E.; Roosaare, J.; Mander, Ü. Landscape metrics as indicators of river water quality at catchment scale. Hydrol. Res. 2007, 38, 125–138. [Google Scholar] [CrossRef]
- Kroll, S.A.; Llacer, C.N.; De La Cruz Cano, M.; De Las Heras, J. The influence of land use on water quality and macroinvertebrate biotic indices in river within Castilla-La Mancha (Spain). Limnetica 2009, 28, 203–214. [Google Scholar]
- Cebecauer, T.; Hofierka, J. The consequences of land-cover changes on soil erosion distribution in Slovakia. Geomorphology 2008, 98, 187–198. [Google Scholar] [CrossRef]
- Feranec, J.; Jaffrain, G.; Soukup, T.; Hazeu, G. Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Appl. Geogr. 2010, 30, 19–35. [Google Scholar]
- Uuemaa, E.; Roosaare, J.; Mander, Ü. Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments. Ecol. Indic. 2005, 5, 350–369. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Petrişor, A.-I.; Ianos, I.; Talanga, C. Land cover and use changes focused on the urbanization PROCESSES in Romania. Environ. Eng. Manag. J. 2010, 9, 765–771. [Google Scholar] [CrossRef]
- Matysik, M.; Absalon, D.; Ruman, M. Surface Water Quality in Relation to Land Cover in Agricultural Catchments (Liswarta River Basin Case Study). Pol. J. Environ. Stud. 2015, 24, 175–184. [Google Scholar] [CrossRef]
- Campling, P.; Terres, J.; Walle, S.V.; Van Orshoven, J.; Crouzet, P. Estimation of nitrogen balances from agriculture for EU-15: Spatialisation of estimates to river basins using the CORINE Land Cover. Phys. Chem. Earth 2005, 30, 25–34. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Piniewski, M.; Kardel, I.; Szcześniak, M.; Benestad, R.; Srinivasan, R.; Ignar, S.; Okruszko, T. Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland. Water 2017, 9, 156. [Google Scholar] [CrossRef] [Green Version]
- Aksoy, E.; Yigini, Y.; Montanarella, L. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe. PLoS ONE 2016, 11, 0152098. [Google Scholar] [CrossRef]
- Szilassi, P.; Jordan, G.; Kovacs, F.; Rompaey, A.; Dessel, W. Investigating the link between soil quality and agricultural land use change. A case study in the Lake Balaton catchment, Hungary. Carpathian J. Earth Environ. Sci. 2010, 5, 61–70. [Google Scholar]
- Cerdan, O.; Govers, G.; Le Bissonnais, Y.; Van Oost, K.; Poesen, J.; Saby, N.; Gobin, A.; Vacca, A.; Quinton, J.; Auerswald, K.; et al. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 2010, 122, 167–177. [Google Scholar] [CrossRef]
- Panagos, P.; Meusburger, K.; Van Liedekerke, M.; Alewell, C.; Hiederer, R.; Montanarella, L. Assessing soil erosion in Europe based on data collected through a European network. Soil Sci. Plant. Nutr. 2014, 60, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M. Soil erosion risk assessment with CORINE model: Case study in the Danjiangkou Reservoir region, China. Stoch. Environ. Res. Risk Assess. 2011, 26, 813–822. [Google Scholar] [CrossRef]
- Özşahin, E.; Duru, U.; Eroğlu, I. Land Use and Land Cover Changes (LULCC), a Key to Understand Soil Erosion Intensities in the Maritsa Basin. Water 2018, 10, 335. [Google Scholar] [CrossRef] [Green Version]
- Kostadinov, S.; Braunović, S.; Dragićević, S.; Zlatić, M.; Dragović, N.; Rakonjac, N. Effects of Erosion Control Works: Case Study—Grdelica Gorge, the South Morava River (Serbia). Water 2018, 10, 1094. [Google Scholar] [CrossRef] [Green Version]
- El-Sadek, A.; Irvem, A. Evaluating the impact of land use uncertainty on the simulated streamflow and sediment yield of the Seyhan River basin using the SWAT model. Turk. J. Agric. For. 2014, 38, 515–530. [Google Scholar] [CrossRef]
- Van Oost, K.; Cerdan, O.; Quine, T.A. Accelerated sediment fluxes by water and tillage erosion on European agricultural land. Earth Surf. Process. Landf. 2009, 34, 1625–1634. [Google Scholar] [CrossRef]
- Ristić, R.; Ljujić, M.; Despotović, J.; Aleksić, V.; Radić, B.; Nikić, Z.; Milčanović, V.; Malušević, I.; Radonjić, J. Reservoir sedimentation and hydrological effects of land use changes-case study of the experimental Dičina river watershed. Carpathian J. Earth Environ. Sci. 2013, 8, 91–98. [Google Scholar]
- De Vente, J.; Poesen, J.; Govers, G.; Boix-Fayos, C. The implications of data selection for regional erosion and sediment yield modelling. Earth Surf. Process. Landf. 2009, 34, 1994–2007. [Google Scholar] [CrossRef]
- De Vente, J.; Poesen, J. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth Sci. Rev. 2005, 71, 95–125. [Google Scholar] [CrossRef]
- Verstraeten, G.; Poesen, J.; De Vente, J.; Koninckx, X. Sediment yield variability in Spain: A quantitative and semiqualitative analysis using reservoir sedimentation rates. Geomorphology 2003, 50, 327–348. [Google Scholar] [CrossRef]
- Pavanelli, D.; Cavazza, C.; Lavrnić, S.; Toscano, A. The Long-Term Effects of Land Use and Climate Changes on the Hydro-Morphology of the Reno River Catchment (Northern Italy). Water 2019, 11, 1831. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, V.; Silva, M.T.; De Souza, E.P. Influence of land use change on sediment yield: A case study of the sub-middle of the São Francisco River Basin. Engenharia Agrícola 2016, 36, 1005–1015. [Google Scholar]
- Llena, M.; Vericat, D.; Cavalli, M.; Crema, S.; Smith, M. The effects of land use and topographic changes on sediment connectivity in mountain catchments. Sci. Total Environ. 2019, 660, 899–912. [Google Scholar] [CrossRef] [Green Version]
- Juez, C.; Nadal-Romero, E. Long-term time-scale bonds between discharge regime and catchment specific landscape traits in the Spanish Pyrenees. Environ. Res. 2020, 191, 110158. [Google Scholar] [CrossRef]
- Montzka, C.; Canty, M.J.; Kunkel, R.; Menz, G.; Vereecken, H.; Wendland, F. Modelling the water balance of a mesoscale catchment basin using remotely sensed land cover data. J. Hydrol. 2008, 353, 322–334. [Google Scholar] [CrossRef]
- Verbeiren, B.; Van De Voorde, T.; Canters, F.; Binard, M.; Cornet, Y.; Batelaan, O. Assessing urbanisation effects on rainfall-runoff using a remote sensing supported modelling strategy. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 92–102. [Google Scholar] [CrossRef]
- Solin, L.; Ferancec, J.; Nováček, J. Land cover changes in small catchments in Slovakia during 1990–2006 and their effects on frequency of flood events. Nat. Hazards 2010, 56, 195–214. [Google Scholar]
- Juez, C.; Hassan, M.A.; Franca, M.J. The Origin of Fine Sediment Determines the Observations of Suspended Sediment Fluxes Under Unsteady Flow Conditions. Water Resour. Res. 2018, 54, 5654–5669. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Y.; Pan, Y.; Yu, Z. Land use pattern optimization based on CLUE-S and SWAT models for agricultural non-point source pollution control. Math. Comput. Model. 2013, 58, 588–595. [Google Scholar] [CrossRef]
- Kroll, F.; Müller, F.; Haase, D.; Fohrer, N. Rural–urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy 2012, 29, 521–535. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote. Sens. 2016, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote Sensing of Black Lakes and Using 810 nm Reflectance Peak for Retrieving Water Quality Parameters of Optically Complex Waters. Remote. Sens. 2016, 8, 497. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. Novel Spectra-Derived Features for Empirical Retrieval of Water Quality Parameters: Demonstrations for OLI, MSI, and OLCI Sensors. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 10285–10300. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Schiebe, F.R.; McHenry, J.R. Remote sensing of suspended sediment in surface water. Photogramm. Eng. Remote Sens. 1976, 42, 1539–1545. [Google Scholar]
- Kondracki, J. Regional Geography of Poland; Polish Scientific Publishers: Warszawa, Poland, 2000; p. 144. [Google Scholar]
- Galon, R. Morfologia doliny i sandru Brdy. Stud. Soc. Scient. Tor. 1953, 1, 1–116. [Google Scholar]
- Szatten, D.; Habel, M.; Pellegrini, L.; Maerker, M. Assessment of Siltation Processes of the Koronowski Reservoir in the Northern Polish Lowland Based on Bathymetry and Empirical Formulas. Water 2018, 10, 1681. [Google Scholar] [CrossRef] [Green Version]
- Szatten, D. Wpływ zabudowy hydrotechnicznej na występowanie ekstremalnych stanów wody na przykładzie Brdy skanalizowanej. Inżynieria Ekologiczna 2016, 46, 55–60. [Google Scholar]
- Jutrowska, E. Anthropogenic Transformation of Water Conditions in the Brda River Basin; Environmental Monitoring Library Press: Bydgoszcz, Poland, 2007; p. 128. [Google Scholar]
- Biuro Wojewody Bydgoskiego. Pozwolenie wodnoprawne na szczególne korzystanie z wód rzeki Brdy gromadzonych w zbiorniku retencyjnym Mylof; 2015. Available online: http://archiwum.kujawsko-pomorskie.pl/index.php?option=com_content&task=view&id=20512&Itemid=665 (accessed on 10 September 2020).
- Biuro Wojewody Kujawsko-Pomorskiego. Pozwolenie wodnoprawne na szczególne korzystanie z wód rzeki Brdy dla potrzeb elektrowni wodnej Smukała; 2014. Available online: http://archiwum.kujawsko-pomorskie.pl/index.php?option=com_content&task=view&id=20512&Itemid=665 (accessed on 10 September 2020).
- Heymann, Y.; Steenmans, C.; Croisille, G.; Bossard, M. CORINE Land Cover. Technical Guide; Office for Official Publications of the European Communities: Luxembourg, 1994; p. 136. [Google Scholar]
- Feranec, J.; Hazeu, G.; Christensen, S.; Jaffrain, G. Corine land cover change detection in Europe (case studies of the Netherlands and Slovakia). Land Use Policy 2007, 24, 234–247. [Google Scholar] [CrossRef]
- Water Law Act. Journal of Laws 2017, 1566. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001566 (accessed on 5 October 2020).
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Boehner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar]
- Planchon, O.; Darboux, F. A fast, simple and versatile algorithm to fill the depressions of digital elevation models. Catena 2002, 46, 159–176. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. In Agriculture Handbook No. 537; USDA: Washington, DC, USA, 1978; p. 66. Available online: https://naldc.nal.usda.gov/download/CAT79706928/PDF (accessed on 7 November 2018).
- Marchi, L.; Fontana, G.D. GIS morphometric indicators for the analysis of sediment dynamics in mountain basins. Environ. Earth Sci. 2005, 48, 218–228. [Google Scholar] [CrossRef]
- Melton, M.A. The Geomorphic and Paleoclimatic Significance of Alluvial Deposits in Southern Arizona. J. Geol. 1965, 73, 1–38. [Google Scholar] [CrossRef]
- Boehner, J.; Koethe, R.; Conrad, O.; Gross, J.; Ringeler, A.; Selige, T. Soil Regionalisation by Means of Terrain Analysis and Process Parameterisation. In Soil Classification 2001. European Soil Bureau, Research Report No. 7; Micheli, E., Nachtergaele, F., Montanarella, L., Eds.; EUR 20398 EN: Luxembourg, 2002; pp. 213–222. [Google Scholar]
- Phillips, S.J.; Dudík, M. Modeling of species distribution with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. Bioscience 2002, 52, 143–150. [Google Scholar]
- Stelmachowska, B. Z kultury materialnej Borowiaków Tucholskich. Ziemia 1937, 27, 48–53. [Google Scholar]
- Słowiński, M.; Lamentowicz, M.; Łuców, D.; Barabach, J.; Brykała, D.; Tyszkowski, S.; Pieńczewska, A.; Śnieszko, Z.; Dietze, E.; Jażdżewski, K.; et al. Paleoecological and historical data as an important tool in ecosystem management. J. Environ. Manag. 2019, 236, 755–768. [Google Scholar] [CrossRef]
- Bhaduri, B.; Harbor, J.; Engel, B.; Grove, M.; Harbor, J.M. Assessing Watershed-Scale, Long-Term Hydrologic Impacts of Land-Use Change Using a GIS-NPS Model. Environ. Manag. 2000, 26, 643–658. [Google Scholar] [CrossRef]
- Krause, S.; Jacobs, J.; Voss, A.; Bronstert, A.; Zehe, E. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain. Sci. Total Environ. 2008, 389, 149–164. [Google Scholar] [CrossRef]
- Oenema, O.; Van Liere, L.; Schoumans, O. Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands. J. Hydrol. 2005, 304, 289–301. [Google Scholar] [CrossRef]
- Fučík, P.; Kvítek, T.; Lexa, M.; Novak, P.; Bilková, A. Assessing the stream water quality dynamics in connection with land use in agricultural catchments of different scales. Soil Water Res. 2008, 3, 98–112. [Google Scholar] [CrossRef] [Green Version]
- McGuckin, S.O.; Jordan, C.; Smith, R.V. Deriving phosphorus export coefficients for corine land cover types. Water Sci. Technol. 1999, 39, 47–53. [Google Scholar] [CrossRef]
- Cegielska, K.; Noszczyk, T.; Kukulska, A.; Szylar, M.; Hernik, J.; Dixon-Gough, R.; Jombach, S.; Valánszki, I.; Kovács, K.F. Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland. Land Use Policy 2018, 78, 1–18. [Google Scholar] [CrossRef]
- Levers, C.; Butsic, V.; Verburg, P.H.; Schierhorn, F.; Kuemmerle, T. Drivers of changes in agricultural intensity in Europe. Land Use Policy 2016, 58, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Meiyappan, P.; Dalton, M.; O’Neill, B.C.; Jain, A.K. Spatial modeling of agricultural land use change at global scale. Ecol. Model. 2014, 291, 152–174. [Google Scholar] [CrossRef] [Green Version]
- Marszalewski, W.; Piasecki, A. Analysis of the development of wastewater infrastructure in Poland in ecological and economical aspects. Sci. J. SGGW 2014, 11, 127–137. [Google Scholar]
- Turner, R.; Rabalais, N.; Justic’, D.; Dortch, Q. Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry 2003, 64, 297–317. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, Y.; Fu, L.; Liu, Q.; Peng, Q.; Mu-Yi, K. Impacts of Land Use on Surface Water Quality in a Subtropical River Basin: A Case Study of the Dongjiang River Basin, Southeastern China. Water 2015, 7, 4427–4445. [Google Scholar] [CrossRef] [Green Version]
- Goszczyński, J.; Ślachciak, W. Report of State of the Environment Kuyavian and Pomeranian Voivodship; Environmental Monitoring Library Press: Bydgoszcz, Poland, 2012; p. 186. [Google Scholar]
- Lane, S.N.; Tayefi, V.; Reid, S.C.; Yu, D.; Hardy, R.J. Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment. Earth Surf. Process. Landf. 2007, 32, 429–446. [Google Scholar] [CrossRef]
- Vinnikov, K.Y. Global Warming Trend of Mean Tropospheric Temperature Observed by Satellites. Science 2003, 302, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Novák, V. Evapotranspiration: A Component of the Water Cycle. In Evapotranspiration in the Soil-Plant-Atmosphere System; Novák, V., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–13. [Google Scholar]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2010, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Kozyra, J. Wpływ zmian klimatu na rolnictwo w Polsce. In Zmiany klimatu i ich wpływ na wybrane sektory w Polsce; Kundzewicz, Z.W., Øystein, H., Okruszko, T., Eds.; Instytut Środowiska Rolniczego i Leśnego PAN: Poznań, Poland, 2017; pp. 168–181. [Google Scholar]
- Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.W.; Döll, P.; Jimenez, B.; Miller, K.; Oki, T.; Şen, Z.; Shiklomanov, I. The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J. 2008, 53, 3–10. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Sediment Transport, Part III: Bed forms and Alluvial Roughness. J. Hydraul. Eng. 1984, 110, 1733–1754. [Google Scholar] [CrossRef]
- Kondolf, G.M. PROFILE: Hungry Water: Effects of Dams and Gravel Mining on River Channels. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef]
- Vorosmarty, C.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.P. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet Chang. 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Obodovskyi, O.; Habel, M.; Szatten, D.; Rozlach, Z.; Babiński, Z.; Maerker, M. Assessment of the Dnieper Alluvial Riverbed Stability Affected by Intervention Discharge Downstream of Kaniv Dam. Water 2020, 12, 1104. [Google Scholar] [CrossRef]
- Kajak, Z. Hydrobiologia—limnologia. Ekosystemy wód śródlądowych; Wyd. Nauk. PWN: Warszawa, Poland, 2002; p. 355. [Google Scholar]
- Gierszewski, P.J.; Habel, M.; Szmańda, J.; Luc, M. Evaluating effects of dam operation on flow regimes and riverbed adaptation to those changes. Sci. Total Environ. 2020, 710, 136202. [Google Scholar] [CrossRef]
- Walling, D.E. Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resour. Res. 1977, 13, 531–538. [Google Scholar] [CrossRef]
- Williams, G.P. Sediment concentration versus water discharge during single hydrologic events in rivers. J. Hydrol. 1989, 111, 89–106. [Google Scholar] [CrossRef]
Product | Satellite Data | Time Consistency | Geometric Accuracy of Satellite Data | Geometric Accuracy | Thematic Accuracy |
---|---|---|---|---|---|
CLC 1990 | Landsat–5 MSS/TM single date | 1986–1998 | ≤50 m | 100 m | ≥85% |
CLC 2006 | SPOT–4/5 and IRS LISS III dual date | 2006 +/− 1 year | ≤25 m | >100 m | ≥85% |
CLC 2018 | Sentinel 2A/2B | 2017 | ≤10 m | >100 m | ≥85% |
Aggregated CLC Forms | CLC Forms (at level 3) |
---|---|
Artificial surfaces (A) | 1.1.1. Continuous urban fabric; 1.1.2. Discontinuous urban fabric; 1.2.1. Industrial or commercial units; 1.2.2. Road and rail networks and associated land; 1.2.4. Airports; 1.3.3. Construction sites; 1.4.1. Green urban areas; 1.4.2. Sport and leisure facilities |
Agricultural areas Intensive (aI) | 2.1.1. Non-irrigated arable land; 2.2.2. Fruit trees and berry plantations |
Agricultural areas Extensive (aE) | 2.3.1 Pastures; 2.4.2. Complex cultivation patterns; 2.4.3. Land principally occupied by agriculture |
Forests and semi-natural areas (F) | 3.1.1. Broad-leaved forest; 3.1.2. Coniferous forest; 3.1.3. Mixed forest; 3.2.4. Transitional woodland shrub |
Wetlands and water bodies (W) | 4.1.1. Inland marshes; 4.1.2. Peat bogs; 5.1.1. Watercourses; 5.1.2. Water bodies |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szatten, D.; Habel, M. Effects of Land Cover Changes on Sediment and Nutrient Balance in the Catchment with Cascade-Dammed Waters. Remote Sens. 2020, 12, 3414. https://doi.org/10.3390/rs12203414
Szatten D, Habel M. Effects of Land Cover Changes on Sediment and Nutrient Balance in the Catchment with Cascade-Dammed Waters. Remote Sensing. 2020; 12(20):3414. https://doi.org/10.3390/rs12203414
Chicago/Turabian StyleSzatten, Dawid, and Michał Habel. 2020. "Effects of Land Cover Changes on Sediment and Nutrient Balance in the Catchment with Cascade-Dammed Waters" Remote Sensing 12, no. 20: 3414. https://doi.org/10.3390/rs12203414
APA StyleSzatten, D., & Habel, M. (2020). Effects of Land Cover Changes on Sediment and Nutrient Balance in the Catchment with Cascade-Dammed Waters. Remote Sensing, 12(20), 3414. https://doi.org/10.3390/rs12203414