A Novel Model Integrating Deep Learning for Land Use/Cover Change Reconstruction: A Case Study of Zhenlai County, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Theoretical Basis
2.3.2. Modeling Framework
2.3.3. Deep Learning Model
Input Data
Algorithm 1. Batch normalizing transform applied to the activation x over a mini-batch. |
Input: Values of x over a mini-batch: β = {}; Parameters to be learned: γ, β Output: { = } //mini-batch mean //mini-batch variance //normalize //scale and shift |
Network Structure
2.4. Reconstruction Procedure
2.4.1. Pre-Reconstruction Module
- (1)
- Determinant mask: The current LU spatial pattern dynamically depends on the historical spatial pattern, while the unchanged LU types in other years existed in 2000.
- (2)
- Possibility mask: For the LU types with human activities, such as arable land, the boundaries of one LU type in the past cannot exceed the boundaries of that LU type at the study time.
- (3)
- Training set: grid with neighborhood features of six years (1986, 2005, 2008, 2010, and 2013). The features include the LU type, soil, topography, elevation, slope, aspect, distance to settlements, distance to roads, distance to rivers in this grid unit, and the 4 neighborhood grid units.
- (4)
- Constraint Factors: The statistical data and the quantity simulated by the backtracking of the Markov model are combined, and the numbers of different LU types in 2000 after modification by the simulation numbers are as follows (Table 1):
2.4.2. Deep Learning Module
2.4.3. Spatial Allocation Module
3. Results and Discussion
3.1. Competing Methods
3.2. Reconstruction of the LUCC Dataset of Zhenlai County from 2000 to 2019
4. Discussion
- (1)
- (2)
- Future studies should use high-resolution datasets, consider various drivers, such as land-use policies, population density, space, and geophysical and socioeconomic factors, and analyze the impacts of different factors.
- (3)
- The LUCC reconstruction and prediction in areas with large spatiotemporal ranges and different ecogeographical features can be studied. The future work plan is to reconstruct and predict the LUCC of Northeast China from 1950 to 2050 through the DLURM to investigate the spatiotemporal evolution pattern.
- (4)
- Expanding the range of the adjacent grids to 64 × 64 or 256 × 256 can be considered, and a convolution neural network can be used to capture the potential spatial elements to completely represent the neighborhood effects. Through comparisons, the choice between multi-area modeling or holistic modeling in a large spatiotemporal range can be determined.
5. Conclusions
- (1)
- In this paper, a novel model that integrates deep learning for LUCC reconstruction, namely, the DLURM, was proposed. This model can learn the long-term spatiotemporal distribution pattern of LUCC and capture the potential spatial characteristics of the neighborhoods by using historical multiperiod LUCC data sets interpreted with HCI to effectively represent the neighborhood effect.
- (2)
- Compared with traditional models, the HLURM and CA-Markov model, the DLURM had higher performance, higher robustness, and a better match to the actual LU spatial distribution. Taking Zhenlai County as an example, this paper used a novel model that integrates deep learning for LUCC reconstruction, i.e., the DLURM, to reconstruct the year-by-year LUCC information from 2000 to 2019. [51,52,53,54]. The DLURM provides tools for long-term high-resolution LUCC reconstruction.
- (3)
- The DLURM is customizable and has a high degree of freedom and strong scalability. In addition, it is based on multi-source data and interdisciplinary reconstruction. In related research, different data sources are fused to obtain more information about LUCC. LUCC reconstruction can complement different perspectives and verify the reconstruction results so as to improve the reconstruction accuracy. In summary, the fusion of different methods and data sources can increase the information about environmental change in a large space-time scale.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Code | Geomorphology | Code | Geomorphology |
---|---|---|---|
0 | Low altitude semifixed grass shrub stone | 10 | Low-altitude higher terraces of rivers |
1 | Low-altitude semifixed gently undulating sand | 11 | Low-altitude lacustrine alluvial lower terraces |
2 | Low-altitude alluvial floodplain | 12 | Low-altitude lacustrine alluvial plain |
3 | Low-altitude alluvial pluvial low platform | 13 | Low-altitude lacustrine lower terraces |
4 | Low-altitude alluvial pluvial high platform | 14 | Low-altitude lacustrine higher terraces |
5 | Low-altitude alluvial lacustrine plain | 15 | Low-altitude lacustrine plain |
6 | Low-altitude alluvial plain | 16 | Low-altitude lakeshore |
7 | Low-altitude alluvial-fan plain | 17 | Low-altitude erosion denuded low platform |
8 | Low-altitude fixed and gently undulating sand | 18 | Lake |
9 | Low-altitude lower terraces of rivers | 19 | Low-altitude erosion denuded low hills |
Code | Soil | Code | Soil |
---|---|---|---|
0 | planosol | 14 | glen meadow soil |
1 | dark chernozem | 15 | salinized meadow soil with soda |
2 | chernozem | 16 | ±soda meadow saline soils + meadow alkali soil |
3 | light chernozem | 17 | meadow marsh soil |
4 | light chernozem + meadow alkali soil | 18 | humus marsh soil |
5 | meadow chernozem | 19 | peat soil |
6 | carbonate chernozem | 20 | alluvial soil |
7 | dark chestnut soil | 21 | meadow saline soil |
8 | meadow dark chestnut soil | 22 | soda meadow saline soil + meadow alkali soil |
9 | meadow soil | 23 | meadow alkali soil |
10 | dark meadow soil | 24 | meadow alkali soil + soda meadow saline soils |
11 | carbonate meadow soil | 25 | grass wind sandy soil |
12 | carbonate meadow soil + meadow alkali soil | 26 | meadow aeolian sandy soil |
13 | albic meadow soil | 27 | water |
References
- Fu, P.; Weng, Q.H. A time series analysis of urbanization induced land. use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Lyu, R.; Clarke, K.C.; Zhang, J.; Jia, X.; Feng, J.; Li, J. The impact of urbanization and climate change on ecosystem services: A case study of the city belt along the Yellow River in Ningxia, China. Comput. Environ. Urban Syst. 2019, 77, 101351. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F. Modelling and monitoring land-cover change processes in tropical regions. Prog. Phys. Geogr. 1997, 21, 375–393. [Google Scholar] [CrossRef]
- Turner Ii, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.; Swanson, F.; Aber, J.; Burke, I.; Brokaw, N.; Tilman, D.; Knapp, A. The importance of land-use legacies to ecology and conservation. Bioscience 2003, 53, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Gragson, T.L.; Bolstad, P.V. Land use legacies and the future of southern Appalachia. Soc. Nat. Resour. 2006, 19, 175–190. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Change-Hum. Policy Dimens. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S.; Yang, J.; Xing, X.; Wang, D. Using a cellular automata-markov model to reconstruct spatial land-use patterns in Zhenlai county, Northeast China. Energies 2015, 8, 3882–3902. [Google Scholar] [CrossRef]
- Garosi, Y.; Sheklabadi, M.; Conoscenti, C.; Pourghasemi, H.R.; Van Oost, K. Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Sci. Total Environ. 2019, 664, 1117–1132. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Han, W.; Feng, R.; Wang, L.; Cheng, Y. A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification. ISPRS J. Photogramm. Remote Sens. 2018, 145, 23–43. [Google Scholar] [CrossRef]
- Heipke, C.; Rottensteiner, F. Deep learning for geometric and semantic tasks in photogrammetry and remote sensing. Geo-Spat. Inf. Sci. 2020, 23, 10–19. [Google Scholar] [CrossRef]
- Horning, N.; Fleishman, E.; Ersts, P.J.; Fogarty, F.A.; Wohlfeil Zillig, M.; Pettorelli, N.; Disney, M. Mapping of land cover with open-source software and ultra-high-resolution imagery acquired with unmanned aerial vehicles. Remote Sens. Ecol. Conserv. 2020. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, Y.; Xu, D.; Zhang, S. Use of intensity analysis to measure land use changes from 1932 to 2005 in Zhenlai county, Northeast China. Chin. Geogr. Sci. 2017, 27, 441–455. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S. Historical arable land change in an eco-fragile area: A case study in Zhenlai county, Northeastern China. Sustainability 2018, 10, 3940. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, S.; Yang, J.; Chang, L.; Bu, K.; Xing, X. A review of historical reconstruction methods of land use/land cover. J. Geogr. Sci. 2014, 24, 746–766. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S.; Liu, Y.; Xing, X.; de Sherbinin, A. Analyzing historical land use changes using a historical land use reconstruction model: A case study in Zhenlai county, northeastern China. Sci. Rep. 2017, 7, 41275. [Google Scholar] [CrossRef]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience Remote Sens. 2019, 57, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Aung, S.W.Y.; Khaing, S.S.; Aung, S.T. Multi-label land cover indices classification of satellite images using deep learning. In Big Data Analysis and Deep Learning Applications. ICBDL 2018. Advances in Intelligent Systems and Computing; Zin, T., Lin, J.W., Eds.; Springer: Singapore, 2019; pp. 94–103. [Google Scholar]
- Flynn, T.; Rozanov, A.; de Clercq, W.; Warr, B.; Clarke, C. Semi-automatic disaggregation of a national resource inventory into a farm-scale soil depth class map. Geoderma 2019, 337, 1136–1145. [Google Scholar] [CrossRef]
- Bai, S.Y.; Zhang, S.W.; Zhang, Y.Z. Correlation analysis on the arable land distribution and changes. Chin. J. Soil Sci. 2005, 36, 652–654. [Google Scholar] [CrossRef]
- Bu, K.; Zhang, S.W.; Zhang, Y.Z.; Wang, W.J.; Zhang, Y.B. The Effect of Soil Types on the Process of Farmland in Sanjiang Plain in Recent 50 Year. Resour. Sci. 2008, 30, 702–708. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, C.W.; Shi, M.H. Spatial autocorrelation analysis of multi-scale land use change at mountainous areas in Guizhou province. Trans. Chin. Soc. Agric. Eng. 2012, 20, 239–246. [Google Scholar] [CrossRef]
- Lin, Q.; Luo, G.P.; Chen, X. Review of Land-use Model. Prog. Geogr. 2005, 24, 79–87. [Google Scholar] [CrossRef]
- Bai, S.Y.; Zhang, S.W. The Discussion of the Method of Land Utilization Spatial Information Reappearance of History Period. J. Arid Land Resour. Environ. 2004, 18, 77–80. [Google Scholar] [CrossRef]
- Li, Z.T.; Li, M.; Xia, B.C. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation. Ecol. Indic. 2020, 114, 106319. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Shen, Y.; Kong, D.; Zhou, X. LUCC-driven changes in gross primary production and actual evapotranspiration in Northern China. J. Geophys. Res. Atmos. 2020, 125, e2019JD031705. [Google Scholar] [CrossRef]
- Colné, J.; Conart, J.B.; Luc, A.; Perrenot, C.; Berrod, J.P.; Angioi-Duprez, K. Simulateur de chirurgie de cataracte EyeSi: Validité de construction des modules capsulorhexis, phacoémulsification et aspiration des masses cristalliniennes. J. Fr. Ophtalmol. 2019, 42, 49–56. [Google Scholar] [CrossRef]
- Li, K.; Feng, M.; Biswas, A.; Su, H.; Niu, Y.; Cao, J. Driving factors and future prediction of land use and cover change based on satellite remote sensing data by the LCM model: A case study from Gansu Province, China. Sensors 2020, 20, 2757. [Google Scholar] [CrossRef]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Ho Tong Minh, D. Combining sentinel-1 and sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Lyu, H.B.; Lu, H.; Mou, L.C. Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sens. 2016, 8, 506. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.; Cai, J.; Fu, P.; Hu, L.; Liu, T. Deep learning-based fusion of landsat-8 and sentinel-2 images for a harmonized surface reflectance product. Remote Sens. Environ. 2019, 235, 111425. [Google Scholar] [CrossRef]
- Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. Joint deep learning for land cover and land use classification. Remote Sens. Environ. 2019, 221, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H.; Tao, X. Deep learning based winter wheat mapping using statistical data as ground references in Kansas and northern Texas, US. Remote Sens. Environ. 2019, 233, 111411. [Google Scholar] [CrossRef]
- Liu, J.; Tian, H.; Liu, M.; Zhuang, D.; Melillo, J.M.; Zhang, Z. China’s changing landscape during the 1990s: Large-scale land transformations estimated with satellite data. Geophys. Res. Lett. 2005, 32, L02405. [Google Scholar] [CrossRef] [Green Version]
- Churches, C.E.; Wampler, P.J.; Sun, W.; Smith, A.J. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhang, Z.X.; Xu, X.L.; Kuang, W.H.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; Yu, D.S.; Wu, S.X.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Bodart, C.; Eva, H.; Beuchle, R.; Raši, R.; Simonetti, D.; Stibig, H.J.; Brink, A.; Lindquist, E.; Achard, F. Pre-processing of a sample of multi-scene and multi-date Landsat imagery used to monitor forest cover changes over the tropics. ISPRS J. Photogramm. Remote Sens. 2011, 66, 555–563. [Google Scholar] [CrossRef]
- Rogan, J.; Franklin, J.; Roberts, D.A. A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sens. Environ. 2002, 80, 143–156. [Google Scholar] [CrossRef]
- Glanz, H.; Carvalho, L.; Sulla-Menashe, D.; Friedl, M.A. A parametric model for classifying land cover and evaluating training data based on multi-temporal remote sensing data. ISPRS J. Photogramm. Remote Sens. 2014, 97, 219–228. [Google Scholar] [CrossRef]
- Tang, J.; Chen, F.; Schwartz, S.S. Assessing spatiotemporal variations of greenness in the Baltimore–Washington corridor area. Landsc. Urban Plan. 2012, 105, 296–306. [Google Scholar] [CrossRef]
- Kontgis, C.; Schneider, A.; Ozdogan, M. Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data. Remote Sens. Environ. 2015, 169, 255–269. [Google Scholar] [CrossRef]
- Xing, W.; Qian, Y.; Guan, X.; Yang, T.; Wu, H. A novel cellular automata model integrated with deep learning for dynamic spatio-temporal land use change simulation. Comput. Geosci. 2020, 137, 104430. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S. Simulating multiple class urban land-use/cover changes by RBFN-based CA model. Comput. Geosci. 2011, 37, 111–121. [Google Scholar] [CrossRef]
- Wu, H.; Lin, A.; Zhou, J.; Li, Z.; Clarke, K.C.; Shi, W.; Fang, L. Examining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change. Int. J. Geogr. Inf. Sci. 2019, 33, 1040–1061. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, R.; Herold, M.; Verburg, P.H.; Clevers, J.G.; Eberle, J. Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Glob. Chang. Biol. 2015, 21, 299–313. [Google Scholar] [CrossRef]
- Fuchs, R.; Herold, M.; Verburg, P.H.; Clevers, J.G.P.W. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences 2013, 10, 1543–1559. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, R.; Verburg, P.H.; Clevers, J.G.P.W.; Herold, M. The potential of old maps and encyclopaedias for reconstructing historic European land cover/use change. Appl. Geogr. 2015, 59, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167–1181. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef] [Green Version]
- García, A.M.; Santé, I.; Boullón, M.; Crecente, R. A comparative analysis of cellular automata models for simulation of small urban areas in Galicia, NW Spain. Comput. Environ. Urban Syst. 2012, 36, 291–301. [Google Scholar] [CrossRef]
- Chen, H.; Pontius, R.G. Diagnostic tools to evaluate a spatial land change projection along a gradient of an explanatory variable. Landsc. Ecol. 2010, 25, 1319–1331. [Google Scholar] [CrossRef]
2005 | 2000 | 1986 | ||||
---|---|---|---|---|---|---|
Amount | Percentage | Amount | Percentage | Amount | Percentage | |
Arable land | 264,991 | 39.73% | 249,553 | 37.41% | 247,986 | 37.18% |
Forestland | 23,634 | 3.54% | 23,972 | 3.59% | 24,659 | 3.70% |
Grassland | 78,414 | 11.76% | 75,542 | 11.33% | 90,563 | 13.58% |
Wetland | 126,260 | 18.93% | 135,195 | 20.27% | 124,909 | 18.73% |
Water | 31,605 | 4.74% | 37,664 | 5.65% | 38,381 | 5.75% |
Settlement | 16,501 | 2.47% | 15,663 | 2.35% | 15,454 | 2.32% |
Other unused land | 125,597 | 18.83% | 129,413 | 19.40% | 125,050 | 18.75% |
2013 | 2010 | 2008 | ||||
---|---|---|---|---|---|---|
Amount | Percentage | Amount | Percentage | Amount | Percentage | |
Arable land | 267,034 | 40.03% | 268,303 | 40.23% | 265,890 | 39.86% |
Forestland | 23,259 | 3.49% | 18,938 | 2.84% | 19,402 | 2.91% |
Grassland | 76,903 | 11.53% | 84,094 | 12.61% | 79,608 | 11.94% |
Wetland | 125,085 | 18.75% | 122,299 | 18.34% | 130,671 | 19.59% |
Water | 34,139 | 5.12% | 31,705 | 4.75% | 31,305 | 4.69% |
Settlement | 16,536 | 2.48% | 16,528 | 2.48% | 17,353 | 2.60% |
Other unused land | 124,046 | 18.60% | 125,135 | 18.76% | 122,773 | 18.41% |
DLURM | HLURM | CA-Markov | |
---|---|---|---|
1986 | 89.59% | 83.90% | 82.06% |
2000 | 91.43% | 82.47% | 79.93% |
2005 | 95.00% | 81.96% | 86.25% |
2008 | 92.60% | 80.96% | 89.33% |
2010 | 93.58% | 86.69% | 88.80% |
2013 | 95.01% | 83.30% | 89.50% |
average | 92.87% | 83.21% | 85.98% |
2013 | 2010 | 2008 | 2005 | 2000 | 1986 | Average | ||
---|---|---|---|---|---|---|---|---|
DLURM | hits | 2.02% | 2.75% | 1.38% | 3.96% | 4.11% | 2.51% | 2.79% |
null success | 93.20% | 91.59% | 91.67% | 91.35% | 88.32% | 88.21% | 90.72% | |
misses | 0.62% | 1.63% | 1.88% | 0.57% | 2.01% | 3.61% | 1.72% | |
false alarms | 4.17% | 4.02% | 5.07% | 4.12% | 5.57% | 5.67% | 4.77% | |
HLURM | hits | 1.88% | 2.92% | 2.33% | 4.30% | 4.29% | 2.22% | 2.99% |
null success | 86.53% | 85.82% | 85.75% | 83.61% | 82.08% | 82.78% | 84.43% | |
misses | 0.75% | 1.47% | 0.93% | 0.23% | 1.83% | 3.90% | 1.52% | |
false alarms | 10.84% | 9.79% | 10.99% | 11.86% | 11.80% | 11.10% | 11.06% | |
CA-Markov | hits | 0.13% | 0.23% | 0.30% | 0.22% | 1.18% | 0.70% | 0.46% |
null success | 89.68% | 88.89% | 89.30% | 86.33% | 79.80% | 77.71% | 85.29% | |
misses | 2.50% | 4.16% | 2.96% | 4.29% | 4.92% | 5.40% | 4.04% | |
false alarms | 7.69% | 6.72% | 7.44% | 9.15% | 14.09% | 16.19% | 10.21% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yubo, Z.; Zhuoran, Y.; Jiuchun, Y.; Yuanyuan, Y.; Dongyan, W.; Yucong, Z.; Fengqin, Y.; Lingxue, Y.; Liping, C.; Shuwen, Z. A Novel Model Integrating Deep Learning for Land Use/Cover Change Reconstruction: A Case Study of Zhenlai County, Northeast China. Remote Sens. 2020, 12, 3314. https://doi.org/10.3390/rs12203314
Yubo Z, Zhuoran Y, Jiuchun Y, Yuanyuan Y, Dongyan W, Yucong Z, Fengqin Y, Lingxue Y, Liping C, Shuwen Z. A Novel Model Integrating Deep Learning for Land Use/Cover Change Reconstruction: A Case Study of Zhenlai County, Northeast China. Remote Sensing. 2020; 12(20):3314. https://doi.org/10.3390/rs12203314
Chicago/Turabian StyleYubo, Zhang, Yan Zhuoran, Yang Jiuchun, Yang Yuanyuan, Wang Dongyan, Zhang Yucong, Yan Fengqin, Yu Lingxue, Chang Liping, and Zhang Shuwen. 2020. "A Novel Model Integrating Deep Learning for Land Use/Cover Change Reconstruction: A Case Study of Zhenlai County, Northeast China" Remote Sensing 12, no. 20: 3314. https://doi.org/10.3390/rs12203314
APA StyleYubo, Z., Zhuoran, Y., Jiuchun, Y., Yuanyuan, Y., Dongyan, W., Yucong, Z., Fengqin, Y., Lingxue, Y., Liping, C., & Shuwen, Z. (2020). A Novel Model Integrating Deep Learning for Land Use/Cover Change Reconstruction: A Case Study of Zhenlai County, Northeast China. Remote Sensing, 12(20), 3314. https://doi.org/10.3390/rs12203314