Utilizing Hyperspectral Remote Sensing for Soil Gradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Remote Sensing Background
2.2. Sensors and Hardware
2.3. Laboratory Testing Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Cola, S.; Simonini, P. Mechanical behavior of silty soils of the Venice lagoon as a function of their grading characteristics. Can. Geotech. J. 2002, 39, 879–893. [Google Scholar] [CrossRef]
- Kuenza, K.; Towhata, I.; Orense, R.P.; Wassan, T.H. Undrained torsional shear tests on gravelly soils. Landslides 2004, 1, 185–194. [Google Scholar] [CrossRef]
- Simoni, A.; Houlsby, G.T. The Direct Shear Strength and Dilatancy of Sand–gravel Mixtures. Geotech. Geol. Eng. 2006, 24, 523–549. [Google Scholar] [CrossRef]
- McCullough, D.M.; Jayakumar, D.P.; Dasch, D.J.; Gorsich, D.D. Developing the Next Generation NATO Reference Mobility Model. In Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium, Novi, MI, USA, 2–4 August 2016. [Google Scholar]
- Bouali, E.; Oommen, T.; Escobar-Wolf, R. Interferometric Stacking toward Geohazard Identification and Geotechnical Asset Monitoring. J. Infrastruct. Syst. 2016, 22. [Google Scholar] [CrossRef]
- Bouali, E.; Oommen, T.; Escobar-Wolf, R. Mapping of slow landslides on the Palos Verdes Peninsula using the California landslide inventory and persistent scatterer interferometry. Landslides 2018, 15, 439–452. [Google Scholar] [CrossRef]
- Escobar-Wolf, R.; Oommen, T.; Brooks, C.N.; Dobson, R.J.; Ahlborn, T.M. Unmanned Aerial Vehicle (UAV)-Based Assessment of Concrete Bridge Deck Delamination Using Thermal and Visible Camera Sensors: A Preliminary Analysis. Res. Nondestruct. Eval. 2018, 29, 183–198. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Oommen, T.; Bouali, E.H.; Escobar-Wolf, R. New Paradigm in Geotechnical Performance Monitoring Using Remote Sensing. In Geotechnical Design and Practice; Springer: Singapore, 2019; pp. 195–201. [Google Scholar] [CrossRef]
- Stark, N.; McNinch, J.; Wadman, H.; Graber, H.C.; Albatal, A.; Mallas, P.A. Friction angles at sandy beaches from remote imagery. Géotech. Lett. 2017, 7, 292–297. [Google Scholar] [CrossRef]
- Rühlmann, M.; Büchele, D.; Ostermann, M.; Bald, I.; Schmid, T. Challenges in the quantification of nutrients in soils using laser-induced breakdown spectroscopy—A case study with calcium. Spectrochim. Acta Part B At. Spectrosc. 2018, 146, 115–121. [Google Scholar] [CrossRef]
- Hong, H.; Churchman, G.J.; Yin, K.; Li, R.; Li, Z. Randomly interstratified illite–vermiculite from weathering of illite in red earth sediments in Xuancheng, southeastern China. Geoderma 2014, 214, 42–49. [Google Scholar] [CrossRef]
- Yin, K.; Hong, H.; Churchman, G.J.; Li, Z.; Fang, Q. Mixed-layer illite-vermiculite as a paleoclimatic indicator in the Pleistocene red soil sediments in Jiujiang, southern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 510, 140–151. [Google Scholar] [CrossRef]
- Środoń, J.; Drits, V.A.; McCarty, D.K.; Hsieh, J.C.; Eberl, D.D. Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations. Clays Clay Miner. 2001, 49, 514–528. [Google Scholar] [CrossRef]
- Rossel, R.A.V.; McGlynn, R.N.; McBratney, A.B. Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy. Geoderma 2006, 137, 70–82. [Google Scholar] [CrossRef]
- Lamine, S.; Petropoulos, G.P.; Brewer, P.A.; Bachari, N.E.; Srivastava, P.K.; Manevski, K.; Kalaitzidis, C.; Macklin, M.G. Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom. Sensors 2019, 19, 762. [Google Scholar] [CrossRef] [Green Version]
- Shaw, G.A.; Burke, H.-h.K. Spectral Imaging for Remote Sensing. Linc. Lab. J. 2003, 14, 3–28. [Google Scholar]
- Sousa, D.; Small, C. Multisensor Analysis of Spectral Dimensionality and Soil Diversity in the Great Central Valley of California. Sensors 2018, 18, 583. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, B.C.; Oommen, T.; Misra, D.; Newby, G. Using the one-dimensional S-transform as a discrimination tool in classification of hyperspectral images. Can. J. Remote Sens. 2007, 33, 551–560. [Google Scholar] [CrossRef]
- Vohland, M.; Ludwig, M.; Thiele-Bruhn, S.; Ludwig, B. Quantification of Soil Properties with Hyperspectral Data: Selecting Spectral Variables with Different Methods to Improve Accuracies and Analyze Prediction Mechanisms. Remote Sens. 2017, 9, 1103. [Google Scholar] [CrossRef] [Green Version]
- Bowers, S.A.; Hanks, R.J. Reflectance of radiant energy from soils. Soil Sci. 1965, 100, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.K. Spectral reflectance characteristics of soils and its correlation with soil properties and surface conditions. J. Indian Soc. Remote Sens. 1986, 14, 1–9. [Google Scholar] [CrossRef]
- Coleman, T.L.; Agbu, P.A.; Montgomery, O.L. Spectral Differentiation of Surface Soils and Soil Properties: Is It Possible from Space Platforms? Soil Sci. 1993, 155, 283–293. [Google Scholar] [CrossRef]
- Orlov, D.; Sukhanova, N.; Rozanova, M. Spectral reflectance of soils and their components. Mosc. State Univ. Mosc. Russ. 2001, 200, 175. [Google Scholar]
- Fox, G.A.; Sabbagh, G.J. Estimation of Soil Organic Matter from Red and Near-Infrared Remotely Sensed Data Using a Soil Line Euclidean Distance Technique. Soil Sci. Soc. Am. J. 2002, 66, 1922–1929. [Google Scholar] [CrossRef]
- Barnes, E.M.; Sudduth, K.A.; Hummel, J.W.; Lesch, S.M.; Corwin, D.L.; Yang, C.; Daughtry, C.S.; Bausch, W.C. Remote-and ground-based sensor techniques to map soil properties. Photogramm. Eng. Remote Sens. 2003, 69, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Metternicht, G.; Zinck, A. Remote Sensing of Soil Salinization: Impact on Land Management, 1st ed.; CRC Press Inc.: Baton Rouge, LA, USA, 2008. [Google Scholar] [CrossRef]
- Bellinaso, H.; Demattê, J.A.M.; Romeiro, S.A. Soil spectral library and its use in soil classification. Revista Brasileira de Ciência do Solo 2010, 34, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Prudnikova, E.; Savin, I. Effect of Open Soil Surface Patterns on Soil Detectability Based on Optical Remote Sensing Data. Proceedings 2018, 2, 357. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Hong, H.; Zhao, L.; Kukolich, S.; Yin, K.; Wang, C. Visible and Near-Infrared Reflectance Spectroscopy for Investigating Soil Mineralogy: A Review. J. Spectrosc. 2018, 2018, 3168974. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Cattle, S.R.; Ortega, A.; Fouad, Y. In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma 2009, 150, 253–266. [Google Scholar] [CrossRef]
- José, A.M.D.; Suzana, R.A.; Peterson, R.F. Variation of Routine Soil Analysis When Compared with Hyperspectral Narrow Band Sensing Method. Remote Sens. 2010, 2, 1998–2016. [Google Scholar] [CrossRef] [Green Version]
- Ouillon, S.; Lucas, Y.; Gaggelli, J. Hyperspectral Detection of Sand. Presented at the Seventh International Conference on Remote Sensing for Marine and Coastal Evironments, Miami, FL, USA, 20–22 May 2002; Available online: http://www.legos.obs-mip.fr/members/ouillon/publications/Ouillon_et_al_Proc2002.pdf?lang=en (accessed on 8 October 2020).
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Selige, T.; Böhner, J.; Schmidhalter, U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma 2006, 136, 235–244. [Google Scholar] [CrossRef]
- ASTM D2487-17e1. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar] [CrossRef]
- BaySpec, Inc. OCITM-F Ultra-Compact Hyperspectral Imager User Manual, 1.2 ed.; BaySpec, Inc.: San Jose, CA, USA, 2018; p. 66. [Google Scholar]
- Zwissler, B.; Oommen, T.; Vitton, S.; Seagren, E.A. Thermal Remote Sensing For Moisture Content Monitoring of Mine Tailings: Laboratory Study. Environ. Eng. Geosci. 2017, 23, 299–312. [Google Scholar] [CrossRef]
- Analytical Spectral Devices, Inc. (ASD). FieldSpec®3 User Manual. 2010. Available online: http://www.geo-informatie.nl/courses/grs60312/material2017/manuals/600540-JFieldSpec3UserManual.pdf (accessed on 8 October 2020).
- Campbell Scientific, Inc. CR1000X: Measurment and Control Datalogger. In Product Manual. 2018. Available online: https://s.campbellsci.com/documents/us/manuals/cr1000x-product-manual.pdf (accessed on 8 October 2020).
- Campbell Scientific, Inc. CS615-Water Content Reflectometer. 1996. Available online: https://www.campbellsci.com/cs615-l (accessed on 8 October 2020).
Fine | Coarse | Rink | Stability | 2NS | |
---|---|---|---|---|---|
% Gravel | 0.0 | 16.8073 | 10.7 | 31.1 | 0.6 |
% Sand | 40.6 | 73.73772 | 66.4 | 58.8 | 97.3 |
% Fine | 59.4 | 9.454973 | 23.0 | 10.0 | 2.1 |
D10 | 0.0151 | 0.085 | 0.015 | 0.075 | 0.175 |
D30 | 0.043 | 0.27 | 0.12 | 0.25 | 0.315 |
D60 | 0.076 | 0.38 | 0.25 | 2.65 | 0.7 |
Cu | 5.03 | 4.5 | 16.7 | 35.3 | 4.0 |
Cc | 1.61 | 2.3 | 3.8 | 0.3 | 0.7 |
USCS Classification | ML = Sandy Silt | SP-SM = Poorly Graded Sand with Silt and Gravel | SM = Silty Sand | SW-SM = Well Graded Sand with Silt and Gravel | SP = Poorly Graded Sand |
Soils (Actual/Predicted/Difference) | % Gravel (Act./Pred./Diff.) | % Sand (Act./Pred./Diff.) | % Fine (Act./Pred./Diff.) |
---|---|---|---|
Fine | 0.0/42.8/+42.8 | 40.6/41.2/+0.6 | 59.4/16.0/−43.4 |
Coarse | 16.8/17.3/+0.5 | 73.7/71.0/−2.7 | 9.5/11.7/+2.2 |
Rink | 10.7/11.0/+0.3 | 66.4/78.4/+12.0 | 23.0/10.6/−12.4 |
Stability | 31.1/30.8/−0.3 | 58.8/55.3/−3.5 | 10.0/13.9/+3.9 |
2NS | 0.6/0.2/−0.4 | 97.3/91.0/−6.3 | 2.1/8.8/+6.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ewing, J.; Oommen, T.; Jayakumar, P.; Alger, R. Utilizing Hyperspectral Remote Sensing for Soil Gradation. Remote Sens. 2020, 12, 3312. https://doi.org/10.3390/rs12203312
Ewing J, Oommen T, Jayakumar P, Alger R. Utilizing Hyperspectral Remote Sensing for Soil Gradation. Remote Sensing. 2020; 12(20):3312. https://doi.org/10.3390/rs12203312
Chicago/Turabian StyleEwing, Jordan, Thomas Oommen, Paramsothy Jayakumar, and Russell Alger. 2020. "Utilizing Hyperspectral Remote Sensing for Soil Gradation" Remote Sensing 12, no. 20: 3312. https://doi.org/10.3390/rs12203312
APA StyleEwing, J., Oommen, T., Jayakumar, P., & Alger, R. (2020). Utilizing Hyperspectral Remote Sensing for Soil Gradation. Remote Sensing, 12(20), 3312. https://doi.org/10.3390/rs12203312