Comparison of Cloud-Filling Algorithms for Marine Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Satellite Data
2.3. Estimation of Algorithm Accuracy
2.3.1. Overview
- Identify a set of mostly cloud-free images ICF for the study area based on a threshold, e.g., 90% visible
- For each cloud-free image iCF ∈ ICF:
- For each image iC ∉ ICF (i.e., all images for the study area that are not cloud-free):
- Transplant clouds from iC onto iCF, but leave all other images unmodified
- Use the cloud-filling algorithm to reconstruct iCF
- Calculate reconstruction errors (mean per-pixel error and error of study area mean) for this combination of iCF and iC
- Average reconstruction errors over all combinations of iCF and iC
2.3.2. Cloud-Free Images and Cloudmasks
2.3.3. Error Measures
2.4. Cloud-Filling Algorithms
2.4.1. Baselines for Comparison (Random Missing Pixels, Clouds but no Correction, Mean Model, Correction Factor)
2.4.2. Geostatistical Interpolation Methods
2.4.3. DINEOF
2.4.4. Self-Organizing Maps
2.4.5. Supervised Learning
3. Results
3.1. Per-Pixel Reconstruction Errors
3.2. Errors of Regional Means
3.3. Summary of Algorithm Accuracy
3.4. Errors of Regional Means as a Function of Cloud Cover
4. Discussion
4.1. Algorithm Recommendations
4.2. Scope and Limitations of Study Design
4.3. Properties of the Best Algorithms
5. Conclusions
- Data gaps caused by clouds lead to errors in estimated regional mean chlorophyll a concentrations. These errors can, however, be substantially reduced by prior gap-filling, even with simple algorithms.
- The best algorithm depends on the specific study area, data, and task. Ordinary Kriging, spatiotemporal Kriging, and DINEOF worked well across study areas and tasks, are available in various software packages and are thus recommended as generic gap-filling approaches for marine satellite data. The choice between these algorithms should take the data’s temporal resolution into account.
- Random forests including predictors that allow spatiotemporal interpolation reconstructed individual pixel values most accurately. This result suggests that the continued development of interpolating supervised learning methods for filling data gaps in marine satellite imagery is a promising direction for future research.
- The recommended cloud-filling algorithms allowed interpolation in space and/or time over relatively large distances. Correlated oceanographic variables such as SST and SLA may help to fill in local details, or serve as a backup if clouds are persistent and widespread, but did not by themselves allow the accurate reconstruction of Chl a.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halpern, B.S.; Frazier, M.; Afflerbach, J.; Lowndes, J.S.; Micheli, F.; O’Hara, C.; Scarborough, C.; Selkoe, K.A. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauly, D.; Christensen, V.; Guénette, S.; Pitcher, T.J.; Sumaila, U.R.; Walters, C.J.; Watson, R.A.; Zeller, D. Towards sustainability in world fisheries. Nature 2002, 418, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Poloczanska, E.S.; Brown, C.J.; Sydeman, W.J.; Kiessling, W.; Schoeman, D.S.; Moore, P.J.; Brander, K.; Bruno, J.F.; Buckley, L.B.; Burrows, M.T.; et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 2013, 3, 919–925. [Google Scholar] [CrossRef]
- Stock, A.; Crowder, L.B.; Halpern, B.S.; Micheli, F. Uncertainty analysis and robust areas of high and low modeled human impact on the global oceans. Conserv. Biol. 2018, 32, 1368–1379. [Google Scholar] [CrossRef] [PubMed]
- McClain, C.R. A decade of ocean color observations. Annu. Rev. Mar. Sci. 2009, 1, 19–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites. IEEE Trans. Geosci. Remote. Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Warren, S.; Eastman, R.; Hahn, C. CLOUDS AND FOG | Climatology. In Encyclopedia of Atmospheric Sciences; Elsevier: Amsterdam, The Netherlands, 2015; pp. 161–169. [Google Scholar]
- Carr, M.-E.; Friedrichs, M.A.; Schmeltz, M.; Aita, M.N.; Antoine, D.; Arrigo, K.R.; Asanuma, I.; Aumont, O.; Barber, R.P.; Behrenfeld, M.; et al. A comparison of global estimates of marine primary production from ocean color. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 741–770. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Marra, J.; Perry, M.J.; Kahru, M. Estimating oceanic primary productivity from ocean color remote sensing: A strategic assessment. J. Mar. Syst. 2015, 149, 50–59. [Google Scholar] [CrossRef]
- Field, C.B. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Boyce, D.G.; Dowd, M.; Lewis, M.R.; Worm, B. Estimating global chlorophyll changes over the past century. Prog. Oceanogr. 2014, 122, 163–173. [Google Scholar] [CrossRef]
- Arrigo, K.R.; Van Dijken, G.L.; Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 2008, 35, 1–6. [Google Scholar] [CrossRef]
- Arrigo, K.R.; Van Dijken, G.L. Secular trends in Arctic Ocean net primary production. J. Geophys. Res. Space Phys. 2011, 116, 1–15. [Google Scholar] [CrossRef]
- Ardyna, M.; Babin, M.; Gosselin, M.; Devred, E.; Rainville, L.; Tremblay, J.-É. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 2014, 41, 6207–6212. [Google Scholar] [CrossRef]
- Arrigo, K.R.; Van Dijken, G.L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 2015, 136, 60–70. [Google Scholar] [CrossRef]
- Carstensen, J.; Andersen, J.H.; Gustafsson, B.G.; Conley, D.J. Deoxygenation of the Baltic Sea during the last century. Proc. Natl. Acad. Sci. USA 2014, 111, 5628–5633. [Google Scholar] [CrossRef] [Green Version]
- Fleming-Lehtinen, V.; Andersen, J.H.; Carstensen, J.; Łysiak-Pastuszak, E.; Murray, C.; Pyhälä, M.; Laamanen, M. Recent developments in assessment methodology reveal that the Baltic Sea eutrophication problem is expanding. Ecol. Indic. 2015, 48, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.J.; Muller-Karulis, B.; Carstensen, J.; Conley, D.J.; Gustafsson, B.G.; Andersen, J.H. Past, Present and Future Eutrophication Status of the Baltic Sea. Front. Mar. Sci. 2019, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rabalais, N.N.; Turner, R.E.; Wiseman, W.J. Gulf of Mexico hypoxia, a.k.a. ‘The dead zone’. Annu. Rev. Ecol. Syst. 2002, 33, 235–263. [Google Scholar] [CrossRef]
- Denman, K.L.; Dower, J.F. Patch Dynamics. Encycl. Ocean Sci. 2001, 348–355. [Google Scholar]
- Martin, A. Phytoplankton patchiness: The role of lateral stirring and mixing. Prog. Oceanogr. 2003, 57, 125–174. [Google Scholar] [CrossRef]
- Sirjacobs, D.; Alvera-Azcárate, A.; Barth, A.; Lacroix, G.; Park, Y.; Nechad, B.; Ruddick, K.; Beckers, J.-M. Cloud filling of ocean colour and sea surface temperature remote sensing products over the Southern North Sea by the Data Interpolating Empirical Orthogonal Functions methodology. J. Sea Res. 2011, 65, 114–130. [Google Scholar] [CrossRef]
- Beckers, J.M.; Rixen, M.; Rixen, M. EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. J. Atmos. Ocean. Technol. 2003, 20, 1839–1856. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; Barth, A.; Rixen, M.; Beckers, J. Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: Application to the Adriatic Sea surface temperature. Ocean. Model. 2005, 9, 325–346. [Google Scholar] [CrossRef] [Green Version]
- Alvera-Azcárate, A.; Barth, A.; Beckers, J.-M.; Weisberg, R.H. Correction to Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields. J. Geophys. Res. Space Phys. 2007, 112, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; He, R. Spatial and temporal variability of SST and ocean color in the Gulf of Maine based on cloud-free SST and chlorophyll reconstructions in 2003–2012. Remote. Sens. Environ. 2014, 144, 98–108. [Google Scholar] [CrossRef]
- Alvera-Azcaràte, A.; Vanhellemont, Q.; Ruddick, K.; Barth, A.; Beckers, J.M. Analysis of high frequency geostationary ocean colour data using DINEOF. Estuar. Coast. Shelf Sci. 2015, 159, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, M.; Liu, X.; Wang, M. Filling the Gaps of Missing Data in the Merged VIIRS SNPP/NOAA-20 Ocean Color Product Using the DINEOF Method. Remote Sens. 2019, 11, 178. [Google Scholar] [CrossRef] [Green Version]
- Hilborn, A.; Costa, M.P.F. Applications of DINEOF to Satellite-Derived Chlorophyll-a from a Productive Coastal Region. Remote. Sens. 2018, 10, 1449. [Google Scholar] [CrossRef] [Green Version]
- Urquhart, E.A.; Hoffman, M.J.; Murphy, R.R.; Zaitchik, B.F. Geospatial interpolation of MODIS-derived salinity and temperature in the Chesapeake Bay. Remote. Sens. Environ. 2013, 135, 167–177. [Google Scholar] [CrossRef]
- Saulquin, B.; Gohin, F.; D’Andon, O.F. Interpolated fields of satellite-derived multi-algorithm chlorophyll-a estimates at global and European scales in the frame of the European Copernicus-Marine Environment Monitoring Service. J. Oper. Oceanogr. 2018, 12, 47–57. [Google Scholar] [CrossRef]
- Jouini, M.; Lévy, M.; Crépon, M.; Thiria, S. Reconstruction of satellite chlorophyll images under heavy cloud coverage using a neural classification method. Remote. Sens. Environ. 2013, 131, 232–246. [Google Scholar] [CrossRef]
- Chen, S.; Hu, C.; Barnes, B.B.; Xie, Y.; Lin, G.; Qiu, Z. Improving ocean color data coverage through machine learning. Remote. Sens. Environ. 2019, 222, 286–302. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.-H.; Kim, H.-C.; Kim, B.-K.; Bae, D.; Jo, Y.-H.; Jo, N.; Lee, S.H. Reconstruction of Ocean Color Data Using Machine Learning Techniques in Polar Regions: Focusing on Off Cape Hallett, Ross Sea. Remote. Sens. 2019, 11, 1366. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cota, G.F.; Comiso, J.C. Phytoplankton in the Beaufort and Chukchi Seas: Distribution, dynamics, and environmental forcing. Deep. Sea Res. Part. II Top. Stud. Oceanogr. 2005, 52, 3355–3368. [Google Scholar] [CrossRef]
- Ben Mustapha, S.; Bélanger, S.; Larouche, P. Evaluation of ocean color algorithms in the southeastern Beaufort Sea, Canadian Arctic: New parameterization using SeaWiFS, MODIS, and MERIS spectral bands. Can. J. Remote. Sens. 2012, 38, 535–556. [Google Scholar] [CrossRef]
- Lewis, K.M.; Mitchell, B.; Van Dijken, G.; Arrigo, K. Regional chlorophyll a algorithms in the Arctic Ocean and their effect on satellite-derived primary production estimates. Deep. Sea Res. Part. II Top. Stud. Oceanogr. 2016, 130, 14–27. [Google Scholar] [CrossRef]
- Grodsky, S.A.; Carton, J.A.; McClain, C.R. Variability of upwelling and chlorophyll in the equatorial Atlantic. Geophys. Res. Lett. 2008, 35, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fennel, K.; Hetland, R.; Feng, Y.; Dimarco, S. A coupled physical-biological model of the Northern Gulf of Mexico shelf: Model description, validation and analysis of phytoplankton variability. Biogeosciences 2011, 8, 1881–1899. [Google Scholar] [CrossRef] [Green Version]
- Muller-Karger, F.E.; Walsh, J.J.; Evans, R.H.; Meyers, M.B. On the seasonal phytoplankton concentration and sea surface temperature cycles of the Gulf of Mexico as determined by satellites. J. Geophys. Res. Space Phys. 1991, 96, 12645–12665. [Google Scholar] [CrossRef] [Green Version]
- Muller-Karger, F.E.; Smith, J.P.; Werner, S.; Chen, R.; Roffer, M.; Liu, Y.; Muhling, B.; Lindo, D.; Lamkin, J.; Cerdeira-Estrada, S.; et al. Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico. Prog. Oceanogr. 2015, 134, 54–76. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Wang, M. Observations of a Hurricane Katrina-induced phytoplankton bloom in the Gulf of Mexico. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Hu, C.; Weisberg, R.H.; Liu, Y.; Zheng, L.; Daly, K.L.; English, D.; Zhao, J.; Vargo, G.A. Did the northeastern Gulf of Mexico become greener after the Deepwater Horizon oil spill? Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, N.A.; Subramaniam, A.; Juhl, A.R.; Hafez, M.; Chekalyuk, A.; Phan, S.; Yan, B.; Macdonald, I.R.; Weber, S.C.; Montoya, J.P. Elevated surface chlorophyll associated with natural oil seeps in the Gulf of Mexico. Nat. Geosci. 2016, 9, 215–218. [Google Scholar] [CrossRef]
- NASA. Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Chlorophyll Data; 2014 Reprocessing; Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group: Washington, DC, USA, 2014.
- NASA. Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data; Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group: Washington, DC, USA, 2014.
- NASA. Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Chlorophyll Data; 2018 Reprocessing; Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group: Washington, DC, USA, 2018.
- NASA. Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data; 2018 Reprocessing; Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group: Washington, DC, USA, 2018.
- Meier, W.; Fetterer, F.; Savoie, M.; Mallory, S.; Duerr, R.; Stroeve, J. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3; National Snow and Ice Data Center: Washington, DC, USA, 2017. [Google Scholar]
- Peng, G.; Meier, W.N.; Scott, D.J.; Savoie, M.H. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data 2013, 5, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- NOAA. High Resolution SST data provided by the NOAA/OAR/ESRL PSD. 2019. Available online: https://www.esrl.noaa.gov/psd/ (accessed on 10 February 2019).
- Copernicus. Global Ocean Gridded L4 Sea Surface Heights and Derived Variables Reprocessed (SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047). 2019. Available online: http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047 (accessed on 10 January 2019).
- NOAA. NCEP North American Regional Reanalysis: NARR. 2019. Available online: https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html (accessed on 10 February 2019).
- Romanic, D.; Hangan, H.; Ćurić, M. Wind climatology of Toronto based on the NCEP/NCAR reanalysis 1 data and its potential relation to solar activity. Theor. Appl. Clim. 2016, 131, 827–843. [Google Scholar] [CrossRef]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.Y.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Development Core Team R. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008. [Google Scholar]
- Pebesma, E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Gräler, B.; Pebesma, E.; Heuvelink, G. Spatio-temporal geostatistics using gstat. R J. 2016, 8, 204–218. [Google Scholar] [CrossRef]
- GHER. “DINEOF”. 2016. Available online: http://modb.oce.ulg.ac.be/mediawiki/index.php/DINEOF (accessed on 27 February 2019).
- Taylor, M. Sinkr: Collection of Functions with Emphasis in Multivariate Data Analysis. R Package Version 0.6. 2017. Available online: https://github.com/marchtaylor/sinkr (accessed on 5 October 2020).
- Alvera-Azcárate, A.A.; Barth, D.S.; Beckers, J.M. Enhancing temporal correlations in EOF expansions for the reconstruction of missing data using DINEOF. Ocean Sci. 2009, 5, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Wehrens, R.; Buydens, L.M. Self-and super-organizing maps in R: The Kohonen package. J. Stat. Softw. 2007, 21, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiman, L.; Last, M.; Rice, J. Random Forests: Finding Quasars. Stat. Chall. Astron. 2006, 45, 243–254. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Stock, A.; Subramaniam, A. Accuracy of Empirical Satellite Algorithms for Mapping Phytoplankton Diagnostic Pigments in the Open Ocean: A Supervised Learning Perspective. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Raitsos, D.E.; Lavender, S.; Maravelias, C.D.; Haralabous, J.; Richardson, A.J.; Reid, P.C. Identifying four phytoplankton functional types from space: An ecological approach. Limnol. Oceanogr. 2008, 53, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, M. Gap Filling of Missing Data for VIIRS Global Ocean Color Products Using the DINEOF Method. IEEE Trans. Geosci. Remote. Sens. 2018, 56, 4464–4476. [Google Scholar] [CrossRef]
- Murphy, R.R.; Curriero, F.C.; Ball, W.P. Comparison of Spatial Interpolation Methods for Water Quality Evaluation in the Chesapeake Bay. J. Environ. Eng. 2010, 136, 160–171. [Google Scholar] [CrossRef]
- Zimmerman, D.; Pavlik, C.; Ruggles, A.; Armstrong, M.P. An Experimental Comparison of Ordinary and Universal Kriging and Inverse Distance Weighting. Math. Geol. 1999, 31, 375–390. [Google Scholar] [CrossRef]
- Lewis, K.M.; Arrigo, K.R. Ocean Color Algorithms for Estimating Chlorophyll a CDOM Absorption, and Particle Backscattering in the Arctic Ocean. J. Geophys. Res. Ocean. 2020, 125. [Google Scholar] [CrossRef]
- Bracher, A.; Bouman, H.A.; Brewin, R.J.W.; Bricaud, A.; Brotas, V.; Ciotti, Á.M.; Clementson, L.A.; Devred, E.; Di Cicco, A.; Dutkiewicz, S.; et al. Obtaining Phytoplankton Diversity from Ocean Color: A Scientific Roadmap for Future Development. Front. Mar. Sci. 2017, 4, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Willmes, S.; Gutjahr, O.; Preußer, A.; Heinemann, G. Spatial Feature Reconstruction of Cloud-Covered Areas in Daily MODIS Composites. Remote. Sens. 2015, 7, 5042–5056. [Google Scholar] [CrossRef] [Green Version]
- Buttlar, J.V.; Zscheischler, J.; Mahecha, M.D. An extended approach for spatiotemporal gapfilling: Dealing with large and systematic gaps in geoscientific datasets. Nonlinear Process. Geophys. 2014, 21, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Konik, M.; Kowalewski, M.; Bradtke, K.; Darecki, M. The operational method of filling information gaps in satellite imagery using numerical models. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 68–82. [Google Scholar] [CrossRef]
- Chen, Y.; He, W.; Yokoya, N.; Huang, C. Blind cloud and cloud shadow removal of multitemporal images based on total variation regularized low-rank sparsity decomposition. ISPRS J. Photogramm. Remote. Sens. 2019, 157, 93–107. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. Optimizing and comparing gap-filling techniques using simulated NDVI time series from remotely sensed global data. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 93–111. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. Comparison of cloud-reconstruction methods for time series of composite NDVI data. Remote. Sens. Environ. 2010, 114, 618–625. [Google Scholar] [CrossRef]
- Shen, H.; Li, X.; Cheng, Q.; Zeng, C.; Yang, G.; Li, H.; Zhang, L. Missing Information Reconstruction of Remote Sensing Data: A Technical Review. IEEE Geosci. Remote. Sens. Mag. 2015, 3, 61–85. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Zeng, C.; Li, X.; Wei, Y. Missing Data Reconstruction in Remote Sensing Image With a Unified Spatial–Temporal–Spectral Deep Convolutional Neural Network. IEEE Trans. Geosci. Remote. Sens. 2018, 56, 4274–4288. [Google Scholar] [CrossRef] [Green Version]
- Gregg, W.W.; Casey, N.W. Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote. Sens. Environ. 2004, 93, 463–479. [Google Scholar] [CrossRef]
- Andreae, M.O.; Cronin, J.; Pizzarello, S. Atmospheric Aerosols: Biogeochemical Sources and Role in Atmospheric Chemistry. Science 1997, 276, 1052–1058. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote. Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Wu, P.; Yin, Z.; Yang, H.; Wu, Y.; Ma, X. Reconstructing Geostationary Satellite Land Surface Temperature Imagery Based on a Multiscale Feature Connected Convolutional Neural Network. Remote. Sens. 2019, 11, 300. [Google Scholar] [CrossRef] [Green Version]
- Barth, A.; Alvera-Azcaràte, A.; Ličer, M.; Beckers, J.-M. DINCAE 1.0: A convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations. Geosci. Model. Dev. 2020, 13, 1609–1622. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote. Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Maritorena, S.; D’Andon, O.H.F.; Mangin, A.; Siegel, D.A. Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits and issues. Remote. Sens. Environ. 2010, 114, 1791–1804. [Google Scholar] [CrossRef]
Study Area | Study Season | Cloud-Free Images | Cloud Masks | Spatial Res. | Temporal Res. | |
---|---|---|---|---|---|---|
BS | Southern Beaufort Sea | Days 201–264 | 10 | 75 | 4 km | 8-day composites |
CS | Southern Chukchi Sea | Days 161–280 | 53 | 153 | 4 km | 8-day composites |
TA | Tropical Atlantic | Year-round | 24 | 200 (sample) | 9 km | 8-day composites |
GoM | Gulf of Mexico | Year-round | 21 | 200 (sample) | 9 km | 3-day composites |
Variable | Temporal Resolution | Sensors | Spatial Res. | References | Comments | |
---|---|---|---|---|---|---|
Chl a | Chlorophyll a | 8-day (CS, BS, TA); daily (GoM) | MODIS-Aqua (2003–2017), SeaWiFS (1998–2002) | 4 km (CS, BS), 9 km (TA, GoM) | [45,46] (CS, BS); [47,48] (TA, GoM) | CS and BS are based on 2014 reprocessing, TA and GoM on 2018 reprocessing. |
Ice | Sea ice concentration | Daily | SMMR, SSM/I, SSMIS | 25 km | [49,50] | NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3. |
SST | Sea surface temperature (NOAA OI SST V2) | Daily | AVHRR, optimally interpolated | 0.25° | [51,52] | NOAA High-Resolution SST data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. |
SLA | Sea level anomaly | Daily | All satellite altimeters operational during the study period | 0.25° | [53] | E.U. Copernicus Marine Environment Monitoring Service: Global Ocean Gridded L4 Sea Surface heights and derived variables reprocessed. |
CC, WndU, WndV | Total cloud cover, directional wind speeds at 10 m | Daily | Climate re-analysis combining model, satellite, and other data; see references | BS, CS, GoM: ~0.3°; TA: ~2.5° | [54,55,56,57] | NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD. TA data are from global re-analysis; BS, CS, and GoM data are from finer-resolution North American Regional Reanalysis (NARR). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stock, A.; Subramaniam, A.; Van Dijken, G.L.; Wedding, L.M.; Arrigo, K.R.; Mills, M.M.; Cameron, M.A.; Micheli, F. Comparison of Cloud-Filling Algorithms for Marine Satellite Data. Remote Sens. 2020, 12, 3313. https://doi.org/10.3390/rs12203313
Stock A, Subramaniam A, Van Dijken GL, Wedding LM, Arrigo KR, Mills MM, Cameron MA, Micheli F. Comparison of Cloud-Filling Algorithms for Marine Satellite Data. Remote Sensing. 2020; 12(20):3313. https://doi.org/10.3390/rs12203313
Chicago/Turabian StyleStock, Andy, Ajit Subramaniam, Gert L. Van Dijken, Lisa M. Wedding, Kevin R. Arrigo, Matthew M. Mills, Mary A. Cameron, and Fiorenza Micheli. 2020. "Comparison of Cloud-Filling Algorithms for Marine Satellite Data" Remote Sensing 12, no. 20: 3313. https://doi.org/10.3390/rs12203313
APA StyleStock, A., Subramaniam, A., Van Dijken, G. L., Wedding, L. M., Arrigo, K. R., Mills, M. M., Cameron, M. A., & Micheli, F. (2020). Comparison of Cloud-Filling Algorithms for Marine Satellite Data. Remote Sensing, 12(20), 3313. https://doi.org/10.3390/rs12203313