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Abstract: A major limitation for remote sensing analyses of oceanographic variables is loss of spatial
data. The Data INterpolating Empirical Orthogonal Functions (DINEOF) method has demonstrated
effectiveness for filling spatial gaps in remote sensing datasets, making them more easily implemented
in further applications. However, the spatial and temporal coverage of the input image dataset can
heavily impact the outcomes of using this method and, thus, further metrics derived from these
datasets, such as phytoplankton bloom phenology. In this study, we used a three-year time series of
MODIS-Aqua chlorophyll-a to evaluate the DINEOF reconstruction output accuracy corresponding to
variation in the form of the input data used (i.e., daily or week composite scenes) and time series length
(annual or three consecutive years) for a dynamic region, the Salish Sea, Canada. The accuracy of the
output data was assessed considering the original chla pixels. Daily input time series produced higher
accuracy reconstructing chla (95.08–97.08% explained variance, RMSExval 1.49–1.65 mg m−3) than
did all week composite counterparts (68.99–76.88% explained variance, RMSExval 1.87–2.07 mg m−3),
with longer time series producing better relationships to original chla pixel concentrations. Daily
images were assessed relative to extracted in situ chla measurements, with original satellite chla
achieving a better relationship to in situ matchups than DINEOF gap-filled chla, and with annual
DINEOF-processed data performing better than the multiyear. These results contribute to the ongoing
body of work encouraging production of ocean color datasets with consistent processing for global
purposes such as climate change studies.

Keywords: DINEOF; chlorophyll-a concentration; data reconstruction; Salish Sea; coastal ocean;
MODIS-Aqua; ocean color

1. Introduction

Satellite-based monitoring of oceanic biogeochemical variables, such as chlorophyll-a
concentration (chla), is still challenged by spatial data loss [1]. Obstacles include clouds obscuring
measurements of ocean reflectance, atmospheric correction, and the contaminating effects of sunglint,
adjacency from land, and bottom reflectance [2]. Commonly implemented strategies for mitigating
this impact on satellite image time series are to condense information temporally or reduce spatial
resolution [3]. Other methods for gaining data coverage consist of multimission merging [4] or
interpolation, which commonly includes optimal interpolation (OI) [5] and construction of data
based on pixel neighborhoods [6], kriging [7], and empirical orthogonal function (EOF) methods [8].
Among EOF interpolation methods, the Data INterpolating Empirical Orthogonal Functions (DINEOF)
technique [9,10] has demonstrated superior results relative to other interpolation methods at
diverse levels of cloud coverage [8]. Recent DINEOF applications include spatial reconstructions
of satellite-derived time series of sea surface temperature (SST) [2,11–13], sea surface salinity (SSS) [14],
chla [15–17], turbidity [18], and total suspended matter (TSM) [19], or in multivariate form to exploit
natural correlations between variables such as for SST + chla [20,21]. Existing implementations
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of DINEOF utilize input data at different time scales, for instance, varied study periods and time
resolutions (e.g., from less than one year [12] to more than a decade using daily [15] or week composite
imagery [16]), for different oceanographic regions, such as open ocean [22] and coastal [23] waters.
Some studies have considered the impact of input dataset time resolution on the results [12,17] as it
impacts the ability of DINEOF to capture regional oceanographic features. However, studies rarely
present the DINEOF accuracy according to differing time scales of the input data, applying it to
datasets for further analyses without providing reconstruction statistics. As a result, there is a need to
further examine variation of DINEOF implementations in greater detail, particularly considering the
time scale of input data for dynamic study regions.

The objective of this study was to evaluate DINEOF reconstruction accuracy according to two
commonly used image formats, daily and week composite, at differing time resolutions, annual and
multiyear. Here, DINEOF was applied to a three-year MODISA-derived chla time series of the Salish
Sea, a dynamic region located on the west coast of British Columbia, Canada. The dataset of original
satellite-derived chla and extracted in situ chla samples were compared as a measure of accuracy of
the DINEOF products. As a Case II water body with low annual satellite data, the results of this
study are an important contribution for other regions with similar constraints, and can inform studies
implementing DINEOF for further analyses.

2. Materials and Methods

2.1. Study Area

The Salish Sea is a semi-enclosed coastal sea adjacent to the province of British Columbia,
Canada, and Washington State, USA, corresponding to an area of approximately 18,000 km2 (Figure 1).
The Fraser River is the dominant source of fresh water, dissolved organic matter, and particulate matter,
contributing approximately 158 × 109 m3 year−1 of water and 19 × 109 kg year−1 of sediment [24].
Annual discharge is snowmelt-dominated, increasing by up to 7 times during the spring freshet with
its peak typically in June [25].
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(QCS). QCS is included in this study considering its use in salmon migration research [26]. Locations 
of in situ chla matchups (Section 2.4.2) are indicated by blue (DINEOF-reconstructed chla) and 
blue-ringed circles (satellite and DINEOF-reconstructed chla). 

Figure 1. The Salish Sea, oceanic and geographic features, and population centers. The region includes
the Juan de Fuca Strait (JFS), Strait of Georgia (SoG), Puget Sound (PS), and Queen Charlotte Strait
(QCS). QCS is included in this study considering its use in salmon migration research [26]. Locations of
in situ chla matchups (Section 2.4.2) are indicated by blue (DINEOF-reconstructed chla) and blue-ringed
circles (satellite and DINEOF-reconstructed chla).
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In the Salish Sea region, phytoplankton productivity varies markedly temporally and spatially
due to physical forcings, which include Fraser River discharge, tidal activity, solar radiation, and wind
stress [27,28]. For the Strait of Georgia (SoG), chla ranges from less than 1.00 mg m−3 in winter months
to approximately 40.00 mg m−3 during spring bloom conditions [29]. Here, seasonal phytoplankton
blooms are linked to water density stratification combined with increased solar radiation in springtime,
with weaker bloom events occurring in the fall [30], a pattern similarly observed in Queen Charlotte
Strait (QCS) [31]. In the Juan de Fuca Strait (JFS), on the other hand, chla concentrations consistently
remain low regardless of the high nutrient availability sustained by mixing and deep exchange of
Pacific Ocean waters [32].

Optically, the Salish Sea is defined as a dynamic Case II water body. For much of the region,
including the SoG and JFS, light attenuation is predominantly non-wavelength-dependent due to
inorganic particulate scattering, and secondarily influenced by colored dissolved organic matter
(CDOM) absorption. Absorption from CDOM and chla makes up a higher component of total
attenuation in waters north of the Fraser River plume [33,34].

2.2. Data Sets

Three years (2014–2016) of MODISA imagery were processed from Level 1A (L1A) to Level 3 (L3)
OC3M chla products [35], producing time series at both daily and week composite temporal resolutions.
A set of extracted in situ chla (chlainsitu) was accessed for evaluating the daily satellite-derived chla
(referred to as the “original” dataset, or chlasat) and reconstructed chla fields.

2.2.1. Satellite chla Time Series

MODISA L1A images were acquired from the NASA Ocean Biology Processing Group
(OBPG) [36] covering 47.0–51.0◦ N and 122.5–128.0◦ W. Imagery were processed at ~1 km2 resolution
using the SeaWiFS Data Analysis Software (SeaDAS) version 7.3 [37] and MATLAB. Winter
scenes (25 November–18 February) were excluded due to low solar elevation conditions [35]. L1A
imagery were first corrected for atmospheric effects using the SWIR-MUMM atmospheric correction
approach [35,38]. Following retrieval of atmospherically corrected remote sensing reflectance, chlasat

concentrations were calculated using the OC3M algorithm, which, for this region, has shown optimal
results [35,39]. Several flags were subsequently applied to the chlasat for quality control purposes,
including the NASA standard quality flags [4]. The standard straylight flag was altered from a 5 × 7 to
a 3 × 3 window to retain a larger number of chlasat pixels, but still captures ~99.6% of the high-radiance
point spread function (PSF) in VIS/NIR bands [40]. Further, pixels higher than 40.00 mg m−3 were
masked as these high concentrations are not typical even during bloom conditions in this region [35].
The quality-controlled L2 daily chla images were binned into 8-day “weeks” to create a week composite
time series. Both the daily and week composite time series were mapped to a ~1 km2 equal-area grid
using area weighting to reduce distortion artifacts [36] and were masked to constrain pixels to the Salish
Sea region (Figure 1).

The two resulting datasets consisted of 540 daily chlasat scenes and 105 week composite chlasat

scenes (Figure 2, Table 1; for Table 1, see Section 2.3.2). The greatest number of available chlasat scenes
per year occurred in August 2014 and 2016, and in May 2015 (Figure 2a). Excluding the winter months,
the mean gap between consecutive scenes (e.g., scenes with zero coverage missing) of the daily time
series was 2 days and the longest was 12 days. The week composite datasets only experienced one
gap of one week between consecutive scenes due to the reduction of temporal dimension, though
some scenes had very low spatial coverage. By month, spatial coverage of Salish Sea chlasat for the
daily and week composite time series ranged from 10.0 to 40.0% and from 40.0 to 90.0%, respectively
(Figure 2b), and the lowest per-pixel coverage occurred nearest the coast and in narrower straits and
fjords, particularly in the QCS, north SoG, and Puget Sound (PS) regions (Figure 2c,d). The highest
coverage occurred in the east JFS region south of the San Juan Islands.
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Figure 2. Temporal coverage displayed as (a) number of images per month and (b) percent spatial
coverage of the study region per month. Presence of a given pixel is shown for (c) the daily time series
and (d) week composite.

2.2.2. In Situ Dataset

Extracted chlainsitu surface samples (depth ≤ 5m) spanning March 2014 to November 2016 (n = 374)
were accessed from the Department of Fisheries and Oceans Canada data archive from the Institute
of Ocean Sciences [41], and were analyzed according to standard methods [42,43]. The majority of
samples were in the Strait of Georgia and at repeated stations near the Fraser River plume, and at
concentrations ranging from 0.29–36.00 mg m−3, representing the dynamic range of the study region.
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Table 1. Input data characteristics of each trial. The missing data of each input dataset is shown as
missing pixels, total number of chlasat pixels, and percent missing data.

Period (Year) N MODISA
Scenes

N MODISA Scenes
(after 2% Filter)

Missing Pixels
(Total Pixels) 1

Missing
Data (%)

D12014 2014 185 148 15.32 (20.49) 74.77
D12015 2015 168 148 15.57 (20.49) 75.99
D12016 2016 187 149 14.78 (20.6) 71.65

D3 2014–2016 540 445 45.67 (61.61) 74.13

W12014 2014 35 34 1.87 (4.71) 39.67
W12015 2015 35 35 2.10 (4.85) 43.36
W12016 2016 35 34 1.78 (4.71) 37.82

W3 2014–2016 105 103 5.75 (14.26) 40.31
1 Values are × 105.

2.3. DINEOF

2.3.1. Description and Implementation

DINEOF was implemented using the 3.0 Linux binary available through the University of Liège
GeoHydrodynamics and Environment Research group (GHER) [44,45]; MATLAB was used for data
handling and analysis. Prior to DINEOF, the mean of the input dataset is removed, missing values are
set to zero, and an independent cross-validation dataset (~1–3% of the original valid satellite pixels [10])
is identified and removed from the input dataset. Sequential EOF modes are then calculated iteratively
until convergence using a singular value decomposition technique, beginning with the first mode
and updating missing pixel values with each calculation. Throughout, the cross-validation pixels are
utilized to calculate accuracy between the original pixel values and corresponding DINEOF-calculated
values. The optimal number of EOFs for reconstructing the dataset is identified when the minimum
root-mean-square error (RMSE) of cross-validation pixels (RMSExval) is reached [9]. Once identified,
the cross-validation pixels are returned to the matrix and the process is repeated using this number of
EOFs. The final product is a set of spatial and temporal EOF modes and corresponding singular values
which are linearly combined to produce a reconstructed field. The following DINEOF implementations
were performed here:

1. chla reconstruction spanning three years, 2014–2016, for daily and week composite time series
(referred to as D3 and W3, respectively); and

2. chla reconstruction divided by year for daily and week composite (D12014, D12015, D12016,
and W12014, W12015, W12016) images in order to constrain variability and reduce influence of
lengthy gaps during the winter months.

2.3.2. Preprocessing

Each input time series was screened for quality by removing any scenes with less than 2% sea
coverage, likely representing erroneous data [13,18,19]. Additionally, chlasat were log10 transformed to
normalize the distribution [46]; subsequent discussion refers to log10 mg m−3 unless otherwise stated.
The following information was specified for each input dataset:

1. A mask identifying acceptable pixels to be reconstructed. Mask layers were defined to distinguish
land from sea pixels, and to exclude individual ocean pixels present in less than 2% of the chlasat

scenes. These masks were unified to identify valid sea pixels common to all input datasets.
2. chlasat cross-validation (chlaxval) pixels identified randomly throughout each input dataset.

For consistency between the same form (e.g., daily or week composite), chlaxval were identified
for individual years and concatenated for the corresponding three-year reconstruction.



Remote Sens. 2018, 10, 1449 6 of 21

3. A temporal ID of each chlasat image in the time series. The time increment of each chlasat image
was specified by using day number as time step for D1/D3, and week number for W1/W3.

During processing, the temporal covariance matrix was filtered, which improves results by
reducing inconsistencies calculated in the temporal EOF modes [47]. Finally, both an entirely
reconstructed field (chlarec) and a field of chlasat where gaps were filled using the reconstructed data
(chlasat+rec) were used in the analysis.

2.4. Evaluation of Reconstructions

Reconstruction accuracy was assessed based on global statistics between chlasat and chlarec values,
and the daily DINEOF-derived chlasat+rec were evaluated against available chlainsitu.

2.4.1. Reconstruction Statistics and Comparison to chlasat

The number of optimal EOFs calculated, the proportion of input dataset variance captured,
and the RMSExval achieved during DINEOF processing were retrieved for each trial [48]. Further,
chlarec values were assessed relative to chlasat pixels based on the RMSE, accounting for the number
of degrees of freedom, slope, intercept, and squared Pearson correlation coefficient (R2) retrieved
with a type I least-squares linear correlation at each time resolution [23]. To compare chlasat and
chlarec annually, the scenes for each year were isolated from the multiyear reconstructions (referred
to as D32014, D32015, and D32016; W32014, W32015, and W32016), while yearly scenes were combined to
facilitate comparison to three-year counterparts. The R2 of each pixel time series was calculated from
a type I least-squares linear correlation between chlasat and chlarec [49]. R2 pixels with a p-value of
>0.05 were removed from consideration. For this analysis, the annual reconstructions (D1, W1) were
concatenated to form three-year time series to increase the number of samples for each pixel.

2.4.2. In Situ Comparison

In situ samples were screened for matchups with daily chlasat to within ±3 h of image acquisition.
Satellite chla matchups were extracted from chlasat, and D1 and D3 chlasat+rec via the filtered mean (X f ilt,
Equation (1)) of a 3 × 3 window at the in situ location, provided a minimum of 5 pixels were available
and the coefficient of variation was <0.2 [50]. Week composite chlasat+rec scenes were not used.

X f ilt =
∑n

k=1
(
1.5σ − X

)
< Xk <

(
1.5σ + X

)
N

(1)

In Equation (1), n is the original number of pixels, N is the number of values within the specified
range, X is the unfiltered mean, Xk is a given chla pixel, and σ is the standard deviation of the window
before filtering. Of 374 in situ samples collected over the three-year period, 3.5% (n = 13) were retained
for comparison with the original chlasat and 12.0% (n = 45) for the chlasat+rec (Figure 1). Slope, intercept,
and R2 were retrieved using type I linear least-squares correlation, and RMSE was calculated as
a measure of accuracy [51]. Due to the low number of matchups, the three D1 years (2014–2016) were
combined. Further, the chlarec data was not used in this evaluation, as retaining original satellite chlasat

values is desired for the final, spatially continuous images of the region.

3. Results

The chlarec time series were assessed via the DINEOF processing statistics, and relative to original
chlasat pixel values at both time resolutions used (Section 3.1). The efficacy of DINEOF to reconstruct
chlasat was additionally examined using spatial maps of temporal pixel R2 (Section 3.2), and the final
chlasat+rec time series was visualized in contrast to chlasat with thalweg time-series plots. In situ samples
were compared to chlasat+rec to validate chla before and after reconstruction (Section 3.3).
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3.1. DINEOF Reconstruction Statistics

Higher performance was achieved for reconstructions of daily chlasat over week composite
(Table 2), and when reconstructing datasets with more numerous input scenes (Table 1). Specifically,
for daily reconstructions, the RMSExval ranged from 1.49 to 1.65 mg m−3, capturing 95.08% of the chlasat

variance with 9 EOFs for individual years (D1), and up to 97.08% with 26 EOFs for the multiyear dataset
(D3). Week composite reconstructions demonstrated slightly higher RMSExval (1.87–2.07 mg m−3),
with 68.99% of the chlasat variance captured by three EOFs for yearly input data (W1) to 76.88% with 8
EOFs for multiyears (W3).

Table 2. Variance of input chlasat dataset captured during Data INterpolating Empirical Orthogonal
Functions (DINEOF) processing, number of EOFs calculated, and corresponding RMSExval. RMSExval

is also expressed in mg m−3.

Explained Variance
(%)

Calculated EOFs
(#)

RMSExval
(log10 mg m−3)

RMSExval
(mg m−3)

D12014 96.05 11 0.22 1.65
D12015 96.33 9 0.21 1.61
D12016 95.08 9 0.20 1.58

D3 97.08 26 0.17 1.49

W12014 68.99 3 0.32 2.07
W12015 74.68 3 0.30 1.98
W12016 73.52 3 0.29 1.95

W3 76.88 8 0.27 1.87

Similar to the global reconstruction results shown in Table 2, the statistical results of chlarec

when correlated with corresponding chlasat pixels for all DINEOF implementations showed that
daily reconstructions were improved relative to week composites, and the three-year input data
time series produced slightly better results compared with annual counterparts (Table 3, Figure 3).
Specifically, D3 was superior to D1, showing the best results overall, producing the lowest RMSExval
(0.17 log10 mg m−3), lowest RMSE relative to chlasat pixels (0.11 log10 mg m−3 for all time resolutions),
intercept nearest zero (0.07), highest R2 (0.91), and slope closest to 1.00 (0.88) (Table 3a). Similar
results were observed for W3 when compared with W1 reconstructions (Table 3b and Figure 3b,d),
emphasizing the higher accuracy achievable for all pixels when time series with more input scenes
were reconstructed. Further, the daily reconstructions exhibited the highest pixel density along the
1:1 line (Figure 3a,c), while week composite reconstructions demonstrated a greater spread of chlasat

and chlarec values and poorer linear relationship to original chlasat pixels (Figure 3b,d). It is evident
that the distribution of chlasat played a role in the reconstruction outcomes (Figure 3), as chlarec were
underestimated at higher concentrations (>20.00 mg m−3).

Table 3. Annual relationship of chlasat values to corresponding chlarec pixels per time period for daily
(a) and week composite (b) image time series.

(a) R2
RMSE
(log10

mg m−3)

RMSE
(mg m−3) Slope Intercept (b) R2

RMSE
(log10

mg m−3)

RMSE
(mg m−3) Slope Intercept

D12014 0.88 0.13 1.35 0.85 0.08 W12014 0.61 0.20 1.58 0.59 0.25
D32014 0.91 0.11 1.29 0.88 0.07 W32014 0.70 0.19 1.55 0.67 0.20

D12015 0.87 0.13 1.35 0.83 0.10 W12015 0.62 0.19 1.55 0.59 0.27
D32015 0.91 0.11 1.29 0.87 0.07 W32015 0.67 0.18 1.51 0.64 0.23

D12016 0.87 0.13 1.35 0.84 0.09 W12016 0.65 0.19 1.55 0.63 0.23
D32016 0.92 0.11 1.29 0.89 0.07 W32016 0.71 0.18 1.51 0.69 0.20
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Figure 3. D1 (a), W1 (b), D3 (c), and W3 (d) linear correlation results. The 40.00 mg m−3 threshold
(Section 2.2.1) is evident as a cutoff feature in all plots.

3.2. Spatiotemporal Accuracy of DINEOF Products

Spatially, the R2 values calculated between chlasat and chlarec for each three-year pixel time series
were relatively consistent throughout the study region and higher for daily reconstructions, while
lower and more variable for week composite reconstructions (Figure 4). Specifically, the R2 values
of the D1 reconstruction for all pixels were predominantly high (>0.80), with the lowest values near
the Fraser River discharge area (R2 ~0.65–0.75, Figure 4a). This relationship was improved for D3 (R2

predominantly > 0.90), with similar spatial pattern to D1, also reflecting the reduced relationship at
the Fraser River plume area (R2 ~0.70–0.85, Figure 4c). Conversely, week composite chlarec showed
much lower agreement to chlasat for each pixel time series (R2 < 0.80) (Figure 4b,d), exhibiting high
spatial variation and very low values in the PS region (R2 < 0.4). The highest R2 occurred in the JFS,
QCS, and northern SoG for W3 (R2 ~0.70, Figure 4d). W1, similarly, exhibited the highest relationship
(R2 ~0.60) in JFS and QCS.
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Temporally, differing reconstruction outcomes were evident for regions with missing chlasat data.
For example, a daily reconstruction from 28 February 2014 showed low chlasat+rec for D3 (Figure 5c) at
~300 km along the thalweg, which is not present in the D1 chlasat+rec image (Figure 5b). An example of
a week composite image for the week of 2 April 2014 similarly demonstrated chla of higher magnitude,
where chlasat+rec is >25.0 mg m−3 at the entrance to the JFS for W3 (Figure 5f), while W1 remained
between 5.0 and 20.0 mg m−3 (Figure 5e). In this example, W3 also reconstructed values below
1.0 mg m−3 in the SoG, while W1 more consistently showed chla from 2.5 to 5.0 mg m−3.
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In a spatiotemporal example, chlasat+rec along the Salish Sea thalweg for each time series are shown
in Figures 6 and 7. During spring of 2015 (late February through May), little spatial chlasat data was
available for both daily and week composite data in the Salish Sea north of ~250 km (Figures 6a and 7a,
respectively). D1 reconstructed an event of high chlasat+rec lasting approximately 2 weeks during this
period (Figure 6b), while the corresponding D3 time series demonstrated shorter duration and more
localized high and low chla events (Figure 6c). For this time period, the week composite chlasat+rec time
series showed more similar results relative to one another (Figure 7) due to the constrained temporal
dimension and lower missing data present for each scene, though W1 demonstrated higher- and
lower-magnitude chla events during this time (Figure 7b). These examples demonstrate that, while
statistical measures show high accuracy of chlarec relative to chlasat (Tables 2 and 3), reconstructions
where no spatial data existed previously are products of EOF calculations based on the input data
alone, and can in turn impact further derived metrics such as bloom phenology.
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Salish Sea thalweg is shown in (a), with a gap excluding the region of no data in Johnstone Strait.



Remote Sens. 2018, 10, 1449 11 of 21

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 21 

 

 

Figure 6. Daily image time series shown as Hovmöller plot along Salish Sea thalweg (y axis, shown in 
Figure 5a), contrasting chlasat (a), D1 chlasat+rec (b), and D3 chlasat+rec (c) for 2014–2016. The dashed line 
represents a spatial gap in Johnstone Strait due to the inability of MODISA to resolve data in the 
narrow passages. 

Figure 6. Daily image time series shown as Hovmöller plot along Salish Sea thalweg (y axis, shown
in Figure 5a), contrasting chlasat (a), D1 chlasat+rec (b), and D3 chlasat+rec (c) for 2014–2016. The dashed
line represents a spatial gap in Johnstone Strait due to the inability of MODISA to resolve data in the
narrow passages.
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Figure 7. Week composite time series extracted along the Salish Sea thalweg (y axis, Figure 5a) for
chlasat (a), W1 chlasat+rec (b), and W3 chlasat+rec (c) for 2014–2016.

3.3. DINEOF-Reconstructed and In Situ Data

From a total of 374 chlainsitu samples acquired within ±3 h of daily satellite scenes, 15 and 45 were
available for validating chlasat and the DINEOF output chlasat+rec, respectively. Note that while chlasat
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pixels greater than 40.0 mg m−3 were removed from the input products (Section 2.2.1), reconstructed
values (corresponding to <1% of the total pixels) were not filtered in this manner for the analysis,
reflected in one of the D1 matchups. In general, both chlasat and chlasat+rec values were overestimated
relative to the chlainsitu (Figure 8). chlasat achieved the highest R2 (0.47), slope nearest 1.0 (0.61),
and lowest RMSE (0.23 log10 mg m−3) relative to the chlainsitu. For the chlasat+rec, the D1 matchups
produced a higher R2 (0.23) and slope closer to 1.00 (0.55) than the D3 chlasat+rec, and achieved the
poorest RMSE (0.39 log10 mg m−3).
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4. Discussion

The following sections provide a discussion of these results, emphasizing the role of the time scale
of the input data on the DINEOF reconstruction accuracy considering prior studies from the Salish Sea
and other dynamic regions of the world, and recommendations for using the DINEOF method.

4.1. Satellite-Derived versus DINEOF-Reconstructed chla

Overall, daily input time series produced more accurate chla reconstructions relative to week
composite time series, and longer time periods produced better reconstructions. While many factors
impact the outcomes of DINEOF for spatially reconstructing satellite datasets, including the input
data characteristics, region, and processing parameters, our results can be explained mainly by the
following:

1. More spatial and temporal data allows physical processes to be more clearly resolved in time
and space. As the degrees of freedom increase with longer time series, a higher number of EOFs
can be calculated [8,47]. Consequently, finer-scale features (e.g., spatially localized events of
shorter duration) and greater variance of the input dataset is captured, resulting in more accurate
reconstructions. Additionally, differences in reconstruction accuracy year to year depended on
the annual differences in input data. For example, 2016 demonstrated the highest R2 and slope
closest to 1.0 for the D3 (R2 0.92, slope 0.89), W1 (R2 0.65, slope 0.63), and W3 (R2 0.71, slope 0.69)
reconstructions (Table 3), corresponding to the year with lowest percent missing data (71.65%
and 37.82% for D12016 and W12016, respectively; Table 1).

2. Poorly represented processes are more difficult to reconstruct. Week composite time series
are more poorly reconstructed for this reason, as images often display spatially heterogeneous
image features as a result of averaging the daily chlasat scenes used in the binning process [2]
(e.g., Figure 5d–f). EOF reconstruction methods usually produce spatially smoothed datasets,
making spatial discontinuities more difficult to capture, particularly when only few EOF modes
are calculated due to dataset size constraints. The long winter gaps present in D3 and W3
reconstructions also contribute to poorly constrained temporal EOFs.

As a result of these factors, longer time series (e.g., D3 over D1, and W3 over W1) produced the
best DINEOF outcomes. D3, the input time series with most overall valid pixels and images, produced



Remote Sens. 2018, 10, 1449 14 of 21

the best results in terms of reconstruction statistics and when assessed with chlasat (Tables 2 and 3).
The shortest time series (W1), on the other hand, likely had insufficient images (Table 1) to capture
enough information to reflect physical processes in so few EOFs [47]. For example, while 26 EOFs were
calculated for D3, combining to capture 97.08% of the variance of the original input dataset, only three
EOFs were calculated for each W1 year, capturing from 68.99 to 74.68% of the input dataset variance.
However, using DINEOF with so few input datapoints (W1 had between 34 and 35 scenes as input) is
generally not recommended due to the low number of degrees of freedom and the decreased ability
to capture physical trends [10]. Ref. [12] found that with at least 35 input scenes, a stable RMSExval
was achieved when reconstructing SST data; a similar test performed with our dataset showed equal
results (not shown).

The improved DINEOF results of daily input data were evident when examining the temporal
R2 between chlasat and chlarec throughout the study region (Figure 4). For D3 and D1 (Figure 4a,c),
the R2 was >0.80 for most of the Salish Sea. However, a region of lower reconstruction effectiveness
(R2 ~0.75 for D3, ~0.60 for D1) occurred nearest the Fraser River plume. Two factors may play a role
in the lower reconstruction effectiveness here. Fraser plume waters are documented to negatively
impact retrievals of OC3M chla [39], which may have resulted in reduced temporal variability of
chla, with consequences on the daily DINEOF reconstructions. Additionally, DINEOF reconstructions
have been demonstrated to perform better in regions of high variability, as opposed to in more
homogeneous waters [2,52]. Greater temporal homogeneity of chla in the Fraser River plume is evident
in Figures 6a–c and 7a–c, (located at ~250 km distance along the Salish Sea thalweg). Figure 9 further
shows the poorer performance of chla reconstruction of Fraser plume waters compared with JFS for the
time series. The relationship between D3 chlasat and chlarec pixels from near the Fraser plume shows
more homogeneous chla concentrations, ranging between ~3.00 and 13.00 mg m−3, in contrast to the
JFS, where concentrations had a larger range (from 0.40 to 40.00 mg m−3) and an improved linear
relationship was observed. In our case, lower R2 may have been a result of less variable chlasat over the
time series nearest the Fraser River plume relative to other regions of the Salish Sea. The corresponding
W3 chlasat and chlarec data for the same regions also shows a poorer relationship for Fraser River plume
waters compared with JFS (Figure 9c,d).

The relatively poorer performance of week composite DINEOF reconstructions may be contrary to
expected, considering the much higher spatial coverage per image when compared with daily images.
The poor week composite performance is a result of the greatly reduced temporal dimension (Table 1),
combined with the higher spatial heterogeneity of chla (Figures 5c–e and 7). However, in studies
for longer time series (e.g., [16]), week composite data may be preferable where the temporal and
spatial scale of features to be resolved are not negatively impacted by the lower temporal coverage.
As shown in Figures 7 and A1, the spatiotemporal time series of W1 and W3 were consistent relative
to each other, as compared with the D1 and D3 chlasat+rec time series, which demonstrated greater
differences in image median and standard deviation values compared with chlasat. This is in part
due to the higher spatial coverage of chlasat present in the week composite scenes, which reduces the
impact of reconstructed values on these image statistics. Further research should include comparison
of reconstructed week composite images based on longer time series, or relative to week composites
made from reconstructed daily images as used in some studies (e.g., [53]).

Among the daily reconstruction results, annual (D1) and three-year reconstructions (D3) produced
very similar correlations (Table 3a, Figure 3a,b) and RMSExval values (Table 2) for chlasat and chlarec,
and high per-pixel temporal R2 (Figure 4). D1 showed a slightly improved R2 relative to D3 chlainsitu
matchups (0.23 over 0.21), slope closer to 1.00 (0.55 over 0.46), and lower intercept (0.40 log10 mg m−3

over 0.44 log10 mg m−3). D1 had fewer EOFs calculated (2014: 11, 2015: 9, 2016: 9) than the D3
reconstruction (26), yet nearly equivalent variance of the chlasat datasets was captured (Table 2) in
faster processing time (~4× faster than D3). Besides the improved processing time, more EOFs are not
always better, as separability of the EOF modes declines as more are calculated, and there is a higher
likelihood of representing patterns that may not exist in reality [54]. Further, limiting the distribution
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of input chlasat concentrations by year eliminated long winter gaps, which led to better-constrained
EOFs. Figure A1 demonstrates the effect of long winter gaps in this time series on the per-scene median
and standard deviation. D3 exhibited erroneously high chlasat+rec median and standard deviation in
some images (e.g., 16.00 ± 12.00 mg m−3 in November 2015) compared with D1 (3.00 ± 3.50 mg m−3

at the corresponding time). Given these advantages, D1 is a preferable alternative to multiyear input
data for datasets with long winter gaps and dynamic spatiotemporal phytoplankton phenology.
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While this study provides new insights on the effects of the data form and length of the input time
series on DINEOF outcomes, other factors that impact reconstruction accuracy include the length of
temporal data gaps (i.e., consecutive missing days or weeks), study area extent, and parameters used
to reconstruct the dataset (e.g., temporal covariance filter length and the values of input pixels [10]).
For example, the order of images in a time series should not impact the reconstruction results [10,55].
However, as illustrated here, long gaps between scenes, such as periods of missing data during winter
months, can lead to calculation of irrelevant EOFs and unrealistically high/low chla (Figure A1), similar
to results by [47]. The missing data of this study (Table 1) is comparable relative to other DINEOF
studies (e.g., 75.2% missing daily data in [12], 63.3–75.5% in [14]; or, 39.4% missing for week composite
time series in [16]) or even lower (e.g., 88.0% missing data in [22], or 86.0% missing in [56]). Improved
results may be achieved in the future by using a longer time series to better constrain the EOFs near
long gaps, or by using a longer temporal covariance matrix filter [47]. Additionally, the quality of input
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data is an important consideration for using DINEOF and is affected by the inherited uncertainties of
the chlasat [57]. In this study, quality control prior to DINEOF processing included standard ocean color
flags, a reduced straylight filter (3 × 3), removal of chlasat pixels exceeding 40.00 mg m−3 (Section 2.2.1),
and removal of scenes and pixels with less than 2% ocean coverage (Section 2.3). However, outlier
or erroneous pixels, such as at undetected cloud edges [40], may have been introduced through the
straylight flag reduction, or in scenes with low spatial coverage. Additionally, the removal of pixels
exceeding 40.00 mg m−3, while consistent with other remote sensing chla studies of the region [35,58],
resulted in a distinctive distribution of input data (Figure 3). This led to a reduction of the global input
dataset mean, and, as a result, chlarec concentrations above ~20.0 mg m−3 were underestimated as data
was reconstructed following a normal distribution of the input dataset anomaly (Section 2.3.1). Beyond
the quality control methods employed here, other techniques used with DINEOF including limiting the
number of scenes per month for temporal consistency [23], stricter spatial coverage requirements [55],
and applying various methods for statistical detection and removal of outlier pixels [2,18,59] should
be considered in further use.

4.2. Accuracy of chlasat and Reconstructed Products

The evaluation of the satellite- and DINEOF-derived products used in this study relative to
available in situ matchups showed that the original chlasat achieved a better relationship to in situ
matchups than did reconstructed chlasat+rec, though far fewer matchup datapoints were available for
the former. The original chlasat matchups and DINEOF-reconstructed chlasat+rec produced RMSE values
of 2.45 mg m−3 (R2 0.23) and 2.29 mg m−3 (R2 0.20) for D1 and D3, respectively (Figure 8). The chlasat

matchup statistics (RMSE of 1.70 mg m−3 and R2 0.47) are within the global OC3M RMSE for MODISA
chla (2.10 mg m−3) [36]. While the DINEOF-reconstructed chlasat+rec RMSEs are slightly higher, these
values are of similar magnitude to those found by [60], who showed a DINEOF-reconstructed SeaWiFs
chla RMSE of 2.50 mg m−3 for the Yangtze River estuary, and similar to MODISA-derived chla from
previous studies in the Salish Sea for in situ extracted chla (RMSE 2.14 mg m−3 and R2 0.54) [35] and
ferry-measured in situ fluorimetric measurements (RMSE 2.63 mg m−3 and R2 0.72) [38].

Although the resulting accuracy of the reconstructions (e.g., RMSExval, RMSE of chlarec to chlasat),
is within published satellite-derived chla concentration measures, the reconstructed chla shows both
over- and underestimation across the range of concentrations (Figure 8). This is likely largely due
to spatial biases of the available in situ data, combined with inherent inaccuracies of standard
bio-optical algorithms for MODISA in complex coastal environments [50]. The matchups used here
were mostly from waters under the influence of the Fraser River plume, where OC3M chla estimates
are negatively impacted [35,38,39]. High concentrations of suspended matter and dissolved organic
matter, in addition to tidal activity, wind, and river discharge, make this region dynamic and optically
complex [34], adding difficulties to accurate satellite retrievals and time/space matchups [35,38] and,
consequently, to the DINEOF reconstruction. The low number of in situ matchups is often a limitation
for validation of satellite data [35], including in the evaluation of DINEOF-reconstructed datasets.

5. Conclusions

Derivation of phytoplankton phenology from satellite sensors is challenged by missing data [15].
In this study, the DINEOF method was applied to Salish Sea MODISA-derived chla products spanning
a three-year time period to investigate the accuracy of the derived products according to dataset study
period, yearly versus multiyear, and forms of input data, daily versus week composite.

Although other studies use DINEOF for reconstructing chla for further analyses (e.g., [15,61]),
the current study demonstrated that considering the temporal characteristics of an input dataset is
an important factor in the effectiveness of the chla reconstruction accuracy. Specifically, the greater
spatial coverage of the week composite dataset was not an advantage for chla reconstruction relative
to the corresponding daily image time series for a given study period. The daily time series will
always contain more scenes and overall available data points, which allows for the calculation of
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a higher number of EOFs, thus capturing higher variance of the original dataset. The greater spatial
heterogeneity of the week composite imagery combined with the low number of scenes for this
study period led to inferior results. For daily input data, the implementations were faster to process,
with the advantage of annually constraining the EOF basis (distribution of chla). When utilizing
matchup data to validate the daily input chlasat and reconstructed chlasat+rec imagery, measures of error
were comparable to those in other studies where chla was retrieved with the OC3M method for the
study region, and with global datasets. In addition, while chla remains difficult to reconstruct and
further quality control improvements are necessary for this dataset, the global accuracies of the chlarec

compared to the original chlasat data were within the range of other similar studies and remotely sensed
chla errors.

While all interpolation methods have caveats, the DINEOF method exhibits some major
advantages compared with many others [8], including the minimization of error from iterative
processing, parameter-free processing, and speed. The findings and recommendations raised in
this study can assist further DINEOF studies by demonstrating the dependence of results on the input
data characteristics. Importantly, the accuracy requirements of a given study and scale of physical
processes should guide selection of the appropriate form and period of input data. Further, studies
should consider quality control improvements and gap-filling of a multisensor time series to utilize
the greatest amount of chla for the satellite data record.

DINEOF is a robust tool enabling a multitude of further applications for satellite datasets, such as
construction of spatially continuous fields for biogeochemical or ecosystem modelling [62], smoothing
and noise reduction, and analyzing phenology and correlations between geophysical variables [61].
For the west coast of Canada, the results of this study facilitate production of chla datasets more effective
for studying long-term trends and addressing broader ecological questions, including assisting with
fisheries management.
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