Comparison of SLSTR Thermal Emissive Bands Clear-Sky Measurements with Those of Geostationary Imagers
Abstract
:1. Introduction
2. Methods and Materials
2.1. Overview of the Satellite Data
2.2. SLSTR Data
2.3. ABI Data
2.4. SEVIRI Data
2.5. MERRA-2 Data
2.6. RTTOV Simulation
3. Methods
4. Results and Discussion
4.1. Eastern Tropical North Atlantic Ocean Region
4.2. Mediterranean Sea Region
4.3. Cross-Covered Region
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bentamy, A.; Piollé, J.F.; Grouazel, A.; Danielson, R.; Gulev, S.; Paul, F.; Azelmat, H.; Mathieu, P.P.; von Schuckmann, K.; Sathyendranath, S.; et al. Review and assessment of latent and sensible heat flux accuracy over the global oceans. Remote Sens. Environ. 2017, 201, 196–218. [Google Scholar] [CrossRef] [Green Version]
- Minnett, P.J.; Alvera-Azcárate, A.; Chin, T.M.; Corlett, G.K.; Gentemann, C.L.; Karagali, I.; Li, X.; Marsouin, A.; Marullo, S.; Maturi, E.; et al. Half a century of satellite remote sensing of sea-surface temperature. Remote Sens. Environ. 2019, 233, 111366. [Google Scholar] [CrossRef]
- Luo, B.; Minnett, P.J.; Szczodrak, M.; Kilpatrick, K.; Izaguirre, M. Validation of Sentinel-3A SLSTR derived Sea-Surface Skin Temperatures with those of the shipborne M-AERI. Remote Sens. Environ. 2020, 244, 111826. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Coppo, P.; Ricciarelli, B.; Brandani, F.; Delderfield, J.; Ferlet, M.; Mutlow, C.; Munro, G.; Nightingale, T.; Smith, D.; Bianchi, S.; et al. SLSTR: A high accuracy dual scan temperature radiometer for sea and land surface monitoring from space. J. Mod. Opt. 2010, 57, 1815–1830. [Google Scholar] [CrossRef]
- Mutlow, C.T.; Llewellyn-Jones, D.T.; Závody, A.M.; Barton, I.J. Sea-surface temperature measurements by the Along-Track Scanning Radiometer (ATSR) on ESA’s ERS-1 Satellite—Early results. J. Geophys. Res. 1994, 99, 22575–22588. [Google Scholar] [CrossRef]
- Llewellyn-Jones, D.; Remedios, J. The Advanced Along Track Scanning Radiometer (AATSR) and its predecessors ATSR-1 and ATSR-2: An introduction to the special issue. Remote Sens. Environ. 2012, 116, 1–3. [Google Scholar] [CrossRef]
- Smith, D.L.; Nightingale, T.J.; Mortimer, H.; Middleton, K.; Edeson, R.; Cox, C.V.; Mutlow, C.T.; Maddison, B.J.; Coppo, P. Calibration approach and plan for the sea and land surface temperature radiometer. J. Appl. Remote Sens. 2014, 8, 084980. [Google Scholar] [CrossRef]
- Smith, D.; Barillot, M.; Bianchi, S.; Brandani, F.; Coppo, P.; Etxaluze, M.; Frerick, J.; Kirschstein, S.; Lee, A.; Maddison, B. Sentinel-3A/B SLSTR pre-launch calibration of the thermal infrared channels. Remote Sens. 2020, 12, 2510. [Google Scholar] [CrossRef]
- Schmit, T.J.; Gunshor, M.M.; Menzel, W.P.; Gurka, J.J.; Li, J.; Bachmeier, A.S. Introducing the Next-Generation Advanced Baseline Imager on GOES-R. Bull. Am. Meteorol. Soc. 2005, 86, 1079–1096. [Google Scholar] [CrossRef]
- Aminou, D.M.A. MSG’s SEVIRI instrument. ESA Bull. 2002, 11, 15–17. [Google Scholar]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Minnett, P.J.; Evans, R.H.; Podestá, G.P.; Kilpatrick, K.A. Sea-surface temperature from Suomi-NPP VIIRS: Algorithm development and uncertainty estimation. In Proceedings of the SPIE 9111, Ocean Sensing and Monitoring VI, 91110C, Baltimore, MD, USA, 23 May 2014; p. 91110C. [Google Scholar]
- Yu, F.; Wu, X. Radiometric inter-calibration between Himawari-8 AHI and S-NPP VIIRS for the solar reflective bands. Remote Sens. 2016, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Ignatov, A.; Kramar, M.; Yu, F. Preliminary Inter-Comparison between AHI, VIIRS and MODIS Clear-Sky Ocean Radiances for Accurate SST Retrievals. Remote Sens. 2016, 8, 203. [Google Scholar] [CrossRef] [Green Version]
- Salomonson, V.V.; Barnes, W.L.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. MODIS: Advanced facility instrument for studies of the earth as a system. IEEE Trans. Geosci. Remote Sens. 1989, 27, 145–153. [Google Scholar] [CrossRef]
- Li, Y.; Wu, A.; Xiong, X. Inter-Comparison of S-NPP VIIRS and Aqua MODIS Thermal Emissive Bands Using Hyperspectral Infrared Sounder Measurements as a Transfer Reference. Remote Sens. 2016, 8, 72. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Cao, C.; Ciren, P. Assessing NOAA-16 HIRS radiance accuracy using simultaneous nadir overpass observations from AIRS. J. Atmos. Ocean. Technol. 2007, 24, 1546–1561. [Google Scholar] [CrossRef]
- Wang, L.; Tremblay, D.; Zhang, B.; Han, Y. Fast and accurate collocation of the visible infrared imaging radiometer suite measurements with cross-track infrared sounder. Remote Sens. 2016, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Scarino, B.R.; Doelling, D.R.; Minnis, P.; Gopalan, A.; Chee, T.; Bhatt, R.; Lukashin, C.; Haney, C. A web-based tool for calculating spectral band difference adjustment factors derived from SCIAMACHY hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2529–2542. [Google Scholar] [CrossRef]
- Wu, A.; Cao, C.; Xiong, X. Intercomparison of the 11-and 12-um bands of Terra and Aqua MODIS using NOAA-17 AVHRR. In Earth Observing Systems VIII, Proceedings of the Optical Science and Technology, SPIE’s 48th Annual Meeting, San Diego, CA, USA, 3–8 August 2003; International Society for Optics and Photonics: Bellingham, WA, USA, 2003; Volume 5151, pp. 384–394. [Google Scholar]
- Merchant, C. SENTINEL-3 Sea Surface Temperature (SLSTR) Algorithm Theoretical Basis Document. Available online: https://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_S3_L2_ATBD_SLSTR_SST&RevisionSelectionMethod=LatestReleased&Rendition=Web (accessed on 1 August 2020).
- Ignatov, A. GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Sea Surface Temperature. 2010. Available online: https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_SST-v2.0_Aug2010.pdf:NOAA/NESDIS/STAR (accessed on 1 August 2020).
- Merchant, C.J.; Le Borgne, P.; Roquet, H.; Marsouin, A. Sea surface temperature from a geostationary satellite by optimal estimation. Remote Sens. Environ. 2009, 113, 445–457. [Google Scholar] [CrossRef]
- Romaguera, M.; Sobrino, J.A.; Olesen, F.S. Estimation of sea surface temperature from SEVIRI data: Algorithm testing and comparison with AVHRR products. Int. J. Remote Sens. 2006, 27, 5081–5086. [Google Scholar] [CrossRef]
- Heidinger, A. ABI cloud mask NOAA NESDIS STAR Algorithm Theoretical Basis Doc 2011. Available online: https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/Cloud_Mask.pdf (accessed on 1 August 2020).
- Walton, C.; Pichel, W.; Sapper, J.; May, D. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. Ocean. 1998, 103, 27999–28012. [Google Scholar] [CrossRef]
- Kilpatrick, K.A.; Podestá, G.; Walsh, S.; Williams, E.; Halliwell, V.; Szczodrak, M.; Brown, O.B.; Minnett, P.J.; Evans, R. A decade of sea surface temperature from MODIS. Remote Sens. Environ. 2015, 165, 27–41. [Google Scholar] [CrossRef]
- Good, E.J.; Kong, X.; Embury, O.; Merchant, C.J.; Remedios, J.J. An infrared desert dust index for the Along-Track Scanning Radiometers. Remote Sens. Environ. 2012, 116, 159–176. [Google Scholar] [CrossRef] [Green Version]
- Merchant, C.J.; Embury, O.; Le Borgne, P.; Bellec, B. Saharan dust in nighttime thermal imagery: Detection and reduction of related biases in retrieved sea surface temperature. Remote Sens. Environ. 2006, 104, 15–30. [Google Scholar] [CrossRef]
- Luo, B.; Minnett, P.J.; Gentemann, C.; Szczodrak, G. Improving satellite retrieved night-time infrared sea surface temperatures in aerosol contaminated regions. Remote Sens. Environ. 2019, 223, 8–20. [Google Scholar] [CrossRef]
- Merchant, C.J.; Harris, A.R.; Murray, J.; Zavody, A.M. Toward the elimination of bias in satellite retrievals of skin sea surface temperature. 1: Theory. modelling and inter-algorithm comparison. J. Geophys. Res. 1999, 104, 23565–23578. [Google Scholar] [CrossRef]
- Minnett, P.J.; Knuteson, R.O.; Best, F.A.; Osborne, B.J.; Hanafin, J.A.; Brown, O.B. The Marine-Atmospheric Emitted Radiance Interferometer (M-AERI), a high-accuracy, sea-going infrared spectroradiometer. J. Atmos. Ocean. Technol. 2001, 18, 994–1013. [Google Scholar] [CrossRef]
- Petrenko, B.; Ignatov, A.; Kihai, Y.; Heidinger, A. Clear-Sky Mask for the Advanced Clear-Sky Processor for Oceans. J. Atmos. Ocean. Technol. 2010, 27, 1609–1623. [Google Scholar] [CrossRef]
- Tjemkes, S.A. On the Conversion from Radiances to Equivalent Brightness Temperatures. 2005. Available online: http://www.eumetsat.int/groups/ops/documents/document/pdf_msg_seviri_rad2bright.pdf (accessed on 1 August 2020).
- Luo, B.; Minnett, P. Evaluation of the ERA5 Sea Surface Skin Temperature with Remotely-Sensed Shipborne Marine-Atmospheric Emitted Radiance Interferometer Data. Remote Sens. 2020, 12, 1873. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Minnett, P.J.; Szczodrak, M.; Nalli, N.R.; Morris, V.R. Accuracy assessment of MERRA-2 and ERA-Interim sea-surface temperature, air temperature and humidity profiles over the Atlantic Ocean using AEROSE measurements. J. Clim. 2020, 33, 6889–6909. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Santha, A.; Lawrence, C.; Richard, C.; Clara, D.; Ronald, G.; Robin, K.; Qing, L.; Andrea, M.; Peter, N.; et al. MERRA-2: Initial Evaluation of the Climate; NASA Goddard Space Flight Center: Greenbelt, MA, USA, 2015; p. 145.
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Sohn, B.J.; Park, H.S.; Han, H.J.; Ahn, M.H. Evaluating the calibration of MTSAT-1R infrared channels using collocated Terra MODIS measurements. Int. J. Remote Sens. 2008, 29, 3033–3042. [Google Scholar] [CrossRef]
- Minobe, S.; Miyashita, M.; Kuwano-Yoshida, A.; Tokinaga, H.; Xie, S.-P. Atmospheric response to the Gulf Stream: Seasonal variations. J. Clim. 2010, 23, 3699–3719. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.; Angal, A.; Xiong, X. Evaluation of MODIS and Sentinel-3 SLSTR thermal emissive bands calibration consistency using Dome C. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIV; International Society for Optics and Photonics: Orlando, FL, USA, 2018; Volume 10644, p. 106441U. [Google Scholar]
- Marullo, S.; Santoleri, R.; Ciani, D.; Le Borgne, P.; Péré, S.; Pinardi, N.; Tonani, M.; Nardone, G. Combining model and geostationary satellite data to reconstruct hourly SST field over the Mediterranean Sea. Remote Sens. Environ. 2014, 146, 11–23. [Google Scholar] [CrossRef]
- Marullo, S.; Artale, V.; Santoleri, R. The SST Multidecadal Variability in the Atlantic–Mediterranean Region and Its Relation to AMO. J. Clim. 2011, 24, 4385–4401. [Google Scholar] [CrossRef]
- Marullo, S.; Minnett, P.J.; Santoleri, R.; Tonani, M. The diurnal cycle of sea-surface temperature and estimation of the heat budget of the Mediterranean Sea. J. Geophys. Res. Ocean. 2016, 121, 8351–8367. [Google Scholar] [CrossRef]
Band | Band | Center Wavelength (μm) | Band | Center Wavelength (μm) | Band | Center Wavelength (μm) |
---|---|---|---|---|---|---|
GOES-ABI | MSG-4 SEVIRI | Sentinel-3A SLSTR | ||||
IR038 | 7 | 3.90 | 4 | 3.90 | S7 | 3.74 |
IR087 | 11 | 8.50 | 7 | 8.70 | - | - |
IR112 | 14 | 11.20 | 9 | 10.80 | S8 | 10.95 |
IR123 | 15 | 12.30 | 10 | 12.00 | S9 | 12.00 |
Satellite | Available from | Temporal Resolution | Spatial Resolution |
---|---|---|---|
Sentinel-3A SLSTR | EUMETSAT Copernicus Online Data Access (CODA) | every 3 min for Level-1B data | 1 km |
GOES-ABI | NOAA Amazon Web Services (AWS) Data Centre | every 10 min | 1 km |
MSG-4 SEVIRI | EUMETSAT Data Centre | every 15 min | 3 km |
Areas | for | Date | UTC Time |
---|---|---|---|
Eastern tropical North Atlantic Ocean | SLSTR with ABI | 1 January 2020 | Day: 15:21:14 PM Night: 02:55:20 AM |
Mediterranean Sea | SLSTR with SEVIRI | 23 December 2019 | Day: 09:04:56 AM Night: 20:21:51 PM |
Cross-covered region | SLSTR with SEVIRI and ABI | 27 November 2019 | Day: 12:09:44 AM Night: 00:36:20 AM |
Eastern Tropical North Atlantic Ocean | Day/Night | Band (SLSTR) | Mean (K) | Median (K) | STD (K) | RSD (K) |
---|---|---|---|---|---|---|
SLSTR vs ABI | Day | S7 | 0.028 | −0.005 | 0.296 | 0.248 |
S8 | 0.054 | 0.008 | 0.326 | 0.145 | ||
S9 | 0.042 | 0.006 | 0.401 | 0.260 | ||
Night | S7 | 0.039 | −0.033 | 0.360 | 0.281 | |
S8 | 0.079 | 0.028 | 0.383 | 0.230 | ||
S9 | −0.035 | −0.088 | 0.360 | 0.330 |
Mediterranean Sea | Day/Night | Band (SLSTR) | Mean (K) | Median (K) | STD (K) | RSD (K) |
---|---|---|---|---|---|---|
SLSTR vs SEVIRI | Day | S7 | 0.133 | 0.045 | 0.544 | 0.493 |
S8 | 0.067 | −0.005 | 0.454 | 0.143 | ||
S9 | 0.073 | 0.008 | 0.440 | 0.198 | ||
Night | S7 | 0.077 | 0.012 | 0.480 | 0.320 | |
S8 | 0.143 | −0.003 | 0.674 | 0.240 | ||
S9 | 0.124 | −0.003 | 0.644 | 0.328 |
Cross-Covered Region | Day/Night | Band (SLSTR) | Mean (K) | Median (K) | STD (K) | RSD (K) |
---|---|---|---|---|---|---|
SLSTR vs ABI | Day | S8 | 0.035 | 0.013 | 0.452 | 0.184 |
S9 | 0.056 | 0.030 | 0.516 | 0.211 | ||
Night | S8 | 0.128 | 0.036 | 0.891 | 0.186 | |
S9 | 0.143 | 0.025 | 1.084 | 0.207 | ||
SLSTR vs SEVIRI | Day | S8 | 0.087 | 0.018 | 0.450 | 0.202 |
S9 | 0.072 | 0.010 | 0.467 | 0.241 | ||
Night | S8 | 0.084 | 0.014 | 0.465 | 0.224 | |
S9 | 0.105 | 0.024 | 0.549 | 0.265 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, B.; Minnett, P.J. Comparison of SLSTR Thermal Emissive Bands Clear-Sky Measurements with Those of Geostationary Imagers. Remote Sens. 2020, 12, 3279. https://doi.org/10.3390/rs12203279
Luo B, Minnett PJ. Comparison of SLSTR Thermal Emissive Bands Clear-Sky Measurements with Those of Geostationary Imagers. Remote Sensing. 2020; 12(20):3279. https://doi.org/10.3390/rs12203279
Chicago/Turabian StyleLuo, Bingkun, and Peter J. Minnett. 2020. "Comparison of SLSTR Thermal Emissive Bands Clear-Sky Measurements with Those of Geostationary Imagers" Remote Sensing 12, no. 20: 3279. https://doi.org/10.3390/rs12203279
APA StyleLuo, B., & Minnett, P. J. (2020). Comparison of SLSTR Thermal Emissive Bands Clear-Sky Measurements with Those of Geostationary Imagers. Remote Sensing, 12(20), 3279. https://doi.org/10.3390/rs12203279