Spatial Heterogeneity of Vegetation Response to Mining Activities in Resource Regions of Northwestern China
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
2.2.1. Landsat Data and Mining Maps
2.2.2. Boundary Data in Vector Format and Climate Dataset
3. Methodology
3.1. Trend Analysis of Vegetation Changes
3.2. Relationship between Vegetation Changes and Mining Development in GWR Model
4. Results
4.1. Temporal Trends and Spatial Distribution in NDVI
4.2. Spatiotemporal Distribution of Mining Development
4.3. Mining Development and Elevation of Influencing Vegetation Changes
4.3.1. Correlation between Minimal Distance, Summary Distance, and Vegetation Changes
4.3.2. Correlation between Elevation and Vegetation Changes
4.3.3. Correlation between Minimal Distance, Summary Distance, Elevation, and Vegetation Changes
5. Discussion
5.1. Importance of Applying GWR in Studying Spatial Heterogeneity of Vegetation
5.2. Effect of Distance on Vegetation Disturbance in Mining Areas
5.3. Response of Vegetation Changes to Climate Conditions
5.4. Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vereecken, H.; Kollet, S.; Simmer, C. Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modeling, and Data Assimilation. Vadose Zone J. 2010, 9, 821–827. [Google Scholar] [CrossRef]
- Boyd, I.L.; Freer-Smith, P.H.; Gilligan, C.A.; Godfray, H.C.J. The Consequence of Tree Pests and Diseases for Ecosystem Services. Science 2013, 342, 823. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.; Serra-Diaz, J.M.; Syphard, A.D.; Regan, H.M. Global change and terrestrial plant community dynamics. Proc. Natl. Acad. Sci. USA 2016, 113, 3725–3734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Zhu, Z.C.; Piao, S.L.; Myneni, R.B.; Huang, M.T.; Zeng, Z.Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Li, F.; Wang, R.S.; Hu, D.; Ye, Y.P.; Yang, W.R.; Liu, H.X. Measurement methods and applications for beneficial and detrimental effects of ecological services. Ecol. Indic. 2014, 47, 102–111. [Google Scholar] [CrossRef]
- United Nations(UN). Sustainable Development Goals: 17 Goals to Transform Our World. Available online: http://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 3 September 2020).
- United Nations(UN). Decade on Ecosystem Restoration 2021–2030. Available online: https://www.decadeonrestoration.org/ (accessed on 3 September 2020).
- Hendryx, M.; Zullig, K.J.; Luo, J.H. Impacts of Coal Use on Health. In Annual Review of Public Health; Fielding, J.E., Ed.; Annual Reviews: Palo Alto, CA, USA, 2020; Volume 41, pp. 397–415. [Google Scholar]
- Qureshi, A.A.; Kazi, T.G.; Baig, J.A.; Arain, M.B.; Afridi, H.I. Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single step extraction methods. Impact on orchard grass. Chemosphere 2020, 255, 11. [Google Scholar] [CrossRef]
- Liu, S.L.; Li, W.P. Zoning and management of phreatic water resource conservation impacted by underground coal mining: A case study in arid and semiarid areas. J. Clean. Prod. 2019, 224, 677–685. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, Y.X.; Ruan, M.Y.; Guo, J.; Chai, T.Y. Land Subsidence in a Coal Mining Area Reduced Soil Fertility and Led to Soil Degradation in Arid and Semi-Arid Regions. Int. J. Environ. Res. Public Health 2019, 16, 3929. [Google Scholar] [CrossRef] [Green Version]
- Martins, W.B.R.; Lima, M.D.R.; Barros, U.D.; Amorim, L.; Oliveira, F.D.; Schwartz, G. Ecological methods and indicators for recovering and monitoring ecosystems after mining: A global literature review. Ecol. Eng. 2020, 145, 11. [Google Scholar] [CrossRef]
- Xu, J.P.; Ma, N.; Xie, H.P. Ecological coal mining based dynamic equilibrium strategy to reduce pollution emissions and energy consumption. J. Clean. Prod. 2017, 167, 514–529. [Google Scholar] [CrossRef]
- Kompala-Baba, A.; Bierza, W.; Blonska, A.; Sierka, E.; Magurno, F.; Chmura, D.; Besenyei, L.; Radosz, L.; Wozniak, G. Vegetation diversity on coal mine spoil heaps—How important is the texture of the soil substrate? Biologia 2019, 74, 419–436. [Google Scholar] [CrossRef] [Green Version]
- Lefticariu, L.; Walters, E.R.; Pugh, C.W.; Bender, K.S. Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated acid mine drainage: Field experiments. Appl. Geochem. 2015, 63, 70–82. [Google Scholar] [CrossRef]
- Fiket, Z.; Medunic, G.; Vidakovic-Cifrek, Z.; Jezidzic, P.; Cvjetko, P. Effect of coal mining activities and related industry on composition, cytotoxicity and genotoxicity of surrounding soils. Environ. Sci. Pollut. Res. 2020, 27, 6613–6627. [Google Scholar] [CrossRef] [PubMed]
- Artico, L.L.; Kommling, G.; Migita, N.A.; Menezes, A.P.S. Toxicological Effects of Surface Water Exposed to Coal Contamination on the Test System Allium cepa. Water Air Soil Pollut. 2018, 229, 12. [Google Scholar] [CrossRef]
- Freitas, L.A.d.; Rambo, C.L.; Franscescon, F.; Barros, A.F.P.d.; Lucca, G.d.S.D.; Siebel, A.M.; Scapinello, J.; Lucas, E.M.; Magro, J.D. Coal extraction causes sediment toxicity in aquatic environments in Santa Catarina, Brazil. Rev. Ambiente Água 2017, 12, 591–604. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Y.; Hou, J.; Guo, J.Y.; Wang, C.J.; Wang, M.J. Coal Dust Reduce the Rate of Root Growth and Photosynthesis of Five Plant Species in Inner Mongolian Grassland. J. Residuals Sci. Technol. 2016, 13, S63–S73. [Google Scholar]
- Shi, Y.K.; Mu, X.M.; Li, K.R.; Shao, H.B. Soil characterization and differential patterns of heavy metal accumulation in woody plants grown in coal gangue wastelands in Shaanxi, China. Environ. Sci. Pollut. Res. 2016, 23, 13489–13497. [Google Scholar] [CrossRef]
- Sun, L.; Liao, X.Y.; Yan, X.L.; Zhu, G.H.; Ma, D. Evaluation of heavy metal and polycyclic aromatic hydrocarbons accumulation in plants from typical industrial sites: Potential candidate in phytoremediation for co-contamination. Environ. Sci. Pollut. Res. 2014, 21, 12494–12504. [Google Scholar] [CrossRef]
- National Development and Reform Commission; PRC. 13th Five-Year Plan for Coal Industry Development. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201612/t20161230_962216.html (accessed on 19 September 2020).
- Giam, X.; Olden, J.D.; Simberloff, D. Impact of coal mining on stream biodiversity in the US and its regulatory implications. Nat. Sustain. 2018, 1, 176–183. [Google Scholar] [CrossRef]
- Zeng, Q.; Shen, L.; Yang, J. Potential impacts of mining of super-thick coal seam on the local environment in arid Eastern Junggar coalfield, Xinjiang region, China. Environ. Earth Sci. 2020, 79, 15. [Google Scholar] [CrossRef]
- Li, Y.M.; Zhang, B.; Wang, B.; Wang, Z.H. Evolutionary trend of the coal industry chain in China: Evidence from the analysis of I-O and APL model. Resour. Conserv. Recycl. 2019, 145, 399–410. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wu, D.; Wang, C.X.; Fu, X.; Wu, G. Impact of coal power generation on the characteristics and risk of heavy metal pollution in nearby soil. Ecosyst. Health Sustain. 2020, 6, 12. [Google Scholar] [CrossRef]
- Franks, D.M.; Brereton, D.; Moran, C.J. The cumulative dimensions of impact in resource regions. Resour. Policy 2013, 38, 640–647. [Google Scholar] [CrossRef]
- Porter, M.; Franks, D.M.; Everingham, J.A. Cultivating collaboration: Lessons from initiatives to understand and manage cumulative impacts in Australian resource regions. Resour. Policy 2013, 38, 657–669. [Google Scholar] [CrossRef]
- Liu, S.L.; Li, W.P.; Qiao, W.; Wang, Q.Q.; Hu, Y.B.; Wang, Z.K. Effect of natural conditions and mining activities on vegetation variations in arid and semiarid mining regions. Ecol. Indic. 2019, 103, 331–345. [Google Scholar] [CrossRef]
- Pei, H.; Fang, S.F.; Lin, L.; Qin, Z.H.; Wang, X.Y. Methods and applications for ecological vulnerability evaluation in a hyper-arid oasis: A case study of the Turpan Oasis, China. Environ. Earth Sci. 2015, 74, 1449–1461. [Google Scholar] [CrossRef] [Green Version]
- Fang, A.M.; Dong, J.H.; Cao, Z.G.; Zhang, F.; Li, Y.F. Tempo-Spatial Variation of Vegetation Coverage and Influencing Factors of Large-Scale Mining Areas in Eastern Inner Mongolia, China. Int. J. Environ. Res. Public Health 2020, 17, 47. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.R.; Cao, Z.; Long, H.L.; Liu, Y.S.; Li, W.J. Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban-rural development: The case of Mu Us Sandy Land, China. J. Clean. Prod. 2017, 142, 697–715. [Google Scholar] [CrossRef]
- McMillen, D.P. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Am. J. Agric. Econ. 2004, 86, 554–556. [Google Scholar] [CrossRef]
- Li, H.L.; Peng, J.; Liu, Y.X.; Hu, Y.N. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Tenerelli, P.; Demsar, U.; Luque, S. Crowdsourcing indicators for cultural ecosystem services: A geographically weighted approach for mountain landscapes. Ecol. Indic. 2016, 64, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Shaker, R.R.; Altman, Y.; Deng, C.B.; Vaz, E.; Forsythe, K.W. Investigating urban heat island through spatial analysis of New York City streetscapes. J. Clean. Prod. 2019, 233, 972–992. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, N.Z.; Vanos, J.K.; Cao, G.F. Revisiting the estimations of PM2.5-attributable mortality with advancements in PM2.5 mapping and mortality statistics. Sci. Total Environ. 2019, 666, 499–507. [Google Scholar] [CrossRef]
- Xia, C.; Xiang, M.; Fang, K.; Li, Y.; Ye, Y.; Shi, Z.; Liu, J. Spatial-temporal distribution of carbon emissions by daily travel and its response to urban form: A case study of Hangzhou, China. J. Clean. Prod. 2020, 257, 120797. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Zhang, Q.; Pilla, F.; Joshi, P.K.; Basu, B.; Keesstra, S.; Roy, P.S.; Wang, Y.; Sutton, P.C.; Chakraborti, S.; et al. Responses of ecosystem services to natural and anthropogenic forcings: A spatial regression based assessment in the world’s largest mangrove ecosystem. Sci. Total Environ. 2020, 715, 13. [Google Scholar] [CrossRef]
- Sun, X.; Tang, H.J.; Yang, P.; Hu, G.; Liu, Z.H.; Wu, J.G. Spatiotemporal patterns and drivers of ecosystem service supply and demand across the conterminous United States: A multiscale analysis. Sci. Total Environ. 2020, 703, 17. [Google Scholar] [CrossRef] [PubMed]
- Sawut, R.; Kasim, N.; Abliz, A.; Li, H.; Yalkun, A.; Maihemuti, B.; Shi, Q.D. Possibility of optimized indices for the assessment of heavy metal contents in soil around an open pit coal mine area. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 14–25. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change(IPCC). Special Report On Climate Change And Land: Desertification. Available online: https://www.ipcc.ch/srccl/chapter/chapter-3/ (accessed on 18 September 2020).
- Mancini, L.; Sala, S. Social impact assessment in the mining sector: Review and comparison of indicators frameworks. Resour. Policy 2018, 57, 98–111. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). World Energy Outlook 2017: China. Available online: https://www.iea.org/reports/world-energy-outlook-2017-china (accessed on 18 September 2020).
- Bu, Q.W.; Li, Q.S.; Zhang, H.D.; Cao, H.M.; Gong, W.W.; Zhang, X.; Ling, K.; Cao, Y.B. Concentrations, Spatial Distributions, and Sources of Heavy Metals in Surface Soils of the Coal Mining City Wuhai, China. J. Chem. 2020, 2020, 10. [Google Scholar] [CrossRef]
- Wang, W.F.; Hao, W.D.; Sian, Z.F.; Lei, S.G.; Wang, X.S.; Sang, S.X.; Xu, S.C. Effect of coal mining activities on the environment of Tetraena mongolica in Wuhai, Inner Mongolia, China-A geochemical perspective. Int. J. Coal Geol. 2014, 132, 94–102. [Google Scholar] [CrossRef]
- Guan, Q.Y.; Wang, L.; Pan, B.T.; Guan, W.Q.; Sun, X.Z.; Cai, A. Distribution features and controls of heavy metals in surface sediments from the riverbed of the Ningxia-Inner Mongolian reaches, Yellow River, China. Chemosphere 2016, 144, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.W.; Shulski, M.D.; Hubbard, K.G.; Takle, E.S. A spatiotemporal analysis of Midwest US temperature and precipitation trends during the growing season from 1980 to 2013. Int. J. Clim. 2016, 36, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Ecology and Environment; PRC. List of National Nature Reserves. Available online: http://www.gov.cn/guoqing/2019-04/09/content_5380702.htm (accessed on 19 September 2020).
- Batunacun; Wieland, R.; Lakes, T.; Hu, Y.F.; Nendel, C. Identifying drivers of land degradation in Xilingol, China, between 1975 and 2015. Land Use Policy 2019, 83, 543–559. [Google Scholar] [CrossRef]
- Xue, J.R.; Su, B.F. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Maneja, R.H.; Miller, J.D.; Li, W.Z.; El-Askary, H.; Flandez, A.V.B.; Dagoy, J.J.; Alcaria, J.F.A.; Basali, A.U.; Al-Abdulkader, K.A.; Loughland, R.A.; et al. Long-term NDVI and recent vegetation cover profiles of major offshore island nesting sites of sea turtles in Saudi waters of the northern Arabian Gulf. Ecol. Indic. 2020, 117, 13. [Google Scholar] [CrossRef]
- Schell, J.A. Monitoring vegetation systems in the great plains with ERTS. Nasa Spec. Publ. 1973, 351, 309. [Google Scholar]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Pingale, S.M.; Khare, D.; Jat, M.K.; Adamowski, J. Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmos. Res. 2014, 138, 73–90. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; [Oxford University Press, Biometrika Trust]; Griffin: London, UK, 1957; Volume 44, p. 298. [Google Scholar]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically Weighted Regression-Modelling Spatial Non-Stationarity. J. R. Stat. Soc. Ser. D (Stat.) 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Alahmadi, S.; Al-Ahmadi, K.; Almeshari, M. Spatial variation in the association between NO2 concentrations and shipping emissions in the Red Sea. Sci. Total Environ. 2019, 676, 131–143. [Google Scholar] [CrossRef]
- Marquardt, D.W. Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation. Technometrics 1970, 12, 591–612. [Google Scholar] [CrossRef]
- Qi, X.Z.; Jia, J.H.; Liu, H.Y.; Lin, Z.S. Relative importance of climate change and human activities for vegetation changes on China’s silk road economic belt over multiple timescales. Catena 2019, 180, 224–237. [Google Scholar] [CrossRef]
- Tai, X.L.; Epstein, H.E.; Li, B. Elevation and Climate Effects on Vegetation Greenness in an Arid Mountain-Basin System of Central Asia. Remote Sens. 2020, 12, 1665. [Google Scholar] [CrossRef]
- Zhu, Y.K.; Zhang, J.T.; Zhang, Y.Q.; Qin, S.G.; Shao, Y.Y.; Gao, Y. Responses of vegetation to climatic variations in the desert region of northern China. Catena 2019, 175, 27–36. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhou, W.; Bai, Z.K. Vegetation coverage change and stability in large open-pit coal mine dumps in China during 1990-2015. Ecol. Eng. 2016, 95, 447–451. [Google Scholar] [CrossRef]
- Li, X.H.; Lei, S.G.; Cheng, W.; Liu, F.; Wang, W.Z. Spatio-temporal dynamics of vegetation in Jungar Banner of China during 2000–2017. J. Arid Land 2019, 11, 837–854. [Google Scholar] [CrossRef] [Green Version]
- Duran, A.P.; Rauch, J.; Gaston, K.J. Global spatial coincidence between protected areas and metal mining activities. Biol. Conserv. 2013, 160, 272–278. [Google Scholar] [CrossRef]
- Neri, A.C.; Dupin, P.; Sanchez, L.E. A pressure-state-response approach to cumulative impact assessment. J. Clean. Prod. 2016, 126, 288–298. [Google Scholar] [CrossRef]
- Siqueira-Gay, J.; Sonter, L.J.; Sánchez, L.E. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 2020, 67, 101662. [Google Scholar] [CrossRef]
- Ministry of Natural Resources; PRC. The Report on the National General Survey of Soil Contamination. Available online: http://g.mnr.gov.cn/201701/t20170123_1428712.html (accessed on 3 September 2020).
- Liao; Liu, F. Identifying the Mining Impact Range on the Vegetation of Yangquan Coal Mining Region by Using 3S Technology. J. Nat. Resour. 2010, 25, 185–191. [Google Scholar]
- Yao, F.; Guli, J.; Bao, A.; Zhang, J.; Li, C.; Liu, J. Damage assessment of the vegetable types based on remote sensing in the open coalmine of arid desert area. China Environ. Sci. 2013, 33, 707–713. [Google Scholar]
- Ma, Q.; He, C.Y.; Fang, X.N. A rapid method for quantifying landscape-scale vegetation disturbances by surface coal mining in arid and semiarid regions. Landsc. Ecol. 2018, 33, 2061–2070. [Google Scholar] [CrossRef]
- Lv, X.J.; Xiao, W.; Zhao, Y.L.; Zhang, W.K.; Li, S.C.; Sun, H.X. Drivers of spatio-temporal ecological vulnerability in an arid, coal mining region in Western China. Ecol. Indic. 2019, 106, 18. [Google Scholar] [CrossRef]
- Cheng, W.; Lei, S.G.; Bian, Z.F.; Zhao, Y.B.; Li, Y.C.; Gan, Y.D. Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. J. Hazard. Mater. 2020, 387, 11. [Google Scholar] [CrossRef]
- Ma, Z.; Yan, N.; Wu, B.; Stein, A.; Zhu, W.; Zeng, H. Variation in actual evapotranspiration following changes in climate and vegetation cover during an ecological restoration period (2000–2015) in the Loess Plateau, China. Sci Total Environ. 2019, 689, 534–545. [Google Scholar] [CrossRef]
- Forzieri, G.; Alkama, R.; Miralles, D.G.; Cescatti, A. Response to Comment on “Satellites reveal contrasting responses of regional climate to the widespread greening of Earth”. Science 2018, 360, 3. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Y.; Ma, W.H.; Liang, C.Z.; Liu, Z.L.; Wang, W.; Wang, L.X. Long-term vegetation dynamics driven by climatic variations in the Inner Mongolia grassland: Findings from 30-year monitoring. Landsc. Ecol. 2015, 30, 1701–1711. [Google Scholar] [CrossRef]
- Piao, S.L.; Yin, G.D.; Tan, J.G.; Cheng, L.; Huang, M.T.; Li, Y.; Liu, R.G.; Mao, J.F.; Myneni, R.B.; Peng, S.S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
Theme | Data Type/Images Number | Resolution | Time | Source |
---|---|---|---|---|
Landsat 4-5 TM C1 Level-1 | Satellite Imagery/ 41 Imageries | 30 m | 1999–2011 | U.S. Geological Survey (USGS) (http://www.glovis.usgs.gov/) |
Landsat 7 ETM+ C1 Level-1 | Satellite Imagery/ 11 Imageries | 30 m | 1999–2003 | U.S. Geological Survey (USGS) (http://www.glovis.usgs.gov/) |
Landsat 8 OIL/TIRS C1 Level-1 | Satellite Imagery/ 20 Imageries | 30 m | 2013–2018 | U.S. Geological Survey (USGS) (http://www.glovis.usgs.gov/) |
Historical Google Earth Image | Satellite imagery | 17 m/4 m/2 m | 2000, 2005, 2010, and 2017 | Google Earth Pro (http://www.google.com/intl/en_uk/earth/versions/#earth-pro) |
Adjusted R2 | 1999–2005 | 1999–2010 | 1999–2018 | 1999–2018R | |
---|---|---|---|---|---|
Elevation | Adjusted R2G | 0.27 | 0.31 | 0.50 | 0.59 |
Adjusted R2O | 0.01 | 0.00 | 0.02 | 0.04 | |
Minimal distance | Adjusted R2G | 0.28 | 0.33 | 0.52 | 0.62 |
Adjusted R2O | 0.05 | 0.04 | 0.00 | 0.00 | |
Summary distance | Adjusted R2G | 0.20 | 0.28 | 0.27 | 0.41 |
Adjusted R2O | 0.01 | 0.01 | 0.00 | 0.01 | |
Minimal distance and elevation | Adjusted R2G | 0.20 | 0.27 | 0.29 | 0.41 |
Adjusted R2O | 0.05 | 0.03 | 0.02 | 0.05 | |
Summary distance and elevation | Adjusted R2G | 0.19 | 0.26 | 0.26 | 0.38 |
Adjusted R2O | 0.02 | 0.01 | 0.02 | 0.06 |
AIC | 1999–2005 | 1999–2010 | 1999–2018 | 1999–2018R | |
---|---|---|---|---|---|
Elevation | AICG | −31717.3 | −34396.9 | −32869.7 | −28356.0 |
AICO | −30523.8 | −32951.2 | −30187.1 | −25504.8 | |
Minimal distance | AICG | −31739.0 | −34488.6 | −33030.7 | −28700.3 |
AICO | −30686.0 | −33086.7 | −30113.6 | −25358.1 | |
Summary distance | AICG | −31367.3 | −34238.5 | −31372.5 | −27137.2 |
AICO | −30517.9 | −32968.3 | −30118.3 | −25381.6 | |
Minimal distance and elevation | AICG | −31364.3 | −34189.6 | −31489.8 | −27145.2 |
AICO | −30692.2 | −33084.9 | −30186.6 | −25519.6 | |
Summary distance and elevation | AICG | −31311.1 | −34138.6 | −31329.3 | −26979.4 |
AICO | −30549.2 | −32969.9 | −30214.0 | −25589.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Xie, M.; Wang, H.; Li, S.; Xu, M. Spatial Heterogeneity of Vegetation Response to Mining Activities in Resource Regions of Northwestern China. Remote Sens. 2020, 12, 3247. https://doi.org/10.3390/rs12193247
Li H, Xie M, Wang H, Li S, Xu M. Spatial Heterogeneity of Vegetation Response to Mining Activities in Resource Regions of Northwestern China. Remote Sensing. 2020; 12(19):3247. https://doi.org/10.3390/rs12193247
Chicago/Turabian StyleLi, Hanting, Miaomiao Xie, Huihui Wang, Shaoling Li, and Meng Xu. 2020. "Spatial Heterogeneity of Vegetation Response to Mining Activities in Resource Regions of Northwestern China" Remote Sensing 12, no. 19: 3247. https://doi.org/10.3390/rs12193247
APA StyleLi, H., Xie, M., Wang, H., Li, S., & Xu, M. (2020). Spatial Heterogeneity of Vegetation Response to Mining Activities in Resource Regions of Northwestern China. Remote Sensing, 12(19), 3247. https://doi.org/10.3390/rs12193247