Soil Salinity Assessment in Irrigated Paddy Fields of the Niger Valley Using a Four-Year Time Series of Sentinel-2 Satellite Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection Strategy
2.3. Remote-Sensing Data Collection
2.4. Multidimensional Analysis of the Data
3. Results
3.1. NDVI Dynamics over the Eight Growing Seasons
3.2. Spatial Variation in TI-NDVI over the Eight Growing Seasons
3.3. Salinity Measured in the Field in 2019
3.4. Correlation between Remote-Sensing Data and Field Data during the 2019 Dry Season
3.5. PCA and HCA Analysis of Remote-Sensing Data over the Eight Growing Seasons
3.6. Description of the Field Clusters
- Cluster 1 had low TI-NDVI in both dry and wet seasons. In 2019, EC1:5 was highest in this cluster, soil pH was very acidic and total biomass and grain yield were zero. The maximum EC1:5 of some fields in this cluster (5.36 dS/m) indicates that this cluster had the highest salinity.
- Cluster 2 had low TI-NDVI in dry seasons, due to rare cultivation, and a higher TI-NDVI in wet seasons, but one that was still lower than those of clusters 3–5. In 2019, soil EC1:5 was not significantly higher than those of clusters 3–5, but total biomass and grain yield were significantly lower.
- Cluster 3 had moderate TI-NDVI in dry and wet seasons and a significantly higher SI. In 2019, soil EC1:5 was low, pH was relatively high, and mean total biomass and grain yield were the second highest among the clusters.
- Cluster 4 had low TI-NDVI in dry seasons due to frequent non-cultivation but high TI-NDVI in wet seasons. In 2019, soil EC1:5 and pH were low, and the fields were not cultivated.
- Cluster 5 had extremely high TI-NDVI in both dry and wet seasons. In 2019, soil EC1:5 was low, pH was relatively high and total biomass and grain yield were the highest.
3.7. Mapping the Clusters over the Entire Study Area
4. Discussion
4.1. Variation in Spectral Indices among Crop Seasons
4.2. Temporal and Spatial Patterns of NDVI
4.3. Field EC Variation and Salinity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Water Assessment Programme (WWAP). Fact 24: Irrigated Land. United Nations Educational, Scientific and Cultural Organization (UNESCO). Available online: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/facts-and-figures/all-facts-wwdr3/fact-24-irrigated-land/ (accessed on 26 August 2020).
- Barbiéro, L.; Van Vliet-Lanoe, B. The alkali soils of the middle Niger valley: Origins, formation and present evolution. Geoderma 1998, 84, 323–343. [Google Scholar] [CrossRef] [Green Version]
- Guéro, Y. Organisation et Propriétés Fonctionnelles des sols de la Vallée du Moyen Niger. Ph.D. Thesis, Tunis University, Tunis, Tunisia, Niamey University, Niamey, Niger, 1987. [Google Scholar]
- Munns, R.; Cramer, G.R.; Ball, M.C. Interactions between Rising CO2 Soil Salinity, and Plant Growth. In Carbon Dioxide and Environmental Stress; Luo, Y., Mooney, H.A., Eds.; Academic Press: Cambridge, MA, USA, 1999; pp. 139–167. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pessarakli, M.; Szabolcs, I. Soil Salinity and Sodicity as Particular Plant/Crop Stress Factors. In Handbook of Plant and Crop Stress, 2nd ed.; Pessarakli, M., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1999; ISBN 978-0-8247-1948-7. [Google Scholar]
- Maas, E.V.; Grattan, S.R. Crop Yields as Affected by Salinity. In Agronomy Monographs; Skaggs, R.W., van Schilfgaarde, J., Eds.; American Society of Agronomy: Madison, WI, USA, 2015; pp. 55–108. ISBN 978-0-89118-230-6. [Google Scholar]
- Mougenot, B.; Pouget, M.; Epema, G.F. Remote sensing of salt affected soils. Remote Sens. Rev. 1993, 7, 241–259. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA. Geoderma Reg. 2014, 2–3, 82–90. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance. Ecol. Indic. 2016, 70, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid contextby means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Lizaga, I.; et al. Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China. Geoderma 2019, 353, 172–187. [Google Scholar] [CrossRef]
- Tripathi, N.K.; Rai, B.K.; Dwivedi, P. Spatial modeling of soil alkalinity in GIS environment using IRS data. In Proceedings of the 18th Asian Conference on Remote Sensing, Kuala Lumpur, Malaysia, 20–24 October 1997. [Google Scholar]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. AQUASTAT Profil de Pays-Niger; Organisation des Nations Unies pour l’Alimentation et l’Agriculture: Rome, Italie, 2015; p. 18. [Google Scholar]
- Guéro, Y. Contribution à L’étude des Mécanismes de Dégration Physico-Chimique des sols Sous Climat Sahélien: Exemple pris Dans la Vallée du Moyen Niger. Ph.D. Thesis, Université de Niamey, Niamey, Niger, 2000. [Google Scholar]
- Adam, I. Cartographie Fine et Suivi Détaillé de la Salinité des sols d’un Périmètre Irrigué au Niger en vue de leur Remédiation. Ph.D. Thesis, Uiversité de Bretagne Occidentale, Brest, France, Université Abdou Moumouni de Niamey, Niamey, Niger, 2011. [Google Scholar]
- Ndanga Kouali, G.; Lévite, H.; Anid, M. Diagnostic Participatif Rapide et Planification des Actions du Périmètre de Daïbéri (Département de Tillabéri-NIger); Technical Report; l’Association Nigérienne pour l’Irrigation et le Drainage (ANID): Niamey, Niger, 2010; p. 58. [Google Scholar]
- Hagolle, O.; Huc, M.; Desjardins, C.; Auer, S.; Richter, R. MAJA Algorithm Theoretical Basis Document; Technical Report; CNES, CESBIO and DLR: Berlin, Germany, 2017. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation, Type III, Final Report; NASA/GSFC: Greenbelt, MD, USA, 1974; pp. 1–137. [Google Scholar]
- Shabou, M.; Mougenot, B.; Chabaane, Z.; Walter, C.; Boulet, G.; Aissa, N.; Zribi, M. Soil Clay Content Mapping Using a Time Series of Landsat TM Data in Semi-Arid Lands. Remote Sens. 2015, 7, 6059–6078. [Google Scholar] [CrossRef] [Green Version]
- Roussillon, J. Développement de Méthodes Innovantes de Cartographie de L’occupation du sol à Partir de Séries Temporelles D’images Haute Résolution Visible (NDVI). Master’s Thesis, Le Mans Université, Le Mans, France, 2015. [Google Scholar]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230–231, 1–8. [Google Scholar] [CrossRef]
- Ma, C.; Guo, Z.; Zhang, X.; Han, R. Annual integral changes of time serial NDVI in mining subsidence area. Trans. Nonferrous Met. Soc. China 2011, 21, s583–s588. [Google Scholar] [CrossRef]
- Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Husson, F.; Josse, J.; Pages, J. Principal Component Methods—Hierarchical Clustering—Partitional Clustering: Why Would We Need to Choose for Visualizing Data? Technical Report; Agrocampus: Angers, France, 2010. [Google Scholar]
- Husson, F.; Josse, J.; Pagès, J. Analyse de données avec R-Complémentarité des méthodes d’analyse factorielle et de classification. In Proceedings of the 42èmes Journées de Statistique, Marseille, France, 25–29 May 2010. [Google Scholar]
- R Core Team. European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (accessed on 26 August 2020).
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Kundu, A.; Denis, D.; Patel, N.; Dutta, D. A Geo-spatial study for analysing temporal responses of NDVI to rainfall. Singap. J. Trop. Geogr. 2018, 39, 107–116. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S.; Hussain, N.; Hanjra, M.A.; Akbar, S. Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Phys. Chem. Earth Parts A/B/C 2013, 55–57, 43–52. [Google Scholar] [CrossRef]
- Shahid, S.; Rahman, K. Soil Salinity Development, Classification, Assessment, and Management in Irrigated Agriculture. In Handbook of Plant and Crop Stress, 3rd Ed.; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL, USA, 2011; Volume 20102370, pp. 23–39. ISBN 978-1-4398-1396-6. [Google Scholar]
Spectral Index | Equation | Characteristics |
---|---|---|
Salinity index (SI) | SI = (RED/NIR) × 100 in [25] | Created to detect saline soils. |
Normalized difference vegetation index (NDVI) | NDVI = (NIR − RED)/(NIR + RED) [22] Varies from −1.0 to +1.0.For vegetation, NDVI varies from 0.2–0.8. | A standardized index for vegetation cover and chlorophyll activity. Used to monitor drought and monitor and predict agricultural production. |
Soil EC1:5 (dS/m) | Soil pH1:5 | Total Aerial Biomass (g/m²) | Grain Yield (g/m²) | |||
---|---|---|---|---|---|---|
Statistic | Start of Season | At Harvest | Start of Season | At Harvest | At Harvest | At Harvest |
Mean | 0.40 | 0.44 | 5.52 | 5.29 | 914.2 | 389.5 |
Median | 0.03 | 0.04 | 5.56 | 5.33 | 1048.5 | 420 |
SD | 1.16 | 1.33 | 0.44 | 0.52 | 687.8 | 309.0 |
Min | 0.01 | 0.01 | 4.45 | 4.00 | 0 | 0 |
Max | 5.36 | 6.19 | 6.68 | 6.25 | 2269 | 1249 |
TI-NDVI | Soil EC1:5 SS | Soil EC1:5 ES | Soil pH SS | Soil pH ES | Total Aerial Biomass | Grain Yield | |
---|---|---|---|---|---|---|---|
TI-NDVI | 1.00 | ||||||
Soil EC1:5_SS | −0.38 | 1.00 | |||||
Soil EC1:5_ES | −0.38 | 0.99 | 1.00 | ||||
Soil pH SS | 0.35 | −0.63 | −0.63 | 1.00 | |||
Soil pH_ES | 0.16 | −0.62 | −0.62 | 0.74 | 1.00 | ||
Total Aerial Biomass | 0.77 | −0.23 | −0.23 | 0.35 | 0.1 | 1.00 | |
Grain Yield | 0.82 | −0.29 | −0.28 | 0.34 | 0.07 | 0.72 | 1.00 |
2016–2019 | Dry Season 2019 | |||||||
---|---|---|---|---|---|---|---|---|
Cluster | No. of Fields | Dry Season TI-NDVI (NDVI.Days) | Wet Season TI-NDVI (NDVI.Days) | Mean SI | Soil EC1:5 (dS/m) | Soil pH | Total Biomass (g/m2) | Grain Yield (g/m2) |
1 | 7 | 1.0 (1.2) a | 12.8 (4.4) a | 72.9 (3.0) ab | 2.6 (2.4) b | 5.0 (0.6) a | 0 (0) a | 0 (0) a |
2 | 9 | 5.2 (6.1) b | 25.5 (3.1) b | 72.5 (2.4) a | 0.6 (1.1) a | 5.5 (0.2) bc | 314 (572) a | 109 (217) a |
3 | 14 | 19.7 (3.6) d | 30.6 (1.8) c | 74.8 (1.3) b | 0.1 (0.0) a | 5.7 (0.2) c | 1308 (319) b | 527 (179) b |
4 | 6 | 10.1 (4.0) c | 44.6 (5.0) e | 70.1 (0.9) a | 0.1 (0.0) a | 5.2 (0.3) ab | 0 (0) a | 0 (0) a |
5 | 28 | 25.4 (1.9) e | 35.9 (3.1) d | 75.0 (1.7) b | 0.05 (0.1) a | 5.6 (0.4) bc | 1335 (414) b | 592 (205) b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moussa, I.; Walter, C.; Michot, D.; Adam Boukary, I.; Nicolas, H.; Pichelin, P.; Guéro, Y. Soil Salinity Assessment in Irrigated Paddy Fields of the Niger Valley Using a Four-Year Time Series of Sentinel-2 Satellite Images. Remote Sens. 2020, 12, 3399. https://doi.org/10.3390/rs12203399
Moussa I, Walter C, Michot D, Adam Boukary I, Nicolas H, Pichelin P, Guéro Y. Soil Salinity Assessment in Irrigated Paddy Fields of the Niger Valley Using a Four-Year Time Series of Sentinel-2 Satellite Images. Remote Sensing. 2020; 12(20):3399. https://doi.org/10.3390/rs12203399
Chicago/Turabian StyleMoussa, Issaka, Christian Walter, Didier Michot, Issifou Adam Boukary, Hervé Nicolas, Pascal Pichelin, and Yadji Guéro. 2020. "Soil Salinity Assessment in Irrigated Paddy Fields of the Niger Valley Using a Four-Year Time Series of Sentinel-2 Satellite Images" Remote Sensing 12, no. 20: 3399. https://doi.org/10.3390/rs12203399
APA StyleMoussa, I., Walter, C., Michot, D., Adam Boukary, I., Nicolas, H., Pichelin, P., & Guéro, Y. (2020). Soil Salinity Assessment in Irrigated Paddy Fields of the Niger Valley Using a Four-Year Time Series of Sentinel-2 Satellite Images. Remote Sensing, 12(20), 3399. https://doi.org/10.3390/rs12203399