CORONA High-Resolution Satellite and Aerial Imagery for Change Detection Assessment of Natural Hazard Risk and Urban Growth in El Alto/La Paz in Bolivia, Santiago de Chile, Yungay in Peru, Qazvin in Iran, and Mount St. Helens in the USA
Abstract
:1. Introduction
1.1. Usage of Satellite Imagery in Context of Disaster and Natural Hazard Research
1.2. Description of CORONA and Other Old, Public Reconnaissance Satellite Imagery in General
1.3. Short Overview of CORONA Satellite Imagery Concerning Urban and Hazard Aspects
- How useful is old declassified satellite imagery to map urban sprawl and natural hazard risk?
- Where are the limitations and what additional range of years going back from the 1980s can be added to map urban sprawl and natural hazards using openly available data?
- With respect to urban change detection, what additional information about urban and physical morphology can be derived from these images?
- Which are recommendable aspects and areas for further research?
2. Materials and Methods
2.1. Methodological Background of the Manual Visual Image Interpretation
2.2. Data Description and Screening Process
3. Results
3.1. Urban Change and Sprawl into Hazardous Areas
3.1.1. El Alto and La Paz in Bolivia
3.1.2. Santiago de Chile
3.2. Natural hazard and Disaster Examples
3.2.1. Landslides and Mass Movements
3.2.2. Earthquake and Flood Hazard
3.2.3. Volcanic Eruptions
4. Discussion
4.1. Addressing the Usefulness for Urban Sprawl and Natural Hazard Identification
4.2. Limitations of Data Availability
4.3. Extracting Additional Information Next to Location and Exposure
4.4. Recommendable Aspects and Areas for Further Research
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- CORONA
- imagery
- CORONA
- CORONA image AND urban sprawl OR urban growth
- CORONA
- GAMBIT urban growth
- CORONA
- CORONA image urban growth hazard
- CORONA
- CORONA image urban sprawl hazard
- CORONA
- CORONA image urban sprawl natural
- CORONA
- CORONA image urban growth landslide
- CORONA
- CORONA image landslide,
- CORONA
- CORONA image flood,
- CORONA
- CORONA image wildfire,
- CORONA
- Incendios forestales bolivia historicos
- CORONA
- China satellite reconnaissance image
- CORONA
- CORONA satellite AND Santiago de Chile OR La Paz OR Yungay OR Qazvin OR Mount St. Helens
- CORONA
- digital elevation CORONA satellite
- CORONA
- digital surface CORONA satellite
- CORONA
- digital terrain CORONA satellite
- CORONA
- photogrammetry CORONA satellite
References
- White, G.F. Human Adjustment to Floods. A Geographical Approach to the Flood Problem in the United States. Research Paper No. 29; The University of Chicago: Chicago, IL, USA, 1945. [Google Scholar]
- White, G.F.; Kates, R.W.; Burton, I. Knowing better and losing even more: The use of knowledge in hazards management. Environ. Hazards 2001, 3, 81–92. [Google Scholar]
- UNISDR. Living with Risk: A Global Review of Disaster Reduction; United Nations International Strategy for Disaster Reduction: Geneva, Switzerland, 2004; 429p. [Google Scholar]
- UNU. News Release. In Two Billion People Vulnerable to Floods by 2050; Number Expected to Double or More in Two Generations Due to Climate Change, Deforestation, Rising Seas, Population Growth; UNU—United Nations University: Tokyo, Japan, 2004. [Google Scholar]
- Dilley, M.; Chen, R.S.; Deichmann, U.; Lerner-Lam, A.L.; Arnold, M. Natural Disaster Hotspots; World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Ehrlich, D.; Melchiorri, M.; Florczyk, A.J.; Pesaresi, M.; Kemper, T.; Corbane, C.; Freire, S.; Schiavina, M.; Siragusa, A. Remote Sensing Derived Built-Up Area and Population Density to Quantify Global Exposure to Five Natural Hazards over Time. Remote Sens. 2018, 10, 1378. [Google Scholar] [CrossRef] [Green Version]
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space—The Global Urban. Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef] [Green Version]
- UNISDR. Making Cities Resilient Report 2012, My City Is Getting Ready! A Global Snapshot of How Local Governments Reduce Disaster Risk; United Nations International Strategy for Disaster Reduction: Geneva, Switzerland, 2012; 110p. [Google Scholar]
- Rockefeller Foundation. 100 Resilient Cities; The United States of America: Washington, DC, USA, 2015. [Google Scholar]
- Godschalk, D.R. Urban Hazard Mitigation: Creating Resilient Cities. Nat. Hazards Rev. 2003, 4, 136–143. [Google Scholar] [CrossRef]
- ICLEI. Local Governments for Sustainability, Resilient Cities; ICLEI: Bonn, Germany, 2018. [Google Scholar]
- EEA. Urban. Sprawl in Europe. The Ignored Challenge, in EEA Report No 10/2006; EEA—European Environment Agency: Copenhagen, Denmark, 2006. [Google Scholar]
- United Nations. Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations: Geneva, Switzerland, 2015. [Google Scholar]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change—IPCC; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- Un/Habitat, Habitat III. New Urban Agenda; United Nations: New York, NY, USA, 2016; p. 65.
- ISO. ISO/IEC 31010:2009. Risk Management—Risk Assessment Techniques; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- Song, X.-P.; Sexton, J.O.; Huang, C.; Channan, S.; Townshend, J.R. Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover. Remote Sens. Environ. 2016, 175, 1–13. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Landsat analysis of urban growth: How Tokyo became the world’s largest megacity during the last 40 years. Remote Sens. Environ. 2012, 127, 210–222. [Google Scholar] [CrossRef]
- Cabral, P.; Santos, J.A.; Augusto, G. Monitoring Urban Sprawl and the National Ecological Reserve in Sintra-Cascais, Portugal: Multiple OLS Linear Regression Model Evaluation. J. Urban Plan. Dev. 2011, 137, 346–353. [Google Scholar] [CrossRef]
- Criado, M.; Santos-Francés, F.; Martínez-Graña, A.; Sánchez, Y.; Merchán, L. Multitemporal Analysis of Soil Sealing and Land Use Changes Linked to Urban Expansion of Salamanca (Spain) Using Landsat Images and Soil Carbon Management as a Mitigating Tool for Climate Change. Remote Sens. 2020, 12, 1131. [Google Scholar] [CrossRef] [Green Version]
- Taubenböck, H.; Strunz, G. Special Issue: Remote Sensing Contributing to Mapping Earthquake Vulnerability and Effects. Nat. Hazards 2013, 68, 228. Available online: https://link.springer.com/journal/11069/68/1/page/1 (accessed on 2 October 2020).
- Kraff, N.J.; Taubenbock, H.; Wurm, M. How dynamic are slums? EO-based assessment of Kibera’s morphologic transformation. Joint Urban Remote Sens. Event JURSE 2019, 1–4. [Google Scholar] [CrossRef]
- Bessis, J.-L.; Béquignon, J.; Mahmood, A. Three typical examples of activation of the International Charter “space and major disasters”. Adv. Space Res. 2004, 33, 244–248. [Google Scholar] [CrossRef]
- Jones, B.K.; Stryker, T.S.; Mahmood, A.; Platzeck, G. The International Charter ‘Space and Major Disasters’. In Time-Sensitive Remote Sensing; Springer Science and Business Media LLC: Berlin, Germany, 2015; pp. 79–89. [Google Scholar]
- Patiño, J.E.; Duque, J.C. A review of regional science applications of satellite remote sensing in urban settings. Comput. Environ. Urban Syst. 2013, 37, 1–17. [Google Scholar] [CrossRef]
- Joyce, K.E.; Belliss, S.; Samsonov, S.V.; McNeill, S.; Glassey, P. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geogr. Earth Environ. 2009, 33, 183–207. [Google Scholar] [CrossRef] [Green Version]
- Van Westen, C.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Ruffner, K.C. Corona: America’s First Satellite Program, History Staff, Center for the Study of Intelligence; Central Intelligence Agency: Washington, DC, USA, 1995. [Google Scholar]
- Day, D.A.; Logsdon, J.M.; Latell, B. Eye in the Sky: The Story of the CORONA Spy Satellites; Smithsonian Institution: Washington, DC, USA, 1998. [Google Scholar]
- Day, D.A. Ike’s Gambit: The KH-8 Reconnaissance Satellite. 12 January 2009. Available online: https://www.thespacereview.com/article/1283/1 (accessed on 2 October 2020).
- Wright, J.; Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Image Interpretation. Geogr. J. 1980, 146, 448. [Google Scholar] [CrossRef]
- Richelson, J.T. A “rifle” in space. Air Force Mag. 2003, 86, 72–75. [Google Scholar]
- Hammer, E.; Ur, J. Near Eastern Landscapes and Declassified U2 Aerial Imagery. Adv. Archaeol. Pract. 2019, 7, 107–126. [Google Scholar] [CrossRef] [Green Version]
- USGS. USGS EROS Archive—Declassified Data—Declassified Satellite Imagery—1. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-1?qt-science_center_objects=0#qt-science_center_objects (accessed on 23 August 2020).
- Caddell, J.W.J. Corona over Cuba: The Missile Crisis and the Early Limitations of Satellite Imagery Intelligence. SHAFR Guide Online 2017, 31, 416–438. [Google Scholar] [CrossRef]
- Brugioni, D.A. The Art and Science of Photoreconnaissance. Sci. Am. 1996, 274, 78–85. [Google Scholar] [CrossRef]
- Ur, J. CORONA Satellite Photography and Ancient Road Networks: A Northern Mesopotamian Case Study. Antique 2003, 77, 102–115. [Google Scholar] [CrossRef] [Green Version]
- Philip, G.; Donoghue, D.N.M.; Beck, A.; Galiatsatos, N. CORONA satellite photography: An archaeological application from the Middle East. Antique 2002, 76, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Grosse, G.; Schirrmeister, L.; Kunitsky, V.V.; Hubberten, H.-W. The use of CORONA images in remote sensing of periglacial geomorphology: An illustration from the NE Siberian coast. Permafr. Periglac. Process. 2005, 16, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.J.; Pain, C. Geomorphological Mapping; SAGE Publications: Thousand Oaks, CA, USA, 2012; Volume 15, pp. 142–153. [Google Scholar]
- Tappan, G.G.; Hadj, A.; Wood, E.C.; Lietzow, R.W. Use of Argon, Corona, and Landsat imagery to assess 30 years of land resource changes in west-central Senegal. Photogramm. Eng. Remote Sens. 2000, 66, 727–736. [Google Scholar]
- Bayram, B.; Bayraktar, H.; Helvaci, C.; Acar, U. Coastline change detection using CORONA, SPOT and IRS 1D images. Int. Arch. Photogramm. Remote Sens. 2004, 35, 437–441. [Google Scholar]
- Song, D.-X.; Huang, C.; Sexton, J.; Channan, S.; Feng, M.; Townshend, J.R. Use of Landsat and Corona data for mapping forest cover change from the mid-1960s to 2000s: Case studies from the Eastern United States and Central Brazil. ISPRS J. Photogramm. Remote Sens. 2015, 103, 81–92. [Google Scholar] [CrossRef] [Green Version]
- McDonald, R.A. Opening the Cold War sky to the public: Declassifying satellite reconnaissance imagery. Photogramm. Eng. Remote Sens. 1995, 61, 385–390. [Google Scholar]
- Kristy, G. The impact of urban sprawl on cultural heritage in Herat, Afghanistan: A GIS analysis. Digit. Appl. Archaeol. Cult. Herit. 2018, 11, e00086. [Google Scholar] [CrossRef]
- Casana, J. Global-Scale Archaeological Prospection using CORONA Satellite Imagery: Automated, Crowd-Sourced, and Expert-led Approaches. J. Field Archaeol. 2020, 45, S89–S100. [Google Scholar] [CrossRef] [Green Version]
- Hepcan, S.; Hepcan, C.C.; Kilicaslan, C.; Ozkan, M.B.; Kocan, N. Analyzing Landscape Change and Urban Sprawl in a Mediterranean Coastal Landscape: A Case Study from Izmir, Turkey. J. Coast. Res. 2012, 29, 301–310. [Google Scholar] [CrossRef]
- Masek, J.G.; Lindsay, F.E.; Goward, S.N. Dynamics of urban growth in the Washington DC metropolitan area, 1973–1996, from Landsat observations. Int. J. Remote Sens. 2000, 21, 3473–3486. [Google Scholar] [CrossRef]
- Stewart, D.J.; Yin, Z.-Y.; Bullard, S.M.; MacLachlan, J.T. Assessing the Spatial Structure of Urban and Population Growth in the Greater Cairo Area, Egypt: A GIS and Imagery Analysis Approach. Urban Stud. 2004, 41, 95–116. [Google Scholar] [CrossRef]
- Cecchini, M.; Zambon, I.; Pontrandolfi, A.; Turco, R.; Colantoni, A.; Mavrakis, A.; Salvati, L. Urban sprawl and the ‘olive’ landscape: Sustainable land management for ‘crisis’ cities. GeoJournal 2018, 84, 237–255. [Google Scholar] [CrossRef]
- Di Giacomo, G.; Scardozzi, G. Multitemporal High-Resolution Satellite Images for the Study and Monitoring of an Ancient Mesopotamian City and its Surrounding Landscape: The Case of Ur. Int. J. Geophys. 2012, 2012, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, I.; Henebry, G. Urban. Land cover change analysis: The value of comparing historical spy photos with contemporary digital imagery. In Proceedings of the Joint Symposia URBAN-URS, Tempe, AZ, USA, 14–16 March 2005. [Google Scholar]
- Balzerek, H.; Fricke, W.; Heinrich, J.; Moldenhauer, K.-M.; Rosenberger, M. Man-Made Flood Disaster in the Savanna Town of Gombe/Ne Nigeria the Natural Hazard of Gully Erosion Caused by Urbanization Dynamics and Their Peri-Urban. Footprints (Gefährdungspotenziale durch Erosionsprozesse im urbanen und periurbanen Raum am Beispiel von Gombe/Nordostnigeria in der Trockensavanne Westafrikas). Erdkunde 2003, 57, 94–109. [Google Scholar] [CrossRef]
- Watanabe, T.; Lamsal, D.; Ives, J.D. Evaluating the growth characteristics of a glacial lake and its degree of danger of outburst flooding: Imja Glacier, Khumbu Himal, Nepal. Nor. Geogr. Tidsskr. Nor. J. Geogr. 2009, 63, 255–267. [Google Scholar] [CrossRef]
- Tutubalina, O.; Chernomorets, S.; Paramonov, D.; Petrakov, D. Remote sensing for glacial hazards monitoring in the Caucasus Mountains, Russia. In Proceedings of the 30th International Symposium on Remote Sensing of Environment, Honolulu, HI, USA, 10–14 November 2003. [Google Scholar]
- Narama, C.; Kääb, A.; Duishonakunov, M.; Abdrakhmatov, A. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~2000), and ALOS (~2007) satellite data. Glob. Planet. Chang. 2010, 71, 42–54. [Google Scholar] [CrossRef]
- Havenith, H.-B.; Strom, A.; Caceres, F.; Pirard, E. Analysis of landslide susceptibility in the Suusamyr region, Tien Shan: Statistical and geotechnical approach. Landslides 2006, 3, 39–50. [Google Scholar] [CrossRef]
- Altmaier, A.; Kany, C. Digital surface model generation from CORONA satellite images. ISPRS J. Photogramm. Remote Sens. 2002, 56, 221–235. [Google Scholar] [CrossRef]
- Schmidt, M.; Goossens, R.; Menz, G.; Altmaier, A.; Devriendt, D. The use of CORONA satellite images for generating a high resolution digital elevation model. In Proceedings of the IGARSS 2001 Scanning the Present and Resolving the Future, Sydney, NSW, Australia, 9–13 July 2001. [Google Scholar] [CrossRef]
- Casana, J.; Cothren, J. Stereo analysis, DEM extraction and orthorectification of CORONA satellite imagery: Archaeological applications from the Near East. Antique 2008, 82, 732–749. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Kar, N.S.; Bandyopadhyay, S. Glacial lake outburst flood at Kedarnath, Indian Himalaya: A study using digital elevation models and satellite images. Nat. Hazards 2015, 77, 769–786. [Google Scholar] [CrossRef]
- Albertz, J. Einführung in die Fernerkundung: Grundlagen der Interpretation von Luft-und Satellitenbildern; Wissenschaftliche Buchgesellschaft: Darmstadt, Germany, 2009. [Google Scholar]
- Glass, C.E. Interpreting Aerial Photographs to Identify Natural Hazards; Elsevier BV: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Ringach, D.; Shapley, R. Spatial and Temporal Properties of Illusory Contours and Amodal Boundary Completion. Vis. Res. 1996, 36, 3037–3050. [Google Scholar] [CrossRef] [Green Version]
- Saraf, A.K.; Das, J.D.; Agarwal, B.; Sundaram, R.M. False topography perception phenomena and its correction. Int. J. Remote Sens. 1996, 17, 3725–3733. [Google Scholar] [CrossRef]
- Goodchild, M.F. Geographical information science. Int. J. Geogr. Inf. Syst. 1992, 6, 31–45. [Google Scholar] [CrossRef]
- Molenaar, M. Three conceptual uncertainty levels for spatial objects. Int. Arch. Photogramm. Remote Sens. 2000, 33, 670–677. [Google Scholar]
- MacEachren, A.M.; Robinson, A.C.; Hopper, S.; Gardner, S.; Murray, R.; Gahegan, M.; Hetzler, E. Visualizing Geospatial Information Uncertainty: What We Know and What We Need to Know. Cartogr. Geogr. Inf. Sci. 2005, 32, 139–160. [Google Scholar] [CrossRef] [Green Version]
- Buttenfield, B.; Weibel, R. Visualizing the quality of cartographic data. In Proceedings of the 3rd International Geographic Information Systems Symposium (GIS/LIS 88), San Antonio, TX, USA, 30 November–2 December 1988. [Google Scholar]
- Shu, H.; Spaccapietra, S.; Quesada Sedas, D. Uncertainty of Geographic Information and its Support. in MADS. In Proceedings of the 2nd International Symposium on Spatial Data Quality, Hong Kong, China, 19–20 March 2003. [Google Scholar]
- Kraff, N.J.; Wurm, M.; Taubenbock, H.J. Uncertainties of human perception in visual image interpretation in complex urban environments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1. [Google Scholar] [CrossRef]
- Fowler, M.J. Declassified Intelligence Satellite Photographs. In Archaeology from Historical Aerial and Satellite Archives; Springer: Berlin/Heidelberg, Germany, 2013; pp. 47–66. [Google Scholar]
- Hardy, S. Atlas de la Vulnerabilidad de la Agglomeration de La Paz; IRD: La Paz, Bolivia, 2013. [Google Scholar]
- Busche, D. Early Quaternary landslides of the Sahara and their significance for geomorphic and climatic history. J. Arid Environ. 2001, 49, 429–448. [Google Scholar] [CrossRef]
- Nathan, F. Risk perception, risk management and vulnerability to landslides in the hill slopes in the city of La Paz, Bolivia. A preliminary statement. Disasters 2008, 32, 337–357. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Baker, P.A.; Argollo, J. Geomorphology of Natural Hazards and Human-induced Disasters in Bolivia. Dev. Earth Surf. Process. 2009, 13, 181–194. [Google Scholar] [CrossRef]
- Cook, S.J.; Kougkoulos, I.; Edwards, L.A.; Dortch, J.; Hoffmann, D. Glacier change and glacial lake outburst flood risk in the Bolivian Andes. Cryosphere 2016, 10, 2399–2413. [Google Scholar] [CrossRef] [Green Version]
- Armijo, R.; Rauld, R.; Thiele, R.; Vargas, G.; Campos, J.; Lacassin, R.; Kausel, E. The West. Andean thrust, the San Ramon fault, and the seismic hazard for Santiago, Chile. Tectonics 2010, 29. [Google Scholar] [CrossRef] [Green Version]
- Gall, M.; Borden, K.A.; Cutter, S.L. When do losses count? Six fallacies of natural hazards loss data. Bull. Am. Meteorol. Soc. 2009, 90, 799–810. [Google Scholar] [CrossRef]
- Bouwer, L.; Crompton, R.P.; Faust, E.; Höppe, P.; Pielke, R.A., Jr. DISASTER MANAGEMENT: Confronting Disaster Losses. Science 2007, 318, 753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Úbeda, X.; Sarricolea, P. Wildfires in Chile: A review. Glob. Planet. Chang. 2016, 146, 152–161. [Google Scholar] [CrossRef]
- Keefer, D.; Wieczorek, G.; Harp, E.; Tuel, D. Preliminary Assessment of Seismically Induced Landslide Susceptibility. Progress on Seismic Zonation in the San Francisco Bay Region; US Geological Survey: Arlington, VA, USA, 1979; Volume 807, pp. 49–60. Available online: https://pubs.usgs.gov/circ/1979/0807/report.pdf (accessed on 2 October 2020).
- Oliver-Smith, A. The Martyred City: Death and Rebirth in the Andes; University of New Mexico Press: Albuquerque, Mexico, 1986. [Google Scholar]
- Berberian, M. The 1962 earthquake and earlier deformations along the Ipak earthquake fault. Geol. Surv. Iran 1976, 39, 419–426. [Google Scholar]
- Fekete, A.; Asadzadeh, A.; Ghafory-Ashtiany, M.; Hosseini, K.A.; Hetkämper, C.; Moghadas, M.; Ostadtaghizadeh, A.; Rohr, A.; Kötter, T. Pathways for advancing integrative disaster risk and resilience management in Iran: Needs, challenges and opportunities. Int. J. Disaster Risk Reduct. 2020, 49, 101635. [Google Scholar] [CrossRef]
- Taubenböck, H.; Roth, A. Fernerkundung im Urbanen Kontext. Fernerkundung in Urbanem Raum: Erdbeobachtung auf dem Weg zur Planungspraxis; WBG (Wissenschaftliche Buchgesellschaft): Darmstadt, Germany, 2010. [Google Scholar]
- Fekete, A. Urban and Rural Landslide Hazard and Exposure Mapping Using Landsat and Corona Satellite Imagery for Tehran and the Alborz Mountains, Iran. AIMS Geosci. 2017, 3, 37–66. [Google Scholar] [CrossRef]
- Stevens, D. Geospatial Information, Sustainable Development and Decision Making in Developing Countries. In Geoinformation for Development; Zeil, P., Kienberger, S., Eds.; Herbert Wichmann: Heidelberg, Germany, 2007. [Google Scholar]
- Bolch, T.; Buchroithner, M.; Pieczonka, T.; Kunert, A. Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J. Glaciol. 2008, 54, 592–600. [Google Scholar] [CrossRef] [Green Version]
- Dashora, A.; Lohani, B.; Malik, J.N. A repository of earth resource information–CORONA satellite programme. Curr. Sci. 2007, 92, 926–932. [Google Scholar]
- Lamsal, D.; Sawagaki, T.; Watanabe, T. Digital terrain modelling using Corona and ALOS PRISM data to investigate the distal part of Imja Glacier, Khumbu Himal, Nepal. J. Mt. Sci. 2011, 8, 390–402. [Google Scholar] [CrossRef] [Green Version]
- Pieczonka, T.; Bolch, T.; Buchroithner, M.F. Generation and evaluation of multitemporal digital terrain models of the Mt. Everest area from different optical sensors. ISPRS J. Photogramm. Remote Sens. 2011, 66, 927–940. [Google Scholar] [CrossRef]
- Ahmadi, H.; Samani, A.N.; Malekian, A. The qanat: A living history in Iran. In Water and Sustainability in Arid Regions; Springer: Berlin/Heidelberg, Germany, 2010; pp. 125–138. [Google Scholar]
- Rayhani, M.H.T.; El Naggar, M.H. Collapse hazard zonation of qanats in greater Tehran area. Geotech. Geol. Eng. 2006, 25, 327–338. [Google Scholar] [CrossRef]
- Nichol, J.E.; Wong, M.S. Detection and interpretation of landslides using satellite images. Land Degrad. Dev. 2005, 16, 243–255. [Google Scholar] [CrossRef]
- Heintz, M.D.; Hagemeier-Klose, M.; Wagner, K. Towards a Risk Governance Culture in Flood Policy—Findings from the Implementation of the “Floods Directive” in Germany. Water 2012, 4, 135–156. [Google Scholar] [CrossRef] [Green Version]
- Usón, T.J.; Henríquez, C.; Dame, J. Disputed water: Competing knowledge and power asymmetries in the Yali Alto basin, Chile. Geoforum 2017, 85, 247–258. [Google Scholar] [CrossRef]
- Contreras Mojica, D.M.; Chamorro, A. Socio-Economic Vulnerability to Natural Hazards: A Spatial Model Including Dependencies to Critical Urban Infrastructure. In Deutscher Kongress für Geographie 2019; Deutscher Verband für Angewandte Geographie e.V.: And Christian-Albrechts-Universität zu Kiel: Kiel, Germany, 2019. [Google Scholar]
- ESA Earth Observation Portal. Kometa Space Mapping System (1981–2000) Based on Film Recovery. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/k/kometa (accessed on 1 September 2020).
- Lavrov, V.N. Space survey photocameras for cartographic purposes. In Proceedings of the 4th International Conference on Remote Sensing for Marine and Coastal Environments, Orlando, FL, USA, 17–19 March 1997. [Google Scholar]
- Fowler, M.J. High resolution Russian satellite imagery. AARG News 1995, 11, 28–32. [Google Scholar]
- Dowdeswell, J.A.; Gorman, M.R.; Macheret, Y.Y.; Moskalevsky, M.Y.; Hagen, J.O. Digital comparison of high resolution Sojuzkarta KFA-1000 imagery of ice masses with Landsat and SPOT data. Ann. Glaciol. 1993, 17, 105–112. [Google Scholar] [CrossRef]
- Martins, V.N.; E Silva, D.S.; Cabral, P. Social vulnerability assessment to seismic risk using multicriteria analysis: The case study of Vila Franca do Campo (São Miguel Island, Azores, Portugal). Nat. Hazards 2012, 62, 385–404. [Google Scholar] [CrossRef]
CORONA Satellite Types | Time Coverage | Spatial Resolution (up to) | Usability/Limitations for Urban Features |
---|---|---|---|
KH-1 | 8/1960 | 40 feet (12.2 m) | General locations of large urban settlements |
KH-2 | 12/1960–7/1961 | 30 feet (9.1 m) | General locations of large urban settlements |
KH-3 | 8/1961–12/1961 | 25 feet (7.6 m) | General locations of large urban settlements |
KH-4 | 2/1962–12/1963 | 10–25 feet 1 (3–7.6 m) | Mapping urban borders, streets |
KH-4A | 8/1963–9/1969 | 9–25 feet 1 (2.7–7.6 m) | Mapping urban borders, streets |
KH-4B | 9/1967–5/1972 | 6 feet (1.8 m) | Mapping urban borders, streets |
KH-5 ARGON | 5/1962–8/1964 | 460 feet (140.2 m) | Not useful |
KH-6 LANYARD | 7/1963–8/1963 | 6 feet (1.8 m) | Mapping urban borders, streets |
KH-7 GAMBIT | 7/1964–6/1967 | 4, later 2 feet 1 (1.2–0.6 m) | Very good; building types |
KH-8 KH-8A GAMBIT | 1966–1984 2 | 6 inches 1, 2.5 inches or better 2 (15.24–6.35 cm) | Could not be accessed (not declassified yet) |
KH-9 3 | 3/1973–10/1980 | 20–30 feet (6.1–9.1 m) | General locations of large urban settlements |
KH-9 HEXAGON | 6/1971–4/1986 | 2–4 feet (0.6–1.2 m) | Very good; building types |
Location | Hazard | Occurrence | Fatalities 1 | Available High-Resolution Satellite Data |
---|---|---|---|---|
Qazvin, Iran | Earthquake | 1962, Sept 1 | 12,000 | 1973 |
Hamburg, Germany | Coastal flood | 1962, Feb 16–17 | 300 | Not useful |
Skopje, Macedonia | Earthquake | 1963, July 26 | 1000 | Not useful |
Longarone, (Vaiont), Italy | Landslide | 1963, Oct 9 | 2000 | Not useful |
Hope, BC, Canada | Landslide | 1965, Jan 9 | 4 | Not useful |
New Orleans, USA | Hurricane | 1965, 27.8.–13.9. | 80 | 29-MAY-65 |
Florence, Italy | Flood | 1966, Nov 4 | 100 | Not useful |
Xingtai, China | Earthquake | 1966, March 22 | 8000 | KH-4A |
Dasht Bayaz and Ferdow, Iran | Earthquake | 1968, Aug 31 | 12,000 | KH-4B |
Tonghai (Kunming, Gejiu), China | Earthquake | 1970, Jan 4 | 15,000 | KH-4B |
Yungay, Peru | Earthquake | 1970, May 31 | 70,000 | 1966 KH-4B |
Yungay, Peru | Landslide | 1970, May 31 | 22,000 | 1966 KH-4B |
Qir, Iran | Earthquake | 1972, April 10 | 5300 | KH-4B |
Rapid City, South Dakota, USA | Flood | 1972, June 9 | 230 | KH-4B (until May 1972) |
HongKong | Landslide | 1972, June 18 | 150 | Not useful |
Darwin, Australia | Cyclone Tracy | 1974, Dec 25 | 70 | Not useful |
Tanghshan, China | Earthquake | 1976, July 28 | 240,000 | Only before event: KH-4B 1966, 11-JAN-1976 |
New Jersey, USA | Wildfire | 1963, April | 7 | Low resolution 1963-08-29 |
Big Sur, Monterey, California, USA | Wildfire | 1977, August | 4 | Low resolution 1978 |
Laguna Mountains, CA, USA | Wildfire | 1970, Sept–Oct | 16 | KH4B, 19-NOV-1970 |
Volcán de Fuego, Guatemala | Volcanic eruption | 1974, Oct 15–21 | 0 | Until 1969 |
Mount St. Helens, USA | Volcanic eruption | 1980, May 18 | 50 | KH9-16, 30-JUNE-1980, D3C1216-100112A003 |
Location | CORONA Images | Images for Comparison | Hazards/Disaster Events on Images | Lat | Lon |
---|---|---|---|---|---|
El Alto/La Paz, Bolivia | KH-7, 5-JUNE-1967, DZB00403800013H008001_b 1 | OrbView3, 23-JUNE-2004, 001649892 | Erosion and pluvial flood hazards | −16.5 | −68.2 |
Santiago de Chile, Chile | KH9-3, 11_JUL-1972, D3C1203-100061F023_a 1 | OrbView3, 30-MAR-2006, 00161416 | Earthquake and flood hazards | −33.4 | −70.5 |
Yungay, Peru | KH-4A, 11-MAR-1966, DS1030-1030DA028_a | Aerial photo, 14-JUL-1970, AR6148000205138 | Earthquake and landslide 1970, May 31 | −9.12 | −77.6 |
Qazvin, Iran | KH9-6, 22-AUG-1973, D3C1206-300399A001, KH9-14, 19-AUG-1978, D3C1214-401249F010_a 1 | Aerial image, 15-SEP-1955, ARA0158M0915124 OrbView3, 6-MAR-2005, 001640111 | Earthquake 1962, Sept 1, flood hazard | 36.3 | 50.0 |
Mount St. Helens, USA | KH9-16, 30-JUNE-1980, D3C1216-100112A003 | Volcanic eruption and forest fire 1980, May 18 | 46.2 | −122.2 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fekete, A. CORONA High-Resolution Satellite and Aerial Imagery for Change Detection Assessment of Natural Hazard Risk and Urban Growth in El Alto/La Paz in Bolivia, Santiago de Chile, Yungay in Peru, Qazvin in Iran, and Mount St. Helens in the USA. Remote Sens. 2020, 12, 3246. https://doi.org/10.3390/rs12193246
Fekete A. CORONA High-Resolution Satellite and Aerial Imagery for Change Detection Assessment of Natural Hazard Risk and Urban Growth in El Alto/La Paz in Bolivia, Santiago de Chile, Yungay in Peru, Qazvin in Iran, and Mount St. Helens in the USA. Remote Sensing. 2020; 12(19):3246. https://doi.org/10.3390/rs12193246
Chicago/Turabian StyleFekete, Alexander. 2020. "CORONA High-Resolution Satellite and Aerial Imagery for Change Detection Assessment of Natural Hazard Risk and Urban Growth in El Alto/La Paz in Bolivia, Santiago de Chile, Yungay in Peru, Qazvin in Iran, and Mount St. Helens in the USA" Remote Sensing 12, no. 19: 3246. https://doi.org/10.3390/rs12193246
APA StyleFekete, A. (2020). CORONA High-Resolution Satellite and Aerial Imagery for Change Detection Assessment of Natural Hazard Risk and Urban Growth in El Alto/La Paz in Bolivia, Santiago de Chile, Yungay in Peru, Qazvin in Iran, and Mount St. Helens in the USA. Remote Sensing, 12(19), 3246. https://doi.org/10.3390/rs12193246