Sentinel-1 SAR Time Series-Based Assessment of the Impact of Severe Salinity Intrusion Events on Spatiotemporal Changes in Distribution of Rice Planting Areas in Coastal Provinces of the Mekong Delta, Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
2.2.1. Image Data
2.2.2. Field Data
2.3. Methods
2.3.1. Sentinel-1 Data Pre-Processing
2.3.2. Growth Stage Information Extraction
2.3.3. Validation
2.3.4. Salinity Isolines
2.3.5. Analysis of Spatial Distribution of Rice Growth Status
3. Results
3.1. Spatial Distribution of Rice Growth Status
3.2. Change in the Spatiotemporal Distribution of Rice Growth Status
3.3. The Effect of Salinity Intrusion on the Rice Area in Winter–Spring Rice Crop
4. Discussion
4.1. Classification of Rice Growth Status
4.2. The Effect of Salinity and Drought Events on Changes in the WS Rice
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IRRI; AfricaRice; CIAT. Global Rice Science Partnership (GRiSP) Full Proposal. Available online: http://ricecrp.org/wp-content/uploads/2017/03/RICE-phase-I-2011-2015.pdf (accessed on 4 March 2020).
- Bandumula, N. Rice production in asia: Key to global food security. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1323–1328. [Google Scholar] [CrossRef]
- FAO. Bridging the Rice Yield Gap in the Asia-Pacific Region; Papademetriou, M.K., Dent, F.J., Edward, M.H., Eds.; RAP Publication: Bangkok, Thailand, 2000. [Google Scholar]
- GSO. General Statistics Office of Vietnam. Available online: https://www.gso.gov.vn/default_en.aspx?tabid = 778 (accessed on 4 March 2020).
- Wassmann, R.; Phong, N.D.; Tho, T.Q.; Hoanh, C.T.; Khoi, N.H.; Hien, N.X.; Vo, T.B.T.; Tuong, T.P. High-resolution mapping of flood and salinity risks for rice production in the vietnamese mekong delta. Field Crops Res. 2019, 236, 111–120. [Google Scholar] [CrossRef]
- Ngo, D.; Chu, T.; Tran, Q.; Nguyen, V.; Tran, D.; To, P.; Nguyen, H.; Nguyen, X.; Nguyen, T. Water management for agricultural production in a coastal province of the mekong river delta under sea-level rise. In Climate Change and Agricultural Water Management in Developing Countries; CABI: Wallingford, UK, 2015; pp. 120–134. ISBN 9781780643663. [Google Scholar]
- CGIAR. Assessment Report: The Drought and Salinity Intrusion in the Mekong River Delta of Vietnam. CGIAR Research Program on Climate Change, Agriculture and Food Security-Southeast Asia (CCAFS SEA): Hanoi, Vietnam, 2016. Available online: https://cgspace.cgiar.org/handle/10568/75633 (accessed on 4 March 2020).
- Paik, S.; Le, D.T.P.; Nhu, L.T.; Mills, B.F. Salt-tolerant rice variety adoption in the mekong river delta: Farmer adaptation to sea-level rise. PLoS ONE 2020, 15, e0229464. [Google Scholar] [CrossRef] [PubMed]
- Dam, T.H.T.; Amjath-Babu, T.S.; Zander, P.; Müller, K. Paddy in saline water: Analysing variety-specific effects of saline water intrusion on the technical efficiency of rice production in Vietnam. Outlook Agric. 2019, 48, 237–245. [Google Scholar] [CrossRef]
- Sherif, M.M.; Singh, V.P. Effect of climate change on sea water intrusion in coastal aquifers. Hydrol. Process. 1999, 13, 1277–1287. [Google Scholar] [CrossRef]
- Wassmann, R.; Hien, N.X.; Hoanh, C.T.; Tuong, T.P. Sea level rise affecting the vietnamese mekong delta: Water elevation in the flood season and implications for rice production. Clim. Chang. 2004, 66, 89–107. [Google Scholar] [CrossRef]
- Singh, A.; Sengar, R. Salinity stress in rice: An overview. Plant Arch. 2014, 14, 643–648. [Google Scholar]
- Ghosh, B.; Ali Md, N. Response of rice under salinity stress: A review update. Rice Res. Open Access 2016, 4, 1441–1447. [Google Scholar] [CrossRef] [Green Version]
- MARD. Ministry of Agriculture and Rural Development. Decision No 1915/QĐ-BNN-KH. Available online: http://vukehoach.mard.gov.vn/DataStore/News/20186423-De (accessed on 4 March 2020).
- Sakamoto, T.; Van Nguyen, N.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Spatio-temporal distribution of rice phenology and cropping systems in the mekong delta with special reference to the seasonal water flow of the mekong and bassac rivers. Remote Sens. Environ. 2006, 100, 1–16. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Maunahan, A.; Islam, S.; Nelson, A. Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500m data for the year 2010. ISPRS J. Photogramm. Remote Sens. 2014, 91, 98–113. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; De Bie, C.A.J.M.; Ali, A.; Smaling, E.M.A.; Chu, T.H. Mapping the irrigated rice cropping patterns of the mekong delta, vietnam, through hyper-temporal SPOT NDVI image analysis. Int. J. Remote Sens. 2012, 33, 415–434. [Google Scholar] [CrossRef]
- Boschetti, M.; Busetto, L.; Manfron, G.; Laborte, A.; Asilo, S.; Pazhanivelan, S.; Nelson, A. PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series. Remote Sens. Environ. 2017, 194, 347–365. [Google Scholar] [CrossRef] [Green Version]
- Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y. Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series. GIScience Remote Sens. 2018, 55, 659–677. [Google Scholar] [CrossRef] [Green Version]
- Son, N.T.; Chen, C.F.; Chang, L.Y.; Chen, C.R.; Sobue, S.I.; Minh, V.Q.; Chiang, S.H.; Nguyen, L.D.; Lin, Y.W. A logistic-based method for rice monitoring from multi-temporal MODIS-landsat fusion data. Eur. J. Remote Sens. 2016, 49, 39–56. [Google Scholar] [CrossRef] [Green Version]
- Xinghua, L.; Huanfeng, S.; Liangpei, Z.; Hongyan, Z.; Qiangqiang, Y.; Gang, Y. Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7086–7098. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Cheng, Q.; Wu, P.; Gan, W.; Fang, L. Cloud removal in remote sensing images using nonnegative matrix factorization and error correction. ISPRS J. Photogramm. Remote Sens. 2019, 148, 103–113. [Google Scholar] [CrossRef]
- Lee, K.Y.; Sim, J.Y. Cloud removal of satellite images using convolutional neural network with reliable cloudy image synthesis model. In Proceedings of the International Conference on Image Processing, ICIP, Taipei, Taiwan, 22–25 September 2019; pp. 3581–3585. [Google Scholar]
- Minh, H.V.T.; Avtar, R.; Mohan, G.; Misra, P.; Kurasaki, M. Monitoring and mapping of rice cropping pattern in flooding area in the vietnamese mekong delta using sentinel-1A data: A case of an giang province. ISPRS Int. J. Geo Inf. 2019, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- Phung, H.P.; Nguyen, L.D. Rice crop monitoring in the mekong delta, vietnam using multi-temporal sentinel-1 data with c-band. In ICSCEA 2019, Lecture Notes in Civil Engineering 80; Reddy, J.N., Wang, C.M., Luong, V.H., Le, A.T., Eds.; Springer Nature Singapore Pte Ltd.: Berlin/Heidelberg, Germany, 2020; pp. 979–986. ISBN 9789811551437. [Google Scholar]
- Phan, H.; Le Toan, T.; Bouvet, A.; Nguyen, L.D.; Duy, T.P.; Zribi, M. Mapping of rice varieties and sowing date using X-band SAR data. Sensors 2018, 18, 316. [Google Scholar] [CrossRef] [Green Version]
- Phung, H.-P.; Nguyen, L.-D.; Thong, N.-H.; Thuy, L.-T.; Apan, A.A. Monitoring rice growth status in the mekong delta, vietnam using multitemporal sentinel-1 data. J. Appl. Remote Sens. 2020, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- White, I. Water Management in the Mekong Delta: Changes, Conflicts and Opportunities; Paris, France, 2002. Available online: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=30A7A75283420ED220E60A5693E87C62?doi=10.1.1.562.8908&rep=rep1&type=pdf (accessed on 25 September 2020).
- Park, E.; Ho, H.L.; Tran, D.D.; Yang, X.; Alcantara, E.; Merino, E.; Son, V.H. Dramatic decrease of flood frequency in the mekong delta due to river-bed mining and dyke construction. Sci. Total Environ. 2020, 723, 138066. [Google Scholar] [CrossRef]
- Dang, H.D. Sustainability of the rice-shrimp farming system in mekong delta, vietnam: A climate adaptive model. J. Econ. Dev. 2020, 22, 21–45. [Google Scholar] [CrossRef]
- Tran, T.B. Sustainability of Rice-Shrimp Farming System in a Brackish Water Area in the Mekong Delta of Vietnam. Master’s Thesis, University of Western Sydney, Hawkesbury, Australia, 1994. [Google Scholar]
- Räsänen, T.A.; Someth, P.; Lauri, H.; Koponen, J.; Sarkkula, J.; Kummu, M. Observed river discharge changes due to hydropower operations in the upper mekong basin. J. Hydrol. 2017, 545, 28–41. [Google Scholar] [CrossRef]
- Lu, X.X.; Li, S.; Kummu, M.; Padawangi, R.; Wang, J.J. Observed changes in the water flow at chiang saen in the lower mekong: Impacts of Chinese dams? Quat. Int. 2014, 336, 145–157. [Google Scholar] [CrossRef]
- MRC. Discharge time series-mekong river commission portal. Available online: https://portal.mrcmekong.org/time-series/discharge (accessed on 25 September 2020).
- Nguyen, L.D. Rice Crop Monitoring Using New Generation Synthetic Aperture Radar (SAR) Imagery. Ph.D. Thesis, University of Southern Queensland, Toowoomba, Australia, 2009. [Google Scholar]
- Small, D.; Schubert, A. Guide to ASAR Geocoding; RSL, University of Zürich, 2008. Available online: https://www.geo.uzh.ch/microsite/rsl-documents/research/publications/other-sci-communications/2008_RSL-ASAR-GC-AD-v101-0335607552/2008_RSL-ASAR-GC-AD-v101.pdf (accessed on 29 September 2020).
- Quegan, S.; Le Toan, T.; Yu, J.J.; Ribbes, F.; Floury, N. Multitemporal ERS SAR analysis applied to forest mapping. IEEE Trans. Geosci. Remote Sens. 2000, 38, 741–753. [Google Scholar] [CrossRef]
- Quegan, S.; Jiong Jiong, Y.U. Filtering of multichannel SAR images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2373–2379. [Google Scholar] [CrossRef]
- Matsushima, S. Crop Science in Rice; Fuji Publ. Co., Ltd.: Tokyo, Janpan, 1970. [Google Scholar]
- Yoshida, S. Fundamentals of Rice Crop Science; The International Rice Research Institute: Manila, Philippines, 1981. [Google Scholar]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- MARD. Ministry of Agriculture and Rural Development. Available online: https://mard.gov.vn/Pages/nam-bo-dbscl-trien-khai-ke-hoach-san-xuat-vu-dong-xuan-2019-2020.aspx (accessed on 9 July 2020).
- Chen, J.; Lin, H.; Pei, Z. Application of envisat asar data in mapping rice crop growth in southern China. IEEE Geosci. Remote Sens. Lett. 2007, 4, 431–435. [Google Scholar] [CrossRef]
- Ferrant, S.; Selles, A.; Le Page, M.; Herrault, P.-A.; Pelletier, C.; Al-Bitar, A.; Mermoz, S.; Gascoin, S.; Bouvet, A.; Saqalli, M.; et al. Detection of irrigated crops from sentinel-1 and sentinel-2 data to estimate seasonal groundwater use in south India. Remote Sens. 2017, 9, 1119. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Asilo, S.; de Bie, K.; Skidmore, A.; Nelson, A.; Barbieri, M.; Maunahan, A. Complementarity of two rice mapping approaches: Characterizing strata mapped by hypertemporal MODIS and rice paddy identification using multitemporal SAR. Remote Sens. 2014, 6, 12789–12814. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Li, S.; Wang, Y.; Dai, L.; Lin, S. Monitoring rice phenology based on backscattering characteristics of multi-temporal RADARSAT-2 datasets. Remote Sens. 2018, 10, 340. [Google Scholar] [CrossRef] [Green Version]
- Ha, D.T.T.; Kim, S.-H.; Bae, D.-H. Impacts of upstream structures on downstream discharge in the transboundary imjin river Basin, Korean Peninsula. Appl. Sci. 2020, 10, 3333. [Google Scholar] [CrossRef]
- Biemans, H.; Haddeland, I.; Kabat, P.; Ludwig, F.; Hutjes, R.W.A.; Heinke, J.; Von Bloh, W.; Gerten, D. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res. 2011, 47, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Thirumalai, K.; DInezio, P.N.; Okumura, Y.; Deser, C. Extreme temperatures in southeast Asia caused by El Ninõ and worsened by global warming. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Grattan, S.R.; Zeng, L.; Shannon, M.C.; Roberts, S.R. Rice is more sensitive to salinity than previously thought. Calif. Agric. 2002, 56, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance-current assessment. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar]
- Tấn, H.M.; Sáng, V.Q.; Thanh, N.K. Giáo trình sinh lý thực vật—Curriculum of Plant Physiology (Vietnamese); Nhà Xuất Bản Đại Học Sư Phạm: Hanoi, Vietnam, 2006; p. 392. Available online: http://www2.hcmuaf.edu.vn/data/pvhien/Gi%C3%A1o%20Tr%C3%ACnh%20Sinh%20L%C3%AD%20Th%E1%BB%B1c%20V%E1%BA%ADt%20(NXB%20%C4%90%E1%BA%A1i%20H%E1%BB%8Dc%20S%C6%B0%20Ph%E1%BA%A1m%202006)%20-%20Ho%C3%A0ng%20Minh%20T%E1%BA%A5n,%20392%20Trang(1).pdf (accessed on 25 September 2020).
- Larranaga, A.; Alvarez-Mozos, J.; Albizua, L.; Peters, J. Backscattering Behavior of rain-fed crops along the growing season. IEEE Geosci. Remote Sens. Lett. 2013, 10, 386–390. [Google Scholar] [CrossRef]
Cropping System | Seasons | Planting | Area (Units: 1000 ha) |
---|---|---|---|
Single-rice crop | Mua (Traditional rice) | Mua: Jul/Aug | Mua 2018: 197.2 [4] |
Double-rice crop | Dong Xuan: Winter–Spring; | Dong Xuan: Nov–Jan; | Dong Xuan 2019: 1601.5 [4] He Thu 2019: 1565.7 [4] Thu Dong 2019: 724.2 [4] |
He Thu: Summer–Autumn | He Thu: May/Jun | ||
Triple-rice crop | Dong Xuan: Winter–Spring; | Dong Xuan: Nov–Jan; | |
He Thu: Summer–Autumn; | He Thu: May/Jun; | ||
Thu Dong: Autumn–Winter | Thu Dong: Jul/Aug |
Rice Variety | Sample Number | Growth Cycle (Day) |
---|---|---|
IR50404 | 75 | 95–100 |
ML202 | 50 | 90–100 |
Đài Thơm 8 | 28 | 90–95 |
RVT | 28 | 100–105 |
JASMINE 85 | 14 | 100–105 |
OM5451 | 11 | 90–95 |
ST24 | 9 | 103–105 |
Nếp | 6 | 95–100 |
Nàng hoa 9 | 5 | 95–102 |
OM4900 | 3 | 95–100 |
Other | 9 | 90–105 |
Total | 238 |
Truth Data | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
(0) | (1) | (2) | (3) | (4) | (5) | (6) | Total | Producer Accuracy | ||
Classified results | Non-rice (0) | 134 | 9 | 0 | 0 | 0 | 0 | 0 | 143 | 94 |
Seeding–transplanting (1) | 1 | 11 | 2 | 0 | 0 | 0 | 0 | 14 | 79 | |
Tillering (2) | 0 | 1 | 15 | 5 | 0 | 0 | 0 | 21 | 71 | |
Rebooting Panicle initiation (3) | 0 | 0 | 3 | 104 | 6 | 0 | 0 | 113 | 92 | |
Booting–heading (4) | 0 | 0 | 0 | 17 | 32 | 3 | 0 | 52 | 62 | |
Grain filling (5) | 0 | 0 | 0 | 0 | 3 | 12 | 4 | 19 | 63 | |
Maturation (6) | 0 | 0 | 0 | 0 | 0 | 2 | 9 | 11 | 82 | |
Total | 135 | 21 | 20 | 126 | 41 | 17 | 13 | 373 | ||
User Accuracy | 99 | 52 | 75 | 83 | 78 | 71 | 69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang-Phi, P.; Lam-Dao, N.; Pham-Van, C.; Chau-Nguyen-Xuan, Q.; Nguyen-Van-Anh, V.; Gummadi, S.; Le-Van, T. Sentinel-1 SAR Time Series-Based Assessment of the Impact of Severe Salinity Intrusion Events on Spatiotemporal Changes in Distribution of Rice Planting Areas in Coastal Provinces of the Mekong Delta, Vietnam. Remote Sens. 2020, 12, 3196. https://doi.org/10.3390/rs12193196
Hoang-Phi P, Lam-Dao N, Pham-Van C, Chau-Nguyen-Xuan Q, Nguyen-Van-Anh V, Gummadi S, Le-Van T. Sentinel-1 SAR Time Series-Based Assessment of the Impact of Severe Salinity Intrusion Events on Spatiotemporal Changes in Distribution of Rice Planting Areas in Coastal Provinces of the Mekong Delta, Vietnam. Remote Sensing. 2020; 12(19):3196. https://doi.org/10.3390/rs12193196
Chicago/Turabian StyleHoang-Phi, Phung, Nguyen Lam-Dao, Cu Pham-Van, Quang Chau-Nguyen-Xuan, Vu Nguyen-Van-Anh, Sridhar Gummadi, and Trung Le-Van. 2020. "Sentinel-1 SAR Time Series-Based Assessment of the Impact of Severe Salinity Intrusion Events on Spatiotemporal Changes in Distribution of Rice Planting Areas in Coastal Provinces of the Mekong Delta, Vietnam" Remote Sensing 12, no. 19: 3196. https://doi.org/10.3390/rs12193196
APA StyleHoang-Phi, P., Lam-Dao, N., Pham-Van, C., Chau-Nguyen-Xuan, Q., Nguyen-Van-Anh, V., Gummadi, S., & Le-Van, T. (2020). Sentinel-1 SAR Time Series-Based Assessment of the Impact of Severe Salinity Intrusion Events on Spatiotemporal Changes in Distribution of Rice Planting Areas in Coastal Provinces of the Mekong Delta, Vietnam. Remote Sensing, 12(19), 3196. https://doi.org/10.3390/rs12193196