Modeling Spatio-Temporal Land Transformation and Its Associated Impacts on land Surface Temperature (LST)
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Collection and Preprocessing
2.2.1. Conversion of Raw Landsat Data into Radiance
2.2.2. Conversion of Radiance to Reflectance
2.3. Land Surface Temperature (LST) Retrieval
2.4. Simulation of LULC Changes Using the CA-Markov Model
2.5. Validation of the LULC Prediction Model
2.6. Relationship between LST and LULC:
3. Results
3.1. Land Use Land Cover (LULC) Dynamics
3.2. Future Land Use Dynamics
3.3. Land Surface Temperature (LST) Variations from 1998–2018
3.4. Correlation between LST and T (Air)
3.5. Changes in LST in Response to Different Land-Use Classes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Montgomery, M.R. The urban transformation of the developing world. Science 2008, 319, 761–764. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, L.; Moss, N.H.O. Urban Mobility in the 1st Century. NYU Rudin Center for Transportation Policy. 2012. Available online: https://wagner.nyu.edu/files/rudincenter/NYU-BMWi-Project_Urban_Mobility_Report_November_2012.pdf (accessed on 11 September 2020).
- Buhaug, H.; Urdal, H. An urbanization bomb? Population growth and social disorder in cities. Glob. Environ. Chang. 2013, 23, 1–10. [Google Scholar] [CrossRef]
- Dhar, R.B.; Chakraborty, S.; Chattopadhyay, R.; Sikdar, P.K. Impact of Land-Use/Land-Cover Change on Land Surface Temperature Using Satellite Data: A Case Study of Rajarhat Block, North 24-Parganas District, West Bengal. J. Indian Soc. Remote Sens. 2019, 47, 331–348. [Google Scholar] [CrossRef]
- Choudhury, D.; Das, K.; Das, A. Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. Egypt. J. Remote Sens. Space Sci. 2019, 22, 203–218. [Google Scholar] [CrossRef]
- Das, S.; Angadi, D.P. Land use-land cover (LULC) transformation and its relation with land surface temperature changes: A case study of Barrackpore Subdivision, West Bengal, India. Remote Sens. Appl. Soc. Environ. 2020, 19, 100322. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmad, K.; Sajjad, R.U.; Abbasi, A.M.; Nazeer, A.; Tahir, A.A. Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region. J. Environ. Manag. 2019, 245, 348–357. [Google Scholar] [CrossRef]
- Hope, A.S.; Mcdowell, T.P. The Relationship between Surface-Temperature and a Spectral Vegetation Index of a Tallgrass Prairie—Effects of Burning and Other Landscape Controls. Int. J. Remote Sens. 1992, 13, 2849–2863. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A.; Verhoef, W. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sens. Environ. 2006, 103, 43–55. [Google Scholar] [CrossRef]
- Smith, R.C.G.; Choudhury, B.J. On the Correlation of Indexes of Vegetation and Surface-Temperature over South-Eastern Australia. Int. J. Remote Sens. 1990, 11, 2113–2120. [Google Scholar] [CrossRef]
- Hou, G.; Zhang, H.; Wang, Y.; Qiao, Z.; Zhang, Z. Retrieval and Spatial Distribution of Land Surface Temperature in the Middle Part of Jilin Province Based on MODIS Data. Sci. Geogr. Sin. 2010, 30, 421–427. [Google Scholar]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Solaimani, K.; Arekhi, M.; Tamartash, R.; Miryaghobzadeh, M. Land use/cover change detection based on remote sensing data (A case study; Neka Basin). Agric. Biol. J. N. Am. 2010, 1, 1148–1157. [Google Scholar] [CrossRef]
- Omar, N.; Sanusi, S.A.M.; Hussin, W.M.W.; Samat, N.; Mohammed, K.S. Markov-CA model using analytical hierarchy process and multiregression technique. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014. [Google Scholar]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- De Sherbinin, A. A CIESIN thematic guide to land-use and land-cover change (LUCC). In Center for International Earth Science Information Network; Columbia University: New York, NY, USA, 2002. [Google Scholar]
- Eastman, J.; Van Fossen, M.; Solarzano, L. Transition potential modeling for land cover change. GIS Spat. Anal. Model. 2005, 357–386. [Google Scholar]
- Rai, R.; Zhang, Y.; Paudel, B.; Li, S.; Khanal, N.R. A Synthesis of Studies on Land Use and Land Cover Dynamics during 1930-2015 in Bangladesh. Sustainability 2017, 9, 1866. [Google Scholar] [CrossRef] [Green Version]
- Briassoulis, H. Analysis of Land Use Change: Theoretical and Modeling Approaches; Regional Research Institute, West Virginia University: Morgantown, WV, USA, 2019. [Google Scholar]
- Sun, C.; Wu, Z.-F.; Lv, Z.-Q.; Yao, N.; Wei, J.-B. Quantifying different types of urban growth and the change dynamic in Guangzhou using multi-temporal remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 409–417. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Huang, K.; Wang, N. Assessing Spatiotemporal Characteristics of Urbanization Dynamics in Southeast Asia Using Time Series of DMSP/OLS Nighttime Light Data. Remote Sens. 2018, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Chang, N.-B.; Joyce, J.; Chen, A.S.; Savić, D.; Djordjević, S.; Fu, G. Exploring the potential climate change impact on urban growth in London by a cellular automata-based Markov chain model. Comput. Environ. Urban Syst. 2018, 68, 121–132. [Google Scholar] [CrossRef]
- BK, K. Internal Migration in Nepal: Population Monograph of Nepal 2003, II; Central Bureau of Statistics: Kathmandu, Nepal, 2003.
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Bounoua, L.; Nigro, J.; Zhang, P.; Thome, K.; Lachir, A. Mapping urbanization in the United States from 2001 to 2011. Appl. Geogr. 2018, 90, 123–133. [Google Scholar] [CrossRef]
- Pickard, B.R.; Van Berkel, D.B.; Petrasova, A.; Meentemeyer, R.K. Forecasts of urbanization scenarios reveal trade-offs between landscape change and ecosystem services. Landsc. Ecol. 2017, 32, 617–634. [Google Scholar] [CrossRef]
- Lu, Y.T.; Wu, P.; Ma, X.; Li, X. Detection and prediction of land use/land cover change using spatiotemporal data fusion and the Cellular Automata-Markov model. Environ. Monit. Assess. 2019, 191, 68. [Google Scholar] [CrossRef]
- Abdullahi, S.; Pradhan, B. Land use change modeling and the effect of compact city paradigms: Integration of GIS-based cellular automata and weights-of-evidence techniques. Environ. Earth Sci. 2018, 77, 251. [Google Scholar] [CrossRef]
- Gessesse, B.; Bewket, W. Drivers and implications of land use and land cover change in the central highlands of Ethiopia: Evidence from remote sensing and socio-demographic data integration. Ethiop. J. Soc. Sci. Humanit. 2014, 10, 1–23. [Google Scholar]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Geist, H.; McConnell, W.; Lambin, E.F.; Moran, E.; Alves, D.; Rudel, T. Causes and trajectories of land-use/cover change. In Land-Use and Land-Cover Change; Springer: Berlin/Heidelberg, Germany, 2006; pp. 41–70. [Google Scholar]
- Raza, A.; Raja, I.A.; Raza, S. Land-use change analysis of district Abbottabad, Pakistan: Taking advantage of GIS and remote sensing analysis. Sci. Vis. 2012, 18, 43–49. [Google Scholar]
- Tao, S.; Yang, Y.; Zhang, A.-M.; Jiang, Y.; Xun, S.; Zhang, H. Study of Thermal Environment of Hefei City based on TM and GIS. Remote Sens. Technol. Appl. 2011, 26, 156–162. [Google Scholar]
- Shi, T.; Yang, Y.; Ma, J.; Zhang, L.; Luo, S. Spatial temporal characteristics of urban heat island in typical cities of Anhui Province based on MODIS. J. Appl. Meteorol. Sci. 2013, 24, 484–494. [Google Scholar]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Mustak, S.; Srivastava, P.K.; Szabó, S.; Islam, T. Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environ. Process. 2015, 2, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef] [Green Version]
- Moghadam, H.S.; Helbich, M. Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Appl. Geogr. 2013, 40, 140–149. [Google Scholar] [CrossRef]
- Wu, D.Q.; Liu, J.; Wang, S.; Wang, R. Simulating urban expansion by coupling a stochastic cellular automata model and socioeconomic indicators. Stoch. Environ. Res. Risk Assess. 2010, 24, 235–245. [Google Scholar] [CrossRef]
- Batty, M.; Xie, Y. Urban Growth Using Cellular Automata Models; ESRI Press: Redlands, CA, USA, 2005. [Google Scholar]
- Mas, J.F.; Kolb, M.; Paegelow, M.; Olmedo, M.T.C.; Houet, T. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environ. Model. Softw. 2014, 51, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, F. Monitoring Urbanization and Comparison with City Master Plans using Remote Sensing and GIS: A Case Study of Lahore District, Pakistan. Int. J. Adv. Remote Sens. GIS 2017, 6, 2234–2245. [Google Scholar] [CrossRef]
- Kityuttachai, K.; Tripathi, N.K.; Tipdecho, T.; Shrestha, R.P. CA-Markov Analysis of Constrained Coastal Urban Growth Modeling: Hua Hin Seaside City, Thailand. Sustainability 2013, 5, 1480–1500. [Google Scholar] [CrossRef] [Green Version]
- García, A.; Santé, I.; Boullón, M.; Crecente, R. Calibration of an urban cellular automaton model by using statistical techniques and a genetic algorithm. Application to a small urban settlement of NW Spain. Int. J. Geogr. Inf. Sci. 2013, 27, 1593–1611. [Google Scholar] [CrossRef]
- Maithani, S. Cellular Automata Based Model of Urban Spatial Growth. J. Indian Soc. Remote Sens. 2010, 38, 604–610. [Google Scholar] [CrossRef]
- Nouri, J.; Gharagozlou, A.; Arjmandi, R.; Faryadi, S.; Adl, M. Predicting Urban Land Use Changes Using a CA-Markov Model. Arab. J. Sci. Eng. 2014, 39, 5565–5573. [Google Scholar] [CrossRef]
- Ke, X.L.; Qi, L.Y.; Zeng, C. A partitioned and asynchronous cellular automata model for urban growth simulation. Int. J. Geogr. Inf. Sci. 2016, 30, 637–659. [Google Scholar] [CrossRef]
- Akın, A.; Sunar, F.; Berberoğlu, S. Urban change analysis and future growth of Istanbul. Environ. Monit. Assess. 2015, 187, 506. [Google Scholar] [CrossRef]
- Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Kamusoko, C.; Aniya, M.; Adi, B.; Manjoro, M. Rural sustainability under threat in Zimbabwe–simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Appl. Geogr. 2009, 29, 435–447. [Google Scholar] [CrossRef]
- Steeb, W.-H. The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic with C++; World Scientific Publishing Company: Singapore, 2014. [Google Scholar]
- Riccioli, F.; El Asmar, T.; El Asmar, J.-P.; Fratini, R. Use of cellular automata in the study of variables involved in land use changes. Environ. Monit. Assess. 2013, 185, 5361–5374. [Google Scholar] [CrossRef]
- Roose, M.; Hietala, R. A methodological Markov-CA projection of the greening agricultural landscape-a case study from 2005 to 2017 in southwestern Finland. Environ. Monit. Assess. 2018, 190, 411. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Keshtkar, H.; Voigt, W. A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Modeling Earth Syst. Environ. 2016, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Rimal, B.; Zhang, L.; Keshtkar, H.; Wang, N.; Lin, Y. Monitoring and Modeling of Spatiotemporal Urban Expansion and Land-Use/Land-Cover Change Using Integrated Markov Chain Cellular Automata Model. Isprs Int. J. Geo-Inf. 2017, 6, 288. [Google Scholar] [CrossRef] [Green Version]
- Araya, Y.H.; Cabral, P. Analysis and Modeling of Urban Land Cover Change in Setubal and Sesimbra, Portugal. Remote Sens. 2010, 2, 1549–1563. [Google Scholar] [CrossRef] [Green Version]
- Munshi, T.; Zuidgeest, M.; Brussel, M.; Van Maarseveen, M. Logistic regression and cellular automata-based modelling of retail, commercial and residential development in the city of Ahmedabad, India. Cities 2014, 39, 68–86. [Google Scholar] [CrossRef]
- Puertas, O.L.; Henríquez, C.; Meza, F.J. Assessing spatial dynamics of urban growth using an integrated land use model. Application in Santiago Metropolitan Area, 2010–2045. Land Use Policy 2014, 38, 415–425. [Google Scholar] [CrossRef]
- Han, Y.; Jia, H.F. Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China. Ecol. Model. 2017, 353, 107–116. [Google Scholar] [CrossRef]
- Nasir, M.J.; Tabassum, I.; Khan, A.S.; Alam, S. Land Use Temporal Changes: A Comparison Using Field Survey and Remote Sensing.(A Case Study of Killi Kambarani & Satellite Town, Quetta City). Putaj Sci. 2012, 19, 91–106. [Google Scholar]
- Li, X.; Yeh, A.G.O. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int. J. Geogr. Inf. Sci. 2000, 14, 131–152. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.-Y.; Zhang, H. Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing Hangzhou metropolitan area, eastern China (1978–2008). Appl. Geogr. 2012, 34, 137–145. [Google Scholar] [CrossRef]
- Dubovyk, O.; Sliuzas, R.; Flacke, J. Spatio-temporal modelling of informal settlement development in Sancaktepe district, Istanbul, Turkey. ISPRS J. Photogramm. Remote Sens. 2011, 66, 235–246. [Google Scholar] [CrossRef]
- Poelmans, L.; van Rompaey, A. Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: A case study in the Flanders–Brussels region. Landsc. Urban Plan. 2009, 93, 10–19. [Google Scholar] [CrossRef]
- Shah, B.; Ghauri, B. Mapping urban heat island effect in comparison with the land use, land cover of Lahore district. Pak. J. Meteorol. Vol 2015, 11, 1–12. [Google Scholar]
- Nespak, L. Integrated Master Plan for Lahore-2021; Lahore Development Authority: Lahore, Pakistan, 2004. [Google Scholar]
- Raziq, A.; Xu, A.; Li, Y.; Zhao, Q. Monitoring of land use/land cover changes and urban sprawl in Peshawar City in Khyber Pakhtunkhwa: An application of geo-information techniques using of multi-temporal satellite data. J. Remote Sens. GIS 2016, 5, 174. [Google Scholar] [CrossRef]
- Mehmood, R.; Mehmood, S.A.; Butt, M.A.; Younas, I.; Adrees, M. Spatiotemporal analysis of urban sprawl and its contributions to climate and environment of Peshawar using remote sensing and GIS techniques. J. Geogr. Inf. Syst. 2016, 8, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Shah, S.J.; Rauf, T.; Zada, M.; Cao, Y.; Harbi, J. Socioeconomic Impacts of the Billion Trees Afforestation Program in Khyber Pakhtunkhwa Province (KPK), Pakistan. Forests 2019, 10, 703. [Google Scholar] [CrossRef] [Green Version]
- Goksel, C.; Mercan, D.; Kabdasli, S.; Bektas, F.; Seker, D.Z. Definition of sensitive areas in a lakeshore by using remote sensing and GIS. Fresenius Environ. Bull. 2004, 13, 860–864. [Google Scholar]
- Goksel, C.; Musaoglu, N.; Gurel, M.; Ulugtekin, N.; Tanik, A.G.; Seker, D.Z. Determination of land-use change in an urbanized district of Istanbul via remote sensing analysis. Fresenius Environ. Bull. 2006, 15, 798–805. [Google Scholar]
- Bhatti, S.S.; Tripathi, N.K. Built-up area extraction using Landsat 8 OLI imagery. GISci. Remote Sens. 2014, 51, 445–467. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Wu, C. A spatially adaptive spectral mixture analysis for mapping subpixel urban impervious surface distribution. Remote Sens. Environ. 2013, 133, 62–70. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. Atmos. 2003, 108, 4688. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Sultana, S.; Satyanarayana, A. Urban heat island intensity during winter over metropolitan cities of India using remote-sensing techniques: Impact of urbanization. Int. J. Remote Sens. 2018, 39, 6692–6730. [Google Scholar] [CrossRef]
- Karakus, C.B.; Kavak, K.S.; Cerit, O. Determination of variations in land cover and land use by remote sensing and geographic information systems around the city of Sivas (Turkey). Fresenius Environ. Bull. 2014, 23, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Asmala, A. Analysis of maximum likelihood classification on multispectral data. Appl. Math. Sci. 2012, 6, 6425–6436. [Google Scholar]
- Zhang, H.; Qi, Z.-F.; Ye, X.-Y.; Cai, Y.; Ma, W.-C.; Chen, M.-N. Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl. Geogr. 2013, 44, 121–133. [Google Scholar] [CrossRef]
- Arshad, A.; Zhang, W.; Zaman, M.A.; Dilawar, A.; Sajid, Z. Monitoring the impacts of spatio-temporal land-use changes on the regional climate of city Faisalabad, Pakistan. Ann. GIS 2019, 25, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Fatemi, M.; Narangifard, M. Monitoring LULC changes and its impact on the LST and NDVI in District 1 of Shiraz City. Arabian J. Geosci. 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Sekertekin, A.; Kutoglu, S.H.; Kaya, S. Evaluation of spatio-temporal variability in Land Surface Temperature: A case study of Zonguldak, Turkey. Environ. Monit. Assess. 2016, 188, 30. [Google Scholar] [CrossRef]
- Bhalli, M.; Ghaffar, A.; Shirazi, S.A.; Parveen, N.; Anwar, M.M. Change detection analysis of land use by using geospatial techniques: A case study of Faisalabad-Pakistan. Sci. Int. 2012, 24, 539–546. [Google Scholar]
- Nichol, J.E. A GIS-based approach to microclimate monitoring in Singapore’s high-rise housing estates. Photogramm. Eng. Remote Sens. 1994, 60, 1225–1232. [Google Scholar]
- Du, P.; Li, X.; Cao, W.; Luo, Y.; Zhang, H. Monitoring urban land cover and vegetation change by multi-temporal remote sensing information. Min. Sci. Technol. 2010, 20, 922–932. [Google Scholar] [CrossRef]
- Burnham, B.O. Markov intertemporal land use simulation model. J. Agric. Appl. Econ. 1973, 5, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Subedi, P.; Subedi, K.; Thapa, B. Application of a hybrid cellular automaton–Markov (CA-Markov) model in land-use change prediction: A case study of Saddle Creek Drainage Basin, Florida. Appl. Ecol. Environ. Sci. 2013, 1, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Fathizad, H.; Rostami, N.; Faramarzi, M. Detection and prediction of land cover changes using Markov chain model in semi-arid rangeland in western Iran. Environ. Monit. Assess. 2015, 187, 629. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Z.; Wang, X. Land use change and prediction in the Baimahe Basin using GIS and CA-Markov model. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014. [Google Scholar]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Mitsova, D.; Shuster, W.; Wang, X. A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc. Urban Plan. 2011, 99, 141–153. [Google Scholar] [CrossRef]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Kumar, S.; Radhakrishnan, N.; Mathew, S. Land use change modelling using a Markov model and remote sensing. Geomat. Nat. Hazards Risk 2014, 5, 145–156. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Shawul, A.A.; Chakma, S. Spatiotemporal detection of land use/land cover change in the large basin using integrated approaches of remote sensing and GIS in the Upper Awash basin, Ethiopia. Environ. Earth Sci. 2019, 78, 141. [Google Scholar] [CrossRef]
- Lahore Development Authority (LDA). Available online: https://www.lda.gop.pk (accessed on 13 July 2020).
- Nasar-u-Minallah, M. Retrieval of land surface temperature of Lahore through Landsat-8 TIRS data. Int. J. Econ. Environ. Geol. 2019, 10, 70–77. [Google Scholar] [CrossRef]
- Mumtaz, F.; Tao, Y.; Bashir, B.; Ahmad, A.; Li, L.; Hassan, H.U. The relationship between vegetation dynamics and land surface temperature by using different satellite imageries; A Case study of Metropolitan cities of Pakistan. N. Am. Acad. Res. 2020, 3, 1–15. [Google Scholar] [CrossRef]
- Hallegatte, S.; Corfee-Morlot, J. Understanding climate change impacts, vulnerability and adaptation at city scale: An introduction. Clim. Chang. 2011, 104, 1–12. [Google Scholar] [CrossRef]
- Kant, Y.; Bharath, B.D.; Mallick, J.; Atzberger, C.; Kerle, N. Satellite-based analysis of the role of land use/land cover and vegetation density on surface temperature regime of Delhi, India. J. Indian Soc. Remote Sens. 2009, 37, 201–214. [Google Scholar] [CrossRef]
- Sun, Q.Q.; Wu, Z.F.; Tan, J.J. The relationship between land surface temperature and land use/land cover in Guangzhou, China. Environ. Earth Sci. 2012, 65, 1687–1694. [Google Scholar] [CrossRef]
- Jin, M.; Dickinson, R.E. Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environ. Res. Lett. 2010, 5, 044004. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.; Hassol, S.J.; Miller, C.D.; Murray, W.L. Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences; A Report by the Climate Change Science Program and Subcommittee on Global Change Research; Climate Change Science Program: Washington, DC, USA, 2006; 180p. [Google Scholar]
- Jiang, J.; Tian, G. Analysis of the impact of land use/land cover change on land surface temperature with remote sensing. Procedia Environ. Sci. 2010, 2, 571–575. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Zhao, M. Water resource management and public preferences for water ecosystem services: A choice experiment approach for inland river basin management. Sci. Total Environ. 2019, 646, 821–831. [Google Scholar] [CrossRef]
Study Region | Row/Path | Year | 1998 | 2003 | 2008 | 2013 | 2018 |
---|---|---|---|---|---|---|---|
Lahore | 149/036 | Date | 25 May | 31 May | 05 June | 19 June | 01 June |
Sensor | TM | TM | TM | OLI | OLI | ||
Peshawar | 151/036 151/037 | Date | 8 June | 13 May | 19 June | 01 June | 30 May |
Sensor | TM | TM | TM | OLI | OLI |
Study Region | LULC Classes | 1998 | 2003 | 2008 | 2013 | 2018 |
---|---|---|---|---|---|---|
Lahore | Water | 0.80 | 0.78 | 0.82 | 0.80 | 0.77 |
Vegetation | 0.72 | 0.76 | 0.73 | 0.79 | 0.80 | |
Built-up | 0.83 | 0.79 | 0.80 | 0.78 | 0.77 | |
Barren Land | 0.79 | 0.70 | 0.78 | 0.77 | 0.70 | |
Overall Accuracy (%) | 0.78 | 0.76 | 0.78 | 0.79 | 0.76 | |
Peshawar | Water | 0.77 | 0.80 | 0.74 | 0.77 | 0.71 |
Vegetation | 0.80 | 0.72 | 0.70 | 0.70 | 0.75 | |
Built-up | 0.71 | 0.83 | 0.77 | 0.81 | 0.76 | |
Barren Land | 0.74 | 0.71 | 0.73 | 0.78 | 0.78 | |
Overall Accuracy (%) | 0.77 | 0.75 | 0.74 | 0.77 | 0.76 |
1998 | 2003 | 2008 | 2013 | 2018 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Study Region | LULC | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % |
Lahore City | Water | 50.41 | 2.70 | 27.21 | 1.50 | 23.48 | 1.30 | 18.51 | 1.00 | 11.41 | 0.60 |
Vegetation | 458.73 | 24.90 | 432.77 | 23.50 | 431.65 | 23.40 | 426.98 | 23.20 | 416.55 | 22.60 | |
Built-up | 549.77 | 29.80 | 665.77 | 36.10 | 685.78 | 37.20 | 709.71 | 38.50 | 755.91 | 41.00 | |
Barren | 783.44 | 42.50 | 716.61 | 38.90 | 701.44 | 38.10 | 687.20 | 37.30 | 658.59 | 35.70 | |
Total | 1842.4 | 100 | 1842.4 | 100 | 1842.4 | 100 | 1842.4 | 100 | 1842.4 | 100 | |
Peshawar City | Water | 22.38 | 1.80 | 29.64 | 2.30 | 37.65 | 3.00 | 53.25 | 4.20 | 29.90 | 2.40 |
Vegetation | 316.30 | 25.00 | 457.43 | 36.20 | 475.64 | 37.60 | 479.39 | 37.90 | 640.02 | 50.60 | |
Built-up | 65.13 | 5.20 | 135.38 | 10.70 | 173.39 | 13.70 | 227.19 | 18.00 | 272.07 | 21.50 | |
Barren | 860.14 | 68.10 | 641.55 | 50.80 | 577.32 | 45.70 | 504.17 | 39.90 | 322.03 | 25.50 | |
Total | 1264 | 100 | 1264 | 100 | 1264 | 100 | 1264 | 100 | 1264 | 100 |
Water | Vegetation | Built-Up | Barren | ||||||
---|---|---|---|---|---|---|---|---|---|
Study Region | LULC | km2 | % | km2 | % | km2 | % | km2 | % |
Lahore City | Water | 4.93 | 0.27 | 10.31 | 0.56 | 23.33 | 1.27 | 11.84 | 0.64 |
Vegetation | 1.26 | 0.07 | 134.31 | 7.29 | 150.13 | 8.15 | 173.04 | 9.39 | |
Built-up | 4.42 | 0.24 | 19.13 | 1.04 | 283.11 | 15.37 | 143.11 | 7.77 | |
Barren | 0.81 | 0.04 | 152.75 | 8.29 | 299.3 | 16.25 | 330.58 | 17.94 | |
Peshawar City | Water | 13.03 | 1.03 | 7.58 | 0.60 | 0.11 | 0.01 | 1.59 | 0.13 |
Vegetation | 3.3 | 0.26 | 834.12 | 65.99 | 19.01 | 1.50 | 56.54 | 4.47 | |
Built-up | 0.7 | 0.06 | 14.07 | 1.11 | 44.45 | 3.52 | 5.75 | 0.45 | |
Barren | 9.87 | 0.78 | 381.8 | 30.21 | 208.57 | 16.50 | 258.3 | 20.43 |
Study Regions | LU Classes | Water | Vegetation | Built-Up | Barren |
---|---|---|---|---|---|
Lahore city | Water | 0.769 | 0.0672 | 0.0995 | 0.0634 |
Vegetation | 0.0006 | 0.6112 | 0.089 | 0.2991 | |
Built-Up | 0.0033 | 0.0602 | 0.8249 | 0.1115 | |
Barren | 0.0001 | 0.1747 | 0.1331 | 0.6922 | |
Peshawar city | Water | 0.9894 | 0.01 | 0 | 0.0006 |
Vegetation | 0.0046 | 0.8126 | 0.0071 | 0.1757 | |
Built-Up | 0.0092 | 0.0181 | 0.9072 | 0.0655 | |
Barren | 0.0078 | 0.1581 | 0.0738 | 0.7604 |
Water | Vegetation | Built-Up | Barren | kappa | |
---|---|---|---|---|---|
Water | 20,217 | 856 | 721 | 1173 | 0.9825 |
Vegetation | 27 | 441,709 | 8986 | 26,310 | 0.9209 |
Built-Up | 313 | 6517 | 760,143 | 10,598 | 0.9544 |
Barren | 18 | 25,341 | 18,726 | 725,483 | 0.9371 |
Total | 20,575 | 474,423 | 788,576 | 763,564 | 0.9487 |
Water | Vegetation | Built-Up | Barren | kappa | |
---|---|---|---|---|---|
Water | 44,409 | 1676 | 12 | 1080 | 0.7858 |
Vegetation | 3837 | 488,020 | 4251 | 13,635 | 0.9471 |
Built-Up | 2341 | 13 | 212,662 | 864 | 0.8704 |
Barren | 5558 | 18,217 | 23,480 | 517,513 | 0.959 |
Total | 56,145 | 50,7926 | 240,405 | 533,092 | 0.8905 |
Study Region | LU Class | 2018 | 2023 | 2028 | |||
---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | ||
Lahore city | Water | 11.41 | 0.6 | 8.19 | 0.44 | 7.41 | 0.40 |
Vegetation | 416.55 | 22.6 | 403.14 | 21.88 | 390.27 | 21.18 | |
Built-up | 755.91 | 41.0 | 806.84 | 43.79 | 851.37 | 46.20 | |
Barren | 658.59 | 35.7 | 624.29 | 33.88 | 593.35 | 32.20 | |
Peshawar city | Water | 29.9 | 2.4 | 16.34 | 1.29 | 9.87 | 0.78 |
Vegetation | 640.02 | 50.6 | 690.05 | 54.59 | 732.38 | 57.94 | |
Built-up | 272.07 | 21.5 | 280.77 | 22.21 | 285.73 | 22.60 | |
Barren | 322.03 | 25.5 | 274.52 | 21.72 | 233.66 | 18.49 |
Study Region | Year | Latitude | Longitude | T(a) °C | LST °C |
---|---|---|---|---|---|
Lahore city | 1998 | 31.35 | 74.24 | 31.7 | 34.7 |
2003 | 31.35 | 74.24 | 31.8 | 35.8 | |
2008 | 31.35 | 74.24 | 32.3 | 36.4 | |
2013 | 31.35 | 74.24 | 32.9 | 36.9 | |
2018 | 31.35 | 74.24 | 33.5 | 37.8 | |
Peshawar city | 1998 | 71.56 | 327.56 | 32.5 | 37.6 |
2003 | 71.56 | 327.56 | 31.92 | 36.9 | |
2008 | 71.56 | 327.56 | 30.78 | 35.1 | |
2013 | 71.56 | 327.56 | 31.02 | 35.8 | |
2018 | 71.56 | 327.56 | 30.12 | 32.3 |
Study Region | LU Classes | Water | Vegetation | Built-Up | Barren |
---|---|---|---|---|---|
Lahore city | Water | 0.1 | 0.08 | 0.13 | 0.14 |
Vegetation | −0.09 | 0.1 | 0.17 | 0.16 | |
Built-up | −0.11 | −0.19 | 0.19 | 0.17 | |
Barren | −0.01 | −0.19 | 0.16 | 0.06 | |
Peshawar city | Water | 0.1 | −0.20 | 0.36 | 0.26 |
Vegetation | −0.05 | 0.1 | 0.32 | 0.31 | |
Built-up | −0.13 | −0.25 | 0.26 | 0.21 | |
Barren | −0.13 | −0.27 | 0.25 | 0.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mumtaz, F.; Tao, Y.; de Leeuw, G.; Zhao, L.; Fan, C.; Elnashar, A.; Bashir, B.; Wang, G.; Li, L.; Naeem, S.; et al. Modeling Spatio-Temporal Land Transformation and Its Associated Impacts on land Surface Temperature (LST). Remote Sens. 2020, 12, 2987. https://doi.org/10.3390/rs12182987
Mumtaz F, Tao Y, de Leeuw G, Zhao L, Fan C, Elnashar A, Bashir B, Wang G, Li L, Naeem S, et al. Modeling Spatio-Temporal Land Transformation and Its Associated Impacts on land Surface Temperature (LST). Remote Sensing. 2020; 12(18):2987. https://doi.org/10.3390/rs12182987
Chicago/Turabian StyleMumtaz, Faisal, Yu Tao, Gerrit de Leeuw, Limin Zhao, Cheng Fan, Abdelrazek Elnashar, Barjeece Bashir, Gengke Wang, LingLing Li, Shahid Naeem, and et al. 2020. "Modeling Spatio-Temporal Land Transformation and Its Associated Impacts on land Surface Temperature (LST)" Remote Sensing 12, no. 18: 2987. https://doi.org/10.3390/rs12182987
APA StyleMumtaz, F., Tao, Y., de Leeuw, G., Zhao, L., Fan, C., Elnashar, A., Bashir, B., Wang, G., Li, L., Naeem, S., Arshad, A., & Wang, D. (2020). Modeling Spatio-Temporal Land Transformation and Its Associated Impacts on land Surface Temperature (LST). Remote Sensing, 12(18), 2987. https://doi.org/10.3390/rs12182987