Spatiotemporal Trends in Wildfires across the Western United States (1950–2019)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duguy, B.; Paula, S.; Pausas, J.G.; Alloza, J.A.; Gimeno, T.; Vallejo, V.R. Effects of Climate and Extreme Events on Wildfire Regime and Their Ecological Impacts. In Advances in Global Change Research; Springer Science and Business Media LLC: Berlin, Germany, 2012; Volume 51, pp. 101–134. [Google Scholar]
- Brotons, L.; Aquilué, N.; De Cáceres, M.; Fortin, M.-J.; Fall, A. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes. PLoS ONE 2013, 8, e62392. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Chappellaz, J.; Park, K.; Mak, J.E. Large Variations in Southern Hemisphere Biomass Burning During the Last 650 Years. Science 2010, 330, 1663–1666. [Google Scholar] [CrossRef] [Green Version]
- Shvidenko, A.; Shchepashchenko, D.G.; Vaganov, E.A.; Sukhinin, A.I.; Maksyutov, S.; McCallum, I.; Lakyda, I. Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget. Dokl. Earth Sci. 2011, 441, 1678–1682. [Google Scholar] [CrossRef]
- McWethy, D.B.; Schoennagel, T.; Higuera, P.E.; Krawchuk, M.; Harvey, B.J.; Metcalf, E.C.; Schultz, C.; Miller, C.; Metcalf, A.L.; Buma, B.; et al. Rethinking resilience to wildfire. Nat. Sustain. 2019, 2, 797–804. [Google Scholar] [CrossRef]
- Csiszar, I.; Schroeder, W.; Giglio, L.; Ellicott, E.; Vadrevu, K.P.; Justice, C.; Wind, B. Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results. J. Geophys. Res. Atmos. 2014, 119, 803–816. [Google Scholar] [CrossRef]
- Finney, M.A. FARSITE: A fire area simulator for fire managers. In Proceedings of the Biswell Symposium: Fire Issues and Solutions in Urban Interface and Wildland Ecosystems, Walnut Creek, CA, USA, 15–17 February 1994; Weise, D.R., Martin, R.E., Eds.; (Technical Coordinators); General Technical Report PSW-GTR-158. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 1995; pp. 55–56. [Google Scholar]
- Green, K.; Finney, M.A.; Campbell, J.; Weinstein, D.; Landrum, V. Fire! Using GIS to predict fire behavior. J. For. 1995, 93, 21–25. [Google Scholar]
- Kreye, J.K.; Brewer, N.W.; Morgan, P.; Varner, J.M.; Smith, A.M.S.; Hoffman, C.M.; Ottmar, R.D. Fire behavior in masticated fuels: A review. For. Ecol. Manag. 2014, 314, 193–207. [Google Scholar] [CrossRef]
- Hardy, C.C.; Schmidt, K.M.; Menakis, J.P.; Sampson, R.N. Spatial data for national fire planning and fuel management. Int. J. Wildland Fire 2001, 10, 353. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martín, M.P.; Vilar, L.; Martínez-Vega, J.; Martín, S.; Ibarra, P.; et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 2010, 221, 46–58. [Google Scholar] [CrossRef]
- Chen, D.; Loboda, T.; Hall, J. A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems. ISPRS J. Photogramm. Remote Sens. 2020, 159, 63–77. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Beyers, J.L.; Neary, D.G. Evaluating the Effectiveness of Postfire Rehabilitation Treatments; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2000. Available online: https://www.fs.fed.us/rm/pubs/rmrs_gtr063.pdf (accessed on 10 September 2020).
- Keegan, C.E., III; Morgan, T.A.; Hearst, A.L.; Fiedler, C.E. Impacts of the 2000 wildfires on Montana’s forest industry employment. For. Prod. J. 2004, 54, 26. [Google Scholar]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Goetz, S.J.; Mack, M.C.; Gurney, K.R.; Randerson, J.T.; Houghton, R.A. Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: Observations and model results contrasting northern Eurasia and North America. Environ. Res. Lett. 2007, 2, 045031. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I. Rural and Suburban Sprawl in the U.S. Midwest from 1940 to 2000 and Its Relation to Forest Fragmentation. Conserv. Boil. 2005, 19, 793–805. [Google Scholar] [CrossRef]
- Stewart, S.I.; Radeloff, V.C.; Hammer, R.B.; Hawbaker, T.J. Defining the Wildland–Urban Interface. J. For. 2007, 105, 201–207. [Google Scholar]
- Kane, J.M.; Varner, J.M.; Knapp, E.E. Novel fuel bed characteristics associated with mechanical mastication treatments in northern California and southwestern Oregon, USA. Int. J. Wildland Fire 2009, 18, 686–697. [Google Scholar] [CrossRef] [Green Version]
- Dewey, S.A.; Jenkins, M.J.; Tonioli, R.C. Wildfire Suppression—A Paradigm for Noxious Weed Management. Weed Technol. 1995, 9, 621–627. [Google Scholar] [CrossRef]
- Studley, H.; Weber, K.T. 2009 Range Vegetation Assessment in the Big Desert, Upper Snake River Plain, Idaho. In Final Report: Assessing Post-Fire Recovery of Sagebrush-Steppe Rangelands in Southeastern Idaho (NNX08AO90G); Weber, K.T., Davis, K., Eds.; Idaho State University: Pocatello, ID, USA, 2011; 252p, Available online: http://giscenter.isu.edu/research/Techpg/nasa_postfire/pdf/Ch2.pdf (accessed on 10 September 2020).
- Gill, A.M.; Stephens, S.L.; Cary, G.J. The worldwide “wildfire” problem. Ecol. Appl. 2013, 23, 438–454. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Díaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Calkin, D.; Jones, G.; Hyde, K. Nonmarket resource valuation in the postfire environment. J. For. 2008, 106, 305–310. [Google Scholar]
- Paveglio, T.B.; Brenkert-Smith, H.; Hall, T.; Smith, A.M.S. Understanding social impact from wildfires: Advancing means for assessment. Int. J. Wildland Fire 2015, 24, 212–224. [Google Scholar] [CrossRef]
- Venn, T.J.; Calkin, D.E. Accommodating non-market values in evaluation of wildfire management in the United States: Challenges and opportunities. Int. J. Wildland Fire 2011, 20, 327. [Google Scholar] [CrossRef]
- Williamson, R.; Hertzfeld, H.R.; Cordes, J.; Logsdon, J.M. The socioeconomic benefits of Earth science and applications research: Reducing the risks and costs of natural disasters in the USA. Space Policy 2002, 18, 57–65. [Google Scholar] [CrossRef]
- Kangas, A.S.; Horne, P.; Leskinen, P. Measuring the value of information in multi-criteria decision making. For. Sci. 2010, 56, 558–566. [Google Scholar]
- Schnase, J.L.; Carroll, M.L.; Weber, K.T.; Brown, M.; Gill, R.L.; Wooten, M.; May, J.; Serr, K.; Smith, E.; Goldsby, R.; et al. RECOVER: An Automated, Cloud-Based Decision Support System for Post-Fire Rehabilitation Planning. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Weber, K.T.; Idaho State University GIS Training and Research Center. Historic Fires Database (HFD) Version 3.0. 2020. Available online: http://giscenter.isu.edu/research/Techpg/HFD/ (accessed on 17 June 2020).
- Snyder, J.P. Map Projections Used by the US Geological Survey (No. 1532); US Government Printing Office: Washington, DC, USA, 1982.
- Taghavi-Shahri, S.M.; Fassò, A.; Mahaki, B.; Amini, H. Concurrent spatiotemporal daily land use regression modeling and missing data imputation of fine particulate matter using distributed space-time expectation maximization. Atmos. Environ. 2019, 224, 117202. [Google Scholar] [CrossRef]
- Bobbe, T.; Finco, M.V.; Quayle, B.; Lannon, K. Field Measurements for the Training and Validation of Burn Severity Maps from Spaceborne, Remotely Sensed Imagery. In Final Project Report, Joint Fire Science Program-2001-2; Remote Sensing Applications Center, USDA Forest Service: Salt Lake City, UT, USA, 2001. Available online: http://www.fs.fed.us/eng/rsac/baer/final_report_01B-2-1-01.pdf (accessed on 10 September 2020).
- Weber, K.T.; Seefeldt, S.S.; Norton, J.M.; Finley, C. Fire Severity Modeling of Sagebrush-Steppe Rangelands in Southeastern Idaho. GISci. Remote. Sens. 2008, 45, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Cai, L.; Wang, M. Is the RdNBR a better estimator of wildfire burn severity than the dNBR? A discussion and case study in southeast China. Geocarto Int. 2020, 1–15. [Google Scholar] [CrossRef]
- Marlon, J.; Bartlein, P.J.; Gavin, D.G.; Long, C.J.; Anderson, R.S.; Briles, C.E.; Brown, K.J.; Colombaroli, D.; Hallett, D.J.; Power, M.J.; et al. Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA 2012, 109, E535–E543. [Google Scholar] [CrossRef] [Green Version]
- Alencar, A.A.; Brando, P.; Asner, G.P.; Putz, F.E. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol. Appl. 2015, 25, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, K.T.; Yadav, R. Spatiotemporal Trends in Wildfires across the Western United States (1950–2019). Remote Sens. 2020, 12, 2959. https://doi.org/10.3390/rs12182959
Weber KT, Yadav R. Spatiotemporal Trends in Wildfires across the Western United States (1950–2019). Remote Sensing. 2020; 12(18):2959. https://doi.org/10.3390/rs12182959
Chicago/Turabian StyleWeber, Keith T., and Rituraj Yadav. 2020. "Spatiotemporal Trends in Wildfires across the Western United States (1950–2019)" Remote Sensing 12, no. 18: 2959. https://doi.org/10.3390/rs12182959
APA StyleWeber, K. T., & Yadav, R. (2020). Spatiotemporal Trends in Wildfires across the Western United States (1950–2019). Remote Sensing, 12(18), 2959. https://doi.org/10.3390/rs12182959