Spatiotemporal Trends in Wildfires across the Western United States (1950–2019)
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duguy, B.; Paula, S.; Pausas, J.G.; Alloza, J.A.; Gimeno, T.; Vallejo, V.R. Effects of Climate and Extreme Events on Wildfire Regime and Their Ecological Impacts. In Advances in Global Change Research; Springer Science and Business Media LLC: Berlin, Germany, 2012; Volume 51, pp. 101–134. [Google Scholar]
- Brotons, L.; Aquilué, N.; De Cáceres, M.; Fortin, M.-J.; Fall, A. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes. PLoS ONE 2013, 8, e62392. [Google Scholar] [CrossRef]
- Wang, Z.; Chappellaz, J.; Park, K.; Mak, J.E. Large Variations in Southern Hemisphere Biomass Burning During the Last 650 Years. Science 2010, 330, 1663–1666. [Google Scholar] [CrossRef]
- Shvidenko, A.; Shchepashchenko, D.G.; Vaganov, E.A.; Sukhinin, A.I.; Maksyutov, S.; McCallum, I.; Lakyda, I. Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget. Dokl. Earth Sci. 2011, 441, 1678–1682. [Google Scholar] [CrossRef]
- McWethy, D.B.; Schoennagel, T.; Higuera, P.E.; Krawchuk, M.; Harvey, B.J.; Metcalf, E.C.; Schultz, C.; Miller, C.; Metcalf, A.L.; Buma, B.; et al. Rethinking resilience to wildfire. Nat. Sustain. 2019, 2, 797–804. [Google Scholar] [CrossRef]
- Csiszar, I.; Schroeder, W.; Giglio, L.; Ellicott, E.; Vadrevu, K.P.; Justice, C.; Wind, B. Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results. J. Geophys. Res. Atmos. 2014, 119, 803–816. [Google Scholar] [CrossRef]
- Finney, M.A. FARSITE: A fire area simulator for fire managers. In Proceedings of the Biswell Symposium: Fire Issues and Solutions in Urban Interface and Wildland Ecosystems, Walnut Creek, CA, USA, 15–17 February 1994; Weise, D.R., Martin, R.E., Eds.; (Technical Coordinators); General Technical Report PSW-GTR-158. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 1995; pp. 55–56. [Google Scholar]
- Green, K.; Finney, M.A.; Campbell, J.; Weinstein, D.; Landrum, V. Fire! Using GIS to predict fire behavior. J. For. 1995, 93, 21–25. [Google Scholar]
- Kreye, J.K.; Brewer, N.W.; Morgan, P.; Varner, J.M.; Smith, A.M.S.; Hoffman, C.M.; Ottmar, R.D. Fire behavior in masticated fuels: A review. For. Ecol. Manag. 2014, 314, 193–207. [Google Scholar] [CrossRef]
- Hardy, C.C.; Schmidt, K.M.; Menakis, J.P.; Sampson, R.N. Spatial data for national fire planning and fuel management. Int. J. Wildland Fire 2001, 10, 353. [Google Scholar] [CrossRef]
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martín, M.P.; Vilar, L.; Martínez-Vega, J.; Martín, S.; Ibarra, P.; et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 2010, 221, 46–58. [Google Scholar] [CrossRef]
- Chen, D.; Loboda, T.; Hall, J. A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems. ISPRS J. Photogramm. Remote Sens. 2020, 159, 63–77. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Beyers, J.L.; Neary, D.G. Evaluating the Effectiveness of Postfire Rehabilitation Treatments; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2000. Available online: https://www.fs.fed.us/rm/pubs/rmrs_gtr063.pdf (accessed on 10 September 2020).
- Keegan, C.E., III; Morgan, T.A.; Hearst, A.L.; Fiedler, C.E. Impacts of the 2000 wildfires on Montana’s forest industry employment. For. Prod. J. 2004, 54, 26. [Google Scholar]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef]
- Goetz, S.J.; Mack, M.C.; Gurney, K.R.; Randerson, J.T.; Houghton, R.A. Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: Observations and model results contrasting northern Eurasia and North America. Environ. Res. Lett. 2007, 2, 045031. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I. Rural and Suburban Sprawl in the U.S. Midwest from 1940 to 2000 and Its Relation to Forest Fragmentation. Conserv. Boil. 2005, 19, 793–805. [Google Scholar] [CrossRef]
- Stewart, S.I.; Radeloff, V.C.; Hammer, R.B.; Hawbaker, T.J. Defining the Wildland–Urban Interface. J. For. 2007, 105, 201–207. [Google Scholar]
- Kane, J.M.; Varner, J.M.; Knapp, E.E. Novel fuel bed characteristics associated with mechanical mastication treatments in northern California and southwestern Oregon, USA. Int. J. Wildland Fire 2009, 18, 686–697. [Google Scholar] [CrossRef]
- Dewey, S.A.; Jenkins, M.J.; Tonioli, R.C. Wildfire Suppression—A Paradigm for Noxious Weed Management. Weed Technol. 1995, 9, 621–627. [Google Scholar] [CrossRef]
- Studley, H.; Weber, K.T. 2009 Range Vegetation Assessment in the Big Desert, Upper Snake River Plain, Idaho. In Final Report: Assessing Post-Fire Recovery of Sagebrush-Steppe Rangelands in Southeastern Idaho (NNX08AO90G); Weber, K.T., Davis, K., Eds.; Idaho State University: Pocatello, ID, USA, 2011; 252p, Available online: http://giscenter.isu.edu/research/Techpg/nasa_postfire/pdf/Ch2.pdf (accessed on 10 September 2020).
- Gill, A.M.; Stephens, S.L.; Cary, G.J. The worldwide “wildfire” problem. Ecol. Appl. 2013, 23, 438–454. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Díaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef]
- Calkin, D.; Jones, G.; Hyde, K. Nonmarket resource valuation in the postfire environment. J. For. 2008, 106, 305–310. [Google Scholar]
- Paveglio, T.B.; Brenkert-Smith, H.; Hall, T.; Smith, A.M.S. Understanding social impact from wildfires: Advancing means for assessment. Int. J. Wildland Fire 2015, 24, 212–224. [Google Scholar] [CrossRef]
- Venn, T.J.; Calkin, D.E. Accommodating non-market values in evaluation of wildfire management in the United States: Challenges and opportunities. Int. J. Wildland Fire 2011, 20, 327. [Google Scholar] [CrossRef]
- Williamson, R.; Hertzfeld, H.R.; Cordes, J.; Logsdon, J.M. The socioeconomic benefits of Earth science and applications research: Reducing the risks and costs of natural disasters in the USA. Space Policy 2002, 18, 57–65. [Google Scholar] [CrossRef]
- Kangas, A.S.; Horne, P.; Leskinen, P. Measuring the value of information in multi-criteria decision making. For. Sci. 2010, 56, 558–566. [Google Scholar]
- Schnase, J.L.; Carroll, M.L.; Weber, K.T.; Brown, M.; Gill, R.L.; Wooten, M.; May, J.; Serr, K.; Smith, E.; Goldsby, R.; et al. RECOVER: An Automated, Cloud-Based Decision Support System for Post-Fire Rehabilitation Planning. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 363–370. [Google Scholar] [CrossRef]
- Weber, K.T.; Idaho State University GIS Training and Research Center. Historic Fires Database (HFD) Version 3.0. 2020. Available online: http://giscenter.isu.edu/research/Techpg/HFD/ (accessed on 17 June 2020).
- Snyder, J.P. Map Projections Used by the US Geological Survey (No. 1532); US Government Printing Office: Washington, DC, USA, 1982.
- Taghavi-Shahri, S.M.; Fassò, A.; Mahaki, B.; Amini, H. Concurrent spatiotemporal daily land use regression modeling and missing data imputation of fine particulate matter using distributed space-time expectation maximization. Atmos. Environ. 2019, 224, 117202. [Google Scholar] [CrossRef]
- Bobbe, T.; Finco, M.V.; Quayle, B.; Lannon, K. Field Measurements for the Training and Validation of Burn Severity Maps from Spaceborne, Remotely Sensed Imagery. In Final Project Report, Joint Fire Science Program-2001-2; Remote Sensing Applications Center, USDA Forest Service: Salt Lake City, UT, USA, 2001. Available online: http://www.fs.fed.us/eng/rsac/baer/final_report_01B-2-1-01.pdf (accessed on 10 September 2020).
- Weber, K.T.; Seefeldt, S.S.; Norton, J.M.; Finley, C. Fire Severity Modeling of Sagebrush-Steppe Rangelands in Southeastern Idaho. GISci. Remote. Sens. 2008, 45, 68–82. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Cai, L.; Wang, M. Is the RdNBR a better estimator of wildfire burn severity than the dNBR? A discussion and case study in southeast China. Geocarto Int. 2020, 1–15. [Google Scholar] [CrossRef]
- Marlon, J.; Bartlein, P.J.; Gavin, D.G.; Long, C.J.; Anderson, R.S.; Briles, C.E.; Brown, K.J.; Colombaroli, D.; Hallett, D.J.; Power, M.J.; et al. Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA 2012, 109, E535–E543. [Google Scholar] [CrossRef]
- Alencar, A.A.; Brando, P.; Asner, G.P.; Putz, F.E. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol. Appl. 2015, 25, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, K.T.; Yadav, R. Spatiotemporal Trends in Wildfires across the Western United States (1950–2019). Remote Sens. 2020, 12, 2959. https://doi.org/10.3390/rs12182959
Weber KT, Yadav R. Spatiotemporal Trends in Wildfires across the Western United States (1950–2019). Remote Sensing. 2020; 12(18):2959. https://doi.org/10.3390/rs12182959
Chicago/Turabian StyleWeber, Keith T., and Rituraj Yadav. 2020. "Spatiotemporal Trends in Wildfires across the Western United States (1950–2019)" Remote Sensing 12, no. 18: 2959. https://doi.org/10.3390/rs12182959
APA StyleWeber, K. T., & Yadav, R. (2020). Spatiotemporal Trends in Wildfires across the Western United States (1950–2019). Remote Sensing, 12(18), 2959. https://doi.org/10.3390/rs12182959