An Experimental Study on Field Spectral Measurements to Determine Appropriate Daily Time for Distinguishing Fractional Vegetation Cover
Abstract
:1. Introduction
2. Materials and Method
2.1. Experimental Design
2.2. Bands Identification and Spectral Indices Calculation
2.3. Variation Test
3. Results
3.1. Refelctance Variation of Characteristic Bands over Time
3.2. Effectiveness of Spectral Indices for Distinguishing FVC Objects
3.3. CV of the Spectral Indices over Time
3.4. Significance Test for Spectral Indices over Time
4. Discussion
4.1. Variation of Reflectance over Time
4.2. An Acceptable Error from the Point of View of Reflectance
4.3. Limitations of the Experiment
5. Conclusions
- NDVI and SWIR32 can potentially apply in distinguishing PV, NPV and BS objects.
- The degree of stability of the reflectivity over time varies for different FVC objects and bands. Generally, the appropriate time to obtain the relative stable reflectance is from 10:00 a.m. to 16:00 p.m. with the CVs for different bands ranging from 5.01% to 9.53%.
- The appropriate measurement time to obtain FVC indices (NDVI and SWIR32) varies for the nature of objects. The time for PV was 7:30 a.m.–17:30 p.m., with a CV of 0.75% and for NPV1–3 and BS it was 9:00 a.m.–17:00 p.m., with CV ranging from 2.09% to 3.1%.
- Though the reflectivity of the characteristic bands is varied and scattered, the derived spectral indices are more stable over the measuring time. An extended period (9:00 a.m.–17:00 p.m.) might be acceptable depending on the variation of the spectral index values over time.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, Z.; Huete, A.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Zhang, M.; Zhang, C. Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecol. Eng. 2015, 81, 451–461. [Google Scholar] [CrossRef]
- Jimenezmunoz, J.C.; Sobrino, J.A.; Plaza, A.; Guanter, L.; Moreno, J.; Martinez, P. Comparison Between Fractional Vegetation Cover Retrievals from Vegetation Indices and Spectral Mixture Analysis: Case Study of PROBA/CHRIS Data Over an Agricultural Area. Sensors 2009, 9, 768. [Google Scholar] [CrossRef]
- Smith, M.O.; Adams, J.B.; Sabol, D.E. Spectral Mixture Analysis—New Strategies for the Analysis of Multispectral Data. In Imaging Spectrometry—A Tool for Environmental Observations; Springer: Dordrecht, The Netherlands, 1994. [Google Scholar] [CrossRef]
- Chen, J.; Yi, S.; Qin, Y.; Wang, X. Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau. Int. J. Remote Sens. 2016, 37, 1922–1936. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Lv, D.; Yin, S.; Zhang, M.; Zhu, Q.; Yu, Q.; Liu, B. Remote sensing estimation of the soil erosion cover-management factor for China’s Loess Plateau. Land Degrad. Dev. 2020. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Mccool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agricultural Handbook; United States Government Printing: Washington, DC, USA, 1997. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; Agricultural Handbook; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978; p. 537. [Google Scholar]
- Liu, B.; Zhang, K.; Yun, X. An Empirical Soil Loss Equation. In Proceedings of the 12th ISCO Conference, Beijing, China, 26–31 May 2002. [Google Scholar]
- Zhou, Q.; Robson, M. Automated rangeland vegetation cover and density estimation using ground digital images and a spectral-contextual classifier. Int. J. Remote Sens. 2001, 22, 3457–3470. [Google Scholar] [CrossRef]
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Visible Light—Short-Wave Infrared Reflectance Measurement of Urban Features; Standards Press of China: Beijing, China, 2017. [Google Scholar]
- Guerschman, J.P.; Hill, M.J.; Renzullo, L.J.; Barrett, D.J.; Marks, A.; Botha, E.J. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sens. Environ. 2009, 113, 928–945. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Matsushita, B.; Imura, H. Developing a MODIS-based index to discriminate dead fuel from photosynthetic vegetation and soil background in the Asian steppe area. Int. J. Remote Sens. 2010, 31, 1589–1604. [Google Scholar] [CrossRef]
- Gillies, R.R.; Carlson, T.N. Thermal Remote Sensing of Surface Soil Water Content With Partial Vegetation Cover for Incorporation Into Climate Models. J. Appl. Meteorol. 1995, 34, 745–756. [Google Scholar] [CrossRef] [Green Version]
- Daughtry, C.S.; Mcmurtreyiii, J.E.; Chappelle, E.W.; Hunter, W.J.; Steiner, J.L. Measuring crop residue cover using remote sensing techniques. Theor. Appl. Climatol. 1996, 54, 17–26. [Google Scholar] [CrossRef]
- Mcnairn, H.; Protz, R. Mapping Corn Residue Cover on Agricultural Fields in Oxford County, Ontario, Using Thematic Mapper. Can. J. Remote Sens. 1993, 19, 152–159. [Google Scholar] [CrossRef]
- Qi, J.; Marsett, R.; Heilman, P.; Bieden-bender, S.; Moran, S.; Goodrich, D.; Weltz, M. RANGES Improves Satellite-based Information and Land Cover Assessments in Southwest U.S. Eos Trans. Am. Geophys. Union 2002, 83, 601–606. [Google Scholar] [CrossRef]
- Jacques, D.C.; Kergoat, L.; Hiernaux, P.; Mougin, E.; Defourny, P. Monitoring dry vegetation masses in semi-arid areas with MODIS SWIR bands. Remote Sens. Environ. 2014, 153, 40–49. [Google Scholar] [CrossRef]
- Lan, Z.; Khan, M.N.; Sial, T.A.; Yang, X.; Zhao, Y.; Zhang, J. Effects of 25-yr located different fertilization measures on soil hydraulic properties of lou soil in Guanzhong area. Trans. Chin. Soc. Agric. Eng. 2018, 34, 100–106. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.; Wang, C.; Pan, X.; Liu, Y.; Li, Y.; Shi, R. Estimation of wheat residue cover using simulated Landsat-8 OLI datas. Trans. Chin. Soc. Agric. Eng. 2016, 32, 145–152. (In Chinese) [Google Scholar] [CrossRef]
- Guerschman, J.P.; Scarth, P.; Mcvicar, T.R.; Renzullo, L.J.; Malthus, T.J.; Stewart, J.; Rickards, J.; Trevithick, R. Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data. Remote Sens. Environ. 2015, 161, 12–26. [Google Scholar] [CrossRef]
- Duggin, M.J. Simultaneous measurement of irradiance and reflected radiance in field determination of special reflectance. Appl. Opt. 1981, 20, 3816–3818. [Google Scholar] [CrossRef]
- Avery, T.E.; Berlin, G.L. Fundamentals of Remote Sensing and Airphoto Interpretation, 5th ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1992. [Google Scholar]
- Jackson, R.D.; Moran, M.S.; Slater, P.N. Accounting for diffuse irradiance on reference reflectance panels. Recent Adv. Sens. Radiom. Data Process. Remote Sens. 1988, 924, 241–248. [Google Scholar] [CrossRef]
- Chang, J.; Clay, S.A.; Clay, D.E.; Aaron, D.; Helder, D.L.; Dalsted, K. Clouds Influence Precision and Accuracy of Ground-Based Spectroradiometers. Commun. Soil Sci. Plant Anal. 2005, 36, 1799–1807. [Google Scholar] [CrossRef]
- Kimes, D.S.; Kirchner, J.A.; Newcomb, W.W. Spectral radiance errors in remote sensing ground studies due to nearby objects. Appl. Opt. 1983, 22, 8. [Google Scholar] [CrossRef]
- Jackson, R.D.; Moran, M.S.; Slater, P.N.; Biggar, S.F. Field calibration of reference reflectance panels. Remote Sens. Environ. 1987, 22, 145–158. [Google Scholar] [CrossRef]
- Jackson, R.D.; Clarke, T.R.; Moran, M.S. Bidirectional calibration results for 11 spectralon and 16 BaSO4 reference reflectance panels. Remote Sens. Environ. 1992, 40, 231–239. [Google Scholar] [CrossRef]
- Duggin, M.J.; Philipson, W.R. Field measurement of reflectance: Some major considerations. Appl. Opt. 1982, 21, 2833–2840. [Google Scholar] [CrossRef]
- Gu, X.F.; Guyot, G. Effect of diffuse irradiance on the reflectance factor of reference panels under field conditions. Remote Sens. Environ. 1993, 45, 249–260. [Google Scholar] [CrossRef]
- Myrabø, H.K.; Lillesaeter, O.; Høimyr, T. Portable field spectrometer for reflectance measurements 340–2500 nm. Appl. Opt. 1982, 21, 2855–2858. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Cheng, Y.; Wang, J. The Technology and Method of Field Spectrometry. China Land Sci. 2002, 16, 31–37. (In Chinese) [Google Scholar]
- Philip, H.S.; Shirley, M.D. Remote Sensing: The Quantitative Approch; McGraw-Hill International Book Company: Berkshire, UK, 1978. [Google Scholar]
- Duggin, M.J.; Cunia, T. Ground reflectance measurement techniques: A comparison. Appl. Opt. 1983, 22, 3771–3777. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Zou, X.; Chai, G.; Wu, M.; Wang, Z. Estimating the fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil from MODIS data: Assessing the applicability of the NDVI-DFI model in the typical Xilingol grasslands. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 154–166. [Google Scholar] [CrossRef]
Project | Date | 7:30 | 8:00 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 | 14:00 | 15:00 | 16:00 | 17:00 | 17:30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature/°C | 8 December | −3 | −4 | −2 | 0 | 3 | 7 | 9 | 10 | 11 | 11 | 11 | 10 |
9 December | −4 | −4 | −1 | 3 | 8 | 11 | 12 | 12 | 13 | 15 | 13 | 12 | |
10 December | 0 | 0 | 1 | 7 | 11 | 13 | 14 | 15 | 15 | 15 | 14 | 13 | |
Humidity/% | 8 December | 90 | 90 | 91 | 68 | 50 | 48 | 48 | 47 | 44 | 45 | 47 | 52 |
9 December | 86 | 87 | 84 | 68 | 48 | 38 | 35 | 32 | 30 | 27 | 26 | 26 | |
10 December | 69 | 65 | 62 | 40 | 24 | 19 | 16 | 17 | 17 | 17 | 18 | 19 | |
Sunrise and Sunset | 8 December | 07:36 and 17:41 | |||||||||||
9 December | 07:37 and 17:41 | ||||||||||||
10 December | 07:38 and 17:42 |
CV/% | 7:30 | 8:00 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 | 14:00 | 15:00 | 16:00 | 17:00 | 17:30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PV-band1 | 24.05 | 19.64 | 40.23 | 47.16 | 29.78 | 7.66 | 13.01 | 14.25 | 14.77 | 16.87 | 12.53 | 19.24 |
PV-band2 | 19.87 | 11.12 | 21.06 | 9.69 | 16.63 | 8.27 | 8.84 | 6.14 | 7.30 | 12.91 | 20.41 | 18.88 |
PV-NDVI | 1.10 | 0.87 | 1.62 | 2.68 | 1.18 | 0.37 | 1.67 | 0.54 | 0.86 | 0.54 | 0.87 | 1.85 |
NPV1-band6 | 15.42 | 32.82 | 22.63 | 14.59 | 9.16 | 5.40 | 11.69 | 15.56 | 7.08 | 14.77 | 17.68 | 12.55 |
NPV1-band7 | 327.34 | 86.17 | 28.81 | 17.39 | 13.81 | 8.77 | 14.38 | 16.97 | 9.88 | 19.45 | 17.88 | 189.04 |
NPV1—SWIR32 | 114.50 | 90.98 | 10.40 | 5.58 | 6.29 | 0.06 | 5.88 | 6.51 | 5.85 | 6.56 | 8.51 | 89.63 |
NPV2-band6 | 15.56 | 34.08 | 17.65 | 10.99 | 7.78 | 4.83 | 7.62 | 5.41 | 6.27 | 7.20 | 13.13 | 13.98 |
NPV2-band7 | 299.12 | 58.51 | 21.48 | 12.95 | 8.25 | 5.41 | 7.84 | 5.60 | 8.65 | 10.27 | 18.94 | 287.76 |
NPV2-SWIR32 | 153.57 | 37.25 | 6.39 | 2.51 | 3.58 | 2.83 | 1.76 | 2.85 | 3.82 | 4.00 | 7.70 | 171.32 |
NPV3-band6 | 18.24 | 17.48 | 18.87 | 9.54 | 7.14 | 6.24 | 3.66 | 4.24 | 7.10 | 9.10 | 46.14 | 21.05 |
NPV3-band7 | 240.08 | 23.47 | 19.39 | 8.76 | 6.95 | 6.44 | 5.16 | 5.15 | 8.13 | 11.87 | 47.65 | 442.89 |
NPV3-SWIR32 | 103.76 | 9.47 | 3.61 | 2.38 | 1.98 | 2.54 | 2.82 | 1.61 | 2.34 | 3.19 | 7.01 | 193.30 |
BS-band6 | 16.29 | 25.63 | 14.04 | 6.82 | 9.14 | 6.54 | 6.27 | 6.82 | 10.17 | 7.17 | 39.14 | 19.90 |
BS-band7 | 179.04 | 28.49 | 12.98 | 6.03 | 9.43 | 6.47 | 5.37 | 6.97 | 10.79 | 8.68 | 46.88 | 938.47 |
BS-SWIR32 | 120.39 | 3.45 | 3.86 | 1.37 | 1.33 | 1.33 | 1.53 | 1.29 | 1.49 | 3.98 | 12.23 | 410.88 |
Index | Appropriate Time I | Appropriate Time II | Appropriate Time III |
---|---|---|---|
PV-NDVI | 7:30–17:30 | 7:30–17:30 | 9:00–17:00 |
NPV1-SWIR32 | 9:00–17:00 | 9:00–17:00 | 9:00–17:00 |
NPV2-SWIR32 | 9:00–17:00 | 9:00–17:00 | 9:00–17:00 |
NPV3-SWIR32 | 8:00–17:00 | 8:00–17:00 | 9:00–17:00 |
BS-SWIR32 | 8:00–17:00 | 7:30–17:00 | 9:00–17:00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, D.; Liu, B.; Zhang, X.; Yang, X.; He, L.; He, J.; Guo, J.; Wang, J.; Cao, Q. An Experimental Study on Field Spectral Measurements to Determine Appropriate Daily Time for Distinguishing Fractional Vegetation Cover. Remote Sens. 2020, 12, 2942. https://doi.org/10.3390/rs12182942
Lyu D, Liu B, Zhang X, Yang X, He L, He J, Guo J, Wang J, Cao Q. An Experimental Study on Field Spectral Measurements to Determine Appropriate Daily Time for Distinguishing Fractional Vegetation Cover. Remote Sensing. 2020; 12(18):2942. https://doi.org/10.3390/rs12182942
Chicago/Turabian StyleLyu, Du, Baoyuan Liu, Xiaoping Zhang, Xihua Yang, Liang He, Jie He, Jinwei Guo, Jufeng Wang, and Qi Cao. 2020. "An Experimental Study on Field Spectral Measurements to Determine Appropriate Daily Time for Distinguishing Fractional Vegetation Cover" Remote Sensing 12, no. 18: 2942. https://doi.org/10.3390/rs12182942
APA StyleLyu, D., Liu, B., Zhang, X., Yang, X., He, L., He, J., Guo, J., Wang, J., & Cao, Q. (2020). An Experimental Study on Field Spectral Measurements to Determine Appropriate Daily Time for Distinguishing Fractional Vegetation Cover. Remote Sensing, 12(18), 2942. https://doi.org/10.3390/rs12182942