Performances of Polarization-Retrieve Imaging in Stratified Dispersion Media
Abstract
1. Introduction
2. Theory and Method
2.1. PR Method
2.2. Simulation Method
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chiang, J.; Chen, Y.-C. Underwater Image Enhancement by Wavelength Compensation and Dehazing. IEEE Trans. Image Process. 2011, 21, 1756–1769. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Carrizo, C.; Gilerson, A.; Brady, P.C.; Cummings, M.E.; Twardowski, M.S.; Sullivan, J.M.; Ibrahim, A.; Kattawar, G.W. Polarimetric imaging and retrieval of target polarization characteristics in underwater environment. Appl. Opt. 2016, 55, 626–637. [Google Scholar] [CrossRef]
- He, Y.; Yang, B.; Lin, H.; Zhang, J. Modeling Polarized Reflectance of Natural Land Surfaces Using Generalized RegreSSIon Neural Networks. Remote Sens. 2020, 12, 248. [Google Scholar] [CrossRef]
- Fang, S.; Xia, X.; Xing, H.; Chen, C.; Huo, X. Image dehazing using polarization effects of objects and airlight. Opt. Express 2014, 22, 19523–19537. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.-H.; Kang, L.-W.; Lee, M.-S.; Lin, C.-Y. Haze effect removal from image via haze density estimation in optical model. Opt. Express 2013, 21, 27127–27141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liang, J.; Ren, L.; Ju, H.; Qu, E.; Bai, Z.; Tang, Y.; Wu, Z. Real-time image haze removal using an aperture-division polarimetric camera. Appl. Opt. 2017, 56, 942. [Google Scholar] [CrossRef]
- Sankaran, V.; Walsh, J.T.; Duncan, J.M. Polarized light propagation through tissue phantoms containing densely packed scatterers. Opt. Lett. 2000, 25, 239–241. [Google Scholar] [CrossRef]
- Shen, F.; Zhang, B.; Guo, K.; Yin, Z.; Guo, Z. The Depolarization Performances of the Polarized Light in Different Scattering Media Systems. IEEE Photon J. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Dechesne, C.; Lefèvre, S.; Vadaine, R.; Hajduch, G.; Fablet, R. Ship Identification and Characterization in Sentinel-1 SAR Images with Multi-Task Deep Learnin. Remote Sens. 2019, 11, 2997. [Google Scholar] [CrossRef]
- Zhai, A.; Wen, X.; Xu, H.; Yuan, L.; Meng, Q. Multi-Layer Model Based on Multi-Scale and Multi-Feature Fusion for SAR Images. Remote Sens. 2017, 9, 1085. [Google Scholar] [CrossRef]
- Hayashi, Y.; Tachibana, K. Mie-Scattering Ellipsometry for Analysis of Particle Behaviors in ProceSSIng Plasmas. Jpn. J. Appl. Phys. 1994, 33, L476–L478. [Google Scholar] [CrossRef]
- Groth, S.; Greiner, F.; Tadsen, B.; Piel, A. Kinetic Mie ellipsometry to determine the time-resolved particle growth in nanodusty plasmas. J. Phys. D Appl. Phys. 2015, 48, 465203. [Google Scholar] [CrossRef]
- Antonelli, M.-R.; Pierangelo, A.; Novikova, T.; Validire, P.; Benali, A.; Gayet, B.; De Martino, A. Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method. Opt. Express 2010, 18, 10200–10208. [Google Scholar] [CrossRef] [PubMed]
- Kirchschlager, F.; Wolf, S.; Greiner, F.; Groth, S.; Labdon, A. In-situanalysis of optically thick nanoparticle clouds. Appl. Phys. Lett. 2017, 110, 173106. [Google Scholar] [CrossRef]
- Liu, F.; Wei, Y.; Han, P.; Yang, K.; Bai, L.; Shao, X. Polarization-based exploration for clear underwater vision in natural illumination. Opt. Express 2019, 27, 3629–3641. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, D.; Xu, Y.; Wang, C.; Yuan, B. Research of Polarized Image Defogging Technique Based on Dark Channel Priori and Guided Filtering. Procedia Comput. Sci. 2018, 131, 289–294. [Google Scholar] [CrossRef]
- Tyo, J.S.; Rowe, M.P.; Pugh, E.N.; Engheta, N. Target detection in optically scattering media by polarization-difference imaging. Appl. Opt. 1996, 35, 1855–1870. [Google Scholar] [CrossRef]
- Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Instant dehazing of images using polarization. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2001 CVPR-01 2005, Kauai, HI, USA, 8–14 December 2001. [Google Scholar] [CrossRef]
- Schechner, Y.; Karpel, N. Recovery of Underwater Visibility and Structure by Polarization Analysis. IEEE J. Ocean Eng. 2005, 30, 570–587. [Google Scholar] [CrossRef]
- Dubreuil, M.; Delrot, P.; Leonard, I.; Alfalou, A.; Brosseau, C.; Dogariu, A. Exploring underwater target detection by imaging polarimetry and correlation techniques. Appl. Opt. 2013, 52, 997–1005. [Google Scholar] [CrossRef]
- Huang, B.; Liu, T.; Hu, H.; Han, J.; Yu, M. Underwater image recovery considering polarization effects of objects. Opt. Express 2016, 24, 9826–9838. [Google Scholar] [CrossRef]
- Liang, J.; Ren, L.-Y.; Ju, H.-J.; Qu, E.-S.; Wang, Y.-L. Visibility enhancement of hazy images based on a universal polarimetric imaging method. J. Appl. Phys. 2014, 116, 173107. [Google Scholar] [CrossRef]
- Liang, J.; Ren, L.; Ju, H.; Zhang, W.; Qu, E. Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization. Opt. Express 2015, 23, 26146–26157. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhang, W.; Ren, L.; Ju, H.; Qu, E. Polarimetric dehazing method for visibility improvement based on visible and infrared image fusion. Appl. Opt. 2016, 55, 8221. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhao, L.; Li, X.; Wang, H.; Liu, T. Underwater Image Recovery under the Nonuniform Optical Field Based on Polarimetric Imaging. IEEE Photon J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Marchuk, G.I.; Mikhailov, G.A.; Nazaraliev, M.A.; Darbinjan, R.A.; Kargin, B.A.; Elepov, B.S. The Monte Carlo Methods in Atmospheric Optics. In X-ray Microsc; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Ramella-Roman, J.C.; Prahl, S.A.; Jacques, S.L. Three Monte Carlo programs of polarized light transport into scattering media: Part I. Opt. Express 2005, 13, 4420–4438. [Google Scholar] [CrossRef]
- Hu, T.; Shen, F.; Wang, K.; Guo, K.; Liu, X.; Wang, F.; Peng, Z.; Cui, Y.; Sun, R.; Ding, Z.; et al. Broad-Band TransmiSSIon Characteristics of Polarizations in Foggy Environments. Atmosphere 2019, 10, 342. [Google Scholar] [CrossRef]
- Shen, F.; Zhang, M.; Guo, K.; Zhou, H.; Peng, Z.; Cui, Y.; Wang, F.; Gao, J.; Guo, Z. The depolarization performances of scattering systems based on the Indices of Polarimetric Purity (IPPs). Opt. Express 2019, 27, 28337–28349. [Google Scholar] [CrossRef]
- Shen, F.; Wang, K.; Tao, Q.; Xu, X.; Wu, R.; Guo, K.; Zhou, H.; Yin, Z.; Guo, Z. Polarization imaging performances based on different retrieving Mueller matrixes. Optik 2018, 153, 50–57. [Google Scholar] [CrossRef]
- Wang, C.; Gao, J.; Yao, T.; Wang, L.; Sun, Y.; Xie, Z.; Guo, Z. Acquiring reflective polarization from arbitrary multi-layer surface based on Monte Carlo simulation. Opt. Express 2016, 24, 9397–9411. [Google Scholar] [CrossRef]
- Xu, Q.; Guo, Z.; Tao, Q.; Jiao, W.; Qu, S.; Gao, J. A novel method of retrieving the polarization qubits after being transmitted in turbid media. J. Opt. 2015, 17, 35606. [Google Scholar] [CrossRef]
- Zhongyi, G.; Wang, X.; Li, D.; Wang, P.; Zhang, N.; Hu, T.; Zhang, M.; Gao, J. Advances on theory and application of polarization information propagation(Invited). Infrared Laser Eng. 2020, 49, 20201013. (In Chinese) [Google Scholar] [CrossRef]
- Xu, Q.; Guo, Z.; Tao, Q.; Jiao, W.; Qu, S.; Gao, J. Multi-spectral characteristics of polarization retrieve in various atmospheric conditions. Opt. Commun. 2015, 339, 167–170. [Google Scholar] [CrossRef]
- Tao, Q.; Guo, Z.; Xu, Q.; Jiao, W.; Wang, X.; Qu, S.; Gao, J. Retrieving the polarization information for satellite-to-ground light communication. J. Opt. 2015, 17, 85701. [Google Scholar] [CrossRef]
- Zhai, P.-W.; Kattawar, G.W.; Yang, P. Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method. Appl. Opt. 2008, 47, 1037–1047. [Google Scholar] [CrossRef]
- Xu, Q.; Guo, Z.; Tao, Q.; Jiao, W.; Wang, X.; Qu, S.; Gao, J. Transmitting characteristics of polarization information under seawater. Appl. Opt. 2015, 54, 6584–6588. [Google Scholar] [CrossRef]
- Tao, Q.; Sun, Y.; Shen, F.; Xu, Q.; Gao, J.; Guo, Z. Active imaging with the aids of polarization retrieve in turbid media system. Opt. Commun. 2016, 359, 405–410. [Google Scholar] [CrossRef]
- Lawless, R.; Xie, Y.; Yang, P.; Kattawar, G.W.; Laszlo, I. Polarization and effective Mueller matrix for multiple scattering of light by nonspherical ice crystals. Opt. Express 2006, 14, 6381–6393. [Google Scholar] [CrossRef]
- Shao, H.; He, Y.; Li, W.; Ma, H. Polarization-degree imaging contrast in turbid media: A quantitative study. Appl. Opt. 2006, 45, 4491–4496. [Google Scholar] [CrossRef]
- Zeng, G. Polarization difference ghost imaging. Appl. Opt. 2015, 54, 1279. [Google Scholar] [CrossRef]
- Breugnot, S. Modeling and performances of a polarization active imager at =806 nm. Opt. Eng. 2000, 39, 2681. [Google Scholar] [CrossRef]
- Chun, C.S.; Sadjadi, F.A. Polarimetric laser radar target claSSIfication. Opt. Lett. 2005, 30, 1806–1808. [Google Scholar] [CrossRef] [PubMed]
- Alouini, M.; Goudail, F.; Grisard, A.; Bourderionnet, J.; Dolfi, D.; Bénière, A.; Baarstad, I.; Løke, T.; Kaspersen, P.; Normandin, X.; et al. Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection. Appl. Opt. 2009, 48, 1610–1618. [Google Scholar] [CrossRef]
- Shi, D.; Hu, S.; Wang, Y. Polarimetric ghost imaging. Opt. Lett. 2014, 39, 1231. [Google Scholar] [CrossRef] [PubMed]
- Bucholtz, A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Opt. 1995, 34, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Deirmendjian, D. Electromagnetic Scattering on Spherical Polydispersions; Rand Corp: Santa Monica, CA, USA, 1969; p. 456. [Google Scholar]
- Elterman, L. Vertical-Attenuation Model with Eight Surface Meteorological Ranges 2 To 13 Kilometers; Air Force Cambridge Research Laboratories, Office of Aerospace Research: Bedford, MA, USA, 1970. [Google Scholar] [CrossRef]
- Volz, F.E. Infrared Refractive Index of Atmospheric Aerosol Substances. Appl. Opt. 1972, 11, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Raković, M.J.; Kattawar, G.W.; Mehrübeoğlu, M.; Cameron, B.D.; Wang, L.V.; Rastegar, S.; Coté, G.L.; Mehruűbeoğlu, M. Light backscattering polarization patterns from turbid media: Theory and experiment. Appl. Opt. 1999, 38, 3399. [Google Scholar] [CrossRef] [PubMed]
- Bartel, S.; Hielscher, A.H. Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media. Appl. Opt. 2000, 39, 1580–1588. [Google Scholar] [CrossRef]
- Yao, G.; Wang, L.V. Propagation of polarized light in turbid media: Simulated animation sequences. Opt. Express 2000, 7, 198–203. [Google Scholar] [CrossRef]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multi-scale structural similarity for image quality assessment. In Proceedings of the Thrity-seventh Asilmar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; pp. 1398–1402. [Google Scholar] [CrossRef]
Material | m22 | |
---|---|---|
Steel | 0.975 | 0.99 |
Marble | 0.385 | 0.35 |
Wood | 0.215 | 0.16 |
9–10 | 57.47 | 9.89 × 10–4 | 1.88 × 10–4 | 15.767 |
8–9 | 59.44 | 1.02 × 10–3 | 1.94 × 10–4 | 2.3103 |
7–8 | 58.84 | 1.03 × 10–3 | 1.95 × 10–4 | 1.1157 |
6–7 | 61.18 | 1.05 × 10–3 | 2.00 × 10–4 | 0.8926 |
5–6 | 76.62 | 1.31 × 10–3 | 2.48 × 10–4 | 0.6267 |
4–5 | 104.54/167.54 | 1.79 × 10–3/2.66 × 10–3 | 3.39 × 10–4/5.60 × 10–4 | 0.3466 |
3–4 | 172.40/461.15 | 2.87 × 10–3/7.29 × 10–3 | 5.45 × 10–4/1.36 × 10–3 | 0.1733 |
2–3 | 381.35/1259.05 | 6.18 × 10–3/2.00 × 10–2 | 1.17 × 10–3/3.80 × 10–3 | 0.1116 |
1–2 | 890.55/3737.01 | 1.45 × 10–2/5.46 × 10–2 | 2.75 × 10–3/1.04 × 10–2 | 0.0804 |
0–1 | 2036.01/9730.02 | 3.32 × 10–2/1.49 × 10–1 | 6.30 × 10–3/2.84 × 10–3 | 0.039 |
Figure 5 | |||||
---|---|---|---|---|---|
PSNR(dB) | (a) | 12.0078 | 11.6162 | 11.4507 | 10.4056 |
(b) | 48.0959 | 28.8340 | 18.8228 | 10.5011 | |
(c) | 48.1036 | 29.7893 | 21.6208 | 11.6163 | |
(d) | 71.4946 | 36.9868 | 26.2641 | 18.7648 | |
SSI | (a) | 0.7447 | 0.6948 | 0.6215 | 0.5819 |
(b) | 0.9956 | 0.9102 | 0.6234 | 0.4662 | |
(c) | 0.9966 | 0.9179 | 0.6930 | 0.5031 | |
(d) | 0.9989 | 0.9763 | 0.8602 | 0.7311 |
Figure 7 | 1d | 1.1d | 1.2d | 1.3d | 1.4d | 1.5d |
---|---|---|---|---|---|---|
PSNR (dB) | 71.4946 | 34.3927 | 27.4167 | 18.9408 | 10.1266 | 8.0694 |
SSI | 0.9989 | 0.9918 | 0.9739 | 0.8971 | 0.5491 | 0.3833 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Hu, T.; Li, D.; Guo, K.; Gao, J.; Guo, Z. Performances of Polarization-Retrieve Imaging in Stratified Dispersion Media. Remote Sens. 2020, 12, 2895. https://doi.org/10.3390/rs12182895
Wang X, Hu T, Li D, Guo K, Gao J, Guo Z. Performances of Polarization-Retrieve Imaging in Stratified Dispersion Media. Remote Sensing. 2020; 12(18):2895. https://doi.org/10.3390/rs12182895
Chicago/Turabian StyleWang, Xinyang, Tianwei Hu, Dekui Li, Kai Guo, Jun Gao, and Zhongyi Guo. 2020. "Performances of Polarization-Retrieve Imaging in Stratified Dispersion Media" Remote Sensing 12, no. 18: 2895. https://doi.org/10.3390/rs12182895
APA StyleWang, X., Hu, T., Li, D., Guo, K., Gao, J., & Guo, Z. (2020). Performances of Polarization-Retrieve Imaging in Stratified Dispersion Media. Remote Sensing, 12(18), 2895. https://doi.org/10.3390/rs12182895