Arctic Sea Level Budget Assessment during the GRACE/Argo Time Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Altimeter Data
2.2. Ocean Mass Change
2.3. Steric Height Estimates
2.4. Atmospheric Variables
2.5. Trend Analysis
3. Results
3.1. Altimeter Sea Level
3.2. Ocean Mass Change
3.3. Steric Sea Level Variability
3.4. Arctic Sea Level Budget Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013. In The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Horwath, M.; Novotny, K.; Cazenave, A.; Palanisamy, H.; Marzeion, B.; Paul, F.; Döll, P.; Cáceres, D.; Hogg, A.; Shepherd, A.; et al. ESA Climate Change Initiative (CCI) Sea Level Budget Closure (SLBC_cci) Executive Summary Report D4.4; Version 1.0; ESA: Rome, Italy, 2020. [Google Scholar]
- Von Schuckmann, K.; Palmer, M.D.; Trenberth, K.E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, A.S.; Loeb, N.; Mathieu, P.-P.; et al. Earth’s energy imbalance: An imperative for monitoring. Nat. Clim. Chang. 2016, 26, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Church, J.; Clark, P.; Cazenave, A.; Gregory, J.; Jevrejeva, S.; Levermann, A.; Merrifield, M.; Milne, G.; Nerem, R.; Nunn, P.; et al. Sea level change. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; PM Cambridge University Press: Cambridge, UK, 2013; pp. 1137–1216. [Google Scholar]
- WCRP Global Sea Level Budget Group. Global sea-level budget 1993–present. Earth Syst. Sci. Data 2018, 10, 1551–1590. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer. Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities Chapter 4: Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities’; IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Dieng, H.; Cazenave, A.; Meyssignac, B.; Ablain, M. New estimate of the current rate of sea level rise from a sea level budget approach. Geophys. Res. Lett. 2017, 44, 3744–3751. [Google Scholar] [CrossRef]
- Legeais, J.F.; Ablain, M.; Zawadzki, L.; Zuo, H.; Johannessen, J.A.; Scharffenberg, M.G.; Fenoglio-Marc, L.; Fernandes, M.J.; Andersen, O.B.; Rudenko, S.; et al. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst. Sci. Data 2018, 10, 281–301. [Google Scholar] [CrossRef] [Green Version]
- Frederikse, T.; Landerer, F.; Caron, L.; Adhikari, S.; Parkes, D.; Humphrey, V.W.; Dangendorf, S.; Hogarth, P.; Zanna, L.; Cheng, L.; et al. The causes of sea-level rise since 1900. Nature 2020, 584, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Stammer, D.; Cazenave, A.; Ponte, R.M.; Tamisiea, M.E. Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci. 2013, 5, 21–46. [Google Scholar] [CrossRef] [Green Version]
- Carret, A.; Johannessen, J.A.; Andersen, O.B.; Ablain, M.; Prandi, P.; Blazquez, A.; Cazenave, A. Arctic Sea Level During the Satellite Altimetry Era. Surv. Geophys. 2017, 38, 251–275. [Google Scholar] [CrossRef]
- Proshutinsky, A.; Ashik, I.M.; Dvorkin, E.N.; Häkkinen, S.; Krishfield, R.A.; Peltier, W.R. Secular sea level change in the Russian sector of the Arctic Ocean. J. Geophys. Res. Oceans 2004, 109, C03042. [Google Scholar] [CrossRef]
- Armitage, T.W.K.; Bacon, S.; Ridout, A.L.; Thomas, S.F.; Aksenov, Y.; Wingham, D.J. Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003–2014. J. Geophys. Res. Oceans 2016, 121, 4303–4322. [Google Scholar] [CrossRef] [Green Version]
- Rhein, M.; Rintoul, S.R.; Aoki, S.; Campos, E.; Chambers, D.; Feely, R.A.; Gulev, S.; Johnson, G.C.; Josey, S.A.; Kostianoy, A.; et al. Observations: Ocean; Climate Change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Stroeve, J.C.; Kattsov, V.; Barrett, A.; Serreze, M.; Pavlova, T.; Holland, M.; Meier, W.N. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 2012, 39, L16502. [Google Scholar] [CrossRef] [Green Version]
- Proshutinsky, A.; Dukhovskoy, D.; Timmermans, M.L.; Krishfield, R.; Bamber, J.L. Arctic circulation regimes. Philos. Trans. R. Soc. A 2015, 373, 20140610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedesco, M.; Doherty, S.; Fettweis, X.; Alexander, P.; Jeyaratnam, J.; Stroeve, J. The darkening of the Greenland ice sheet: Trends, drivers and projections (1981–2100). Cryosphere 2016, 10, 477–496. [Google Scholar] [CrossRef] [Green Version]
- Fritz, M.; Vonk, J.; Lantuit, H. Collapsing Arctic coastlines. Nat. Clim. Chang. 2017, 7, 6–7. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.M.; Arp, C.D.; Jorgenson, M.T.; Hinkel, K.M.; Schmutz, J.A.; Flint, P.L. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 2009, 36, L03503. [Google Scholar] [CrossRef]
- Rose, S.K.; Andersen, O.B.; Passaro, M.; Ludwigsen, C.A.; Schwatke, C. Arctic Ocean Sea Level Record from the Complete Radar Altimetry Era: 1991–2018. Remote Sens. 2019, 11, 1672. [Google Scholar] [CrossRef] [Green Version]
- Passaro, M.; Rose, S.; Andersen, O.; Boergens, E.; Calafat, F.; Dettmering, D.; Benveniste, J. ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters. Remote Sens. Environ. 2018, 211, 456–471. [Google Scholar] [CrossRef] [Green Version]
- Andersen, O.B.; Piccioni, G. Recent Arctic Sea Level Variations from Satellites. Frontiers in Marine Science 2016, 3, 76. [Google Scholar] [CrossRef] [Green Version]
- Johannessen, J.; Andersen, O. The High Latitudes and Polar Ocean; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Ludwigsen, C.A.; Andersen, O.B. Contributions to Arctic sea level from 2003 to 2015. Adv. Space Res. 2019, in press. [Google Scholar] [CrossRef]
- Cheng, Y.; Andersen, O.B. Multimission empirical ocean tide modeling for shallow waters and polar seas. J. Geophys. Res. Oceans 2011, 116, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Andersen, O.B.; Knudsen, P. An Improved 20-Year Arctic Ocean Altimetric Sea Level Data Record. Mar. Geod. 2015, 38, 146–162. [Google Scholar] [CrossRef]
- Prandi, P.; Ablain, M.; Cazenave, A.; Picot, N. A New Estimation of Mean Sea Level in the Arctic Ocean from Satellite Altimetry. Mar. Geod. 2012, 35, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef] [Green Version]
- Raj, R.P. Surface velocity estimates of the North Indian Ocean from satellite gravity and altimeter missions. Int. J. Remote Sens. 2017, 38, 296–313. [Google Scholar] [CrossRef]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Luthcke, S.B.; Sabaka, T.J.; Loomis, B.D.; Arendt, A.A.; McCarthy, J.J.; Camp, J. Antarctica, Greenland and Gulf of Alaska land ice evolution from an iterated GRACE global mascon solution. J. Glaciol. 2013, 59, 613–631. [Google Scholar] [CrossRef]
- Kvas, A.; Behzadpour, S.; Ellmer, M.; Klinger, B.; Strasser, S.; Zehentner, N.; Mayer-Gürr, T. ITSG-Grace2018: Overview and evaluation of a new GRACE-only gravity field time series. J. Geophys. Res. Solid Earth 2019, 124, 9332–9344. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth 2008, 113, B08410. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.K.; Ries, J.C. The unexpected signal in GRACE estimates of C20. J. Geod. 2017, 91, 897–914. [Google Scholar] [CrossRef]
- Cheng, M.K.; Tapley, B.D.; Ries, J.C. Deceleration in the Earth’s oblateness. J. Geophys. Res. 2013, V118, 1–8. [Google Scholar] [CrossRef]
- Wahr, J.; Nerem, R.S.; Bettadpur, S.V. The pole tide and its effect on GRACE time-variable gravity measurements: Implications for estimates of surface mass variations. JGR Solid Earth 2015, 120, 4597–4615. [Google Scholar] [CrossRef]
- Flechtner, F.; Dobslaw, H.; Fagiolini, E. AOD1B Product Description Document for Product Release 05, GRACE 327-750 (GR-GFZ-AOD-0001), GFZ German Research Centre for Geosciences; Department 1: Geodesy and Remote Sensing; GFZ: Potsdam, Germany, 2014. [Google Scholar]
- Dobslaw, H.; Bergmann-Wolf, I.; Dill, R.; Poropat, L.; Thomas, M.; Dahle, C.; Esselborn, S.; König, R.; Flechtner, F. A New High-Resolution Model of Non-Tidal Atmosphere and Ocean Mass Variability for De-Aliasing of Satellite Gravity Observations: AOD1B RL06. Geophys. J. Int. 2017, 211, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Geruo, A.; Wahr, J.; Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int. 2013, 192, 557–572. [Google Scholar]
- Peltier, W.R.; Argus, D.F.; Drummond, R. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model: Global Glacial Isostatic Adjustment. J. Geophys. Res. Solid Earth 2015, 120, 450–487. [Google Scholar] [CrossRef] [Green Version]
- Caron, L.; Ivins, E.R.; Larour, E.; Adhikari, S.; Nilsson, J.; Blewitt, G. GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science. Geophys. Res. Lett. 2018, 45, 2203–2212. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Johnson, G.C.; Chambers, D.P. Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications. J. Geophys. Res. Oceans 2013, 118, 4228–4240. [Google Scholar] [CrossRef]
- Good, S.A.; Martin, M.J.; Rayner, N.A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 2013, 118, 6704–6716. [Google Scholar] [CrossRef]
- Richter, K.; Maus, S. Interannual variability in the hydrography of the Norwegian Atlantic Current: Frontal versus advective response to atmospheric forcing. J. Geophys. Res. 2011, 116, C12031. [Google Scholar] [CrossRef]
- Gill, A.E.; Niiler, P.P. The theory of the seasonal variability in the ocean. Deep Sea Res. 1973, 20, 141–177. [Google Scholar] [CrossRef]
- Jackett, D.R.; McDougall, T.J.; Feistel, R.; Daniel, W.G.; Griffies, S.M. Algorithms for density, potential temperature, Conservative Temperature, and the freezing temperature of seawater. J. Atmos. Ocean. Technol. 2006, 23, 1709–1728. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst. 2010, 79, 231–244. [Google Scholar] [CrossRef]
- Thompson, D.W.; Wallace, J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Haine, T.W.N.; Curry, B.; Gerdes, R.; Hansen, E.; Karcher, M.; Lee, C.; Rudels, B.; Spreen, G.; de Steur, L.; Stewart, K.D.; et al. Arctic freshwater export: Status, mechanisms, and prospects. Glob. Planet. Chang. 2015, 125, 13–35. [Google Scholar] [CrossRef] [Green Version]
- Raj, R.P.; Chafik, L.; Nilsen, J.E.Ø.; Eldevik, T.; Halo, I. The Lofoten Vortex of the Nordic Seas. Deep-Sea Res. Part I Oceanogr. Res. Pap. 2015, 96, 1–14. [Google Scholar] [CrossRef]
- Proshutinsky, A.; Bourke, R.H.; McLaughlin, F.A. The role of the Beaufort Gyre in Arctic climate variability: Seasonal to decadal climate scales. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef] [Green Version]
- Walczowski, W.; Piechura, J. Influence of the West Spitsbergen Current on the local climate. Int. J. Climatol. 2011, 31, 1088–1093. [Google Scholar] [CrossRef]
- Wu, A.; Hsieh, W.W.; Shabbar, A.; Boer, G.J.; Zwiers, F.W. The nonlinear association between the Arctic Oscillation and North American winter climate. Clim. Dyn. 2006, 26, 865–879. [Google Scholar] [CrossRef]
- Mork, K.A.; Skagseth, Ø.; Søiland, H. Recent Warming and Freshening of the Norwegian Sea Observed by Argo Data. J. Clim. 2019, 32, 3695–3705. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Steele, M.; Runciman, K.; Dewey, S.; Morison, J.; Craig, L.; Rainville, L.; Cole, S.; Krishfield, R.; Timmermans, M.-L.; et al. The Beaufort Gyre intensification and stabilization: A model-observation synthesis. J. Geophys. Res. Oceans 2016, 121, 7933–7952. [Google Scholar] [CrossRef] [Green Version]
- Regan, H.; Lique, C.; Talandier, C.; Meneghello, G. Response of Total and Eddy Kinetic Energy to the Recent Spinup of the Beaufort Gyre. J. Phys. Oceanogr. 2020, 50, 575–594. [Google Scholar] [CrossRef]
- Proshutinsky, A.; Krishfield, R.; Barber, D. Preface to special section on Beaufort Gyre climate system exploration studies: Documenting key parameters to understand environmental variability. J. Geophys. Res. Oceans 2009, 114, C00A08. [Google Scholar] [CrossRef] [Green Version]
- Morison, J.; Kwok, R.; Peralta-Ferriz, C.; Alkire, M.; Rigor, I.; Andersen, R.; Steele, M. Changing Arctic Ocean freshwater pathways. Nature 2012, 481, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Giles, K.A.; Laxon, S.W.; Ridout, A.L.; Wingham, D.J.; Bacon, S. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat. Geosci. 2012, 5, 194–197. [Google Scholar] [CrossRef]
- Munk, W. Ocean freshening, sea level rising. Science 2003, 300, 2041–2043. [Google Scholar] [CrossRef]
- Llovel, W.; Purkey, S.; Meyssignac, B.; Blazquez, A.; Kolodziejczyk, N.; Bamber, J. Global ocean freshening, ocean mass increase and global mean sea level rise over 2005–2015. Sci. Rep. 2019, 9, 17717. [Google Scholar] [CrossRef]
- Richter, K.; Nilsen, J.E.; Raj, R.P.; Bethke, I.; Johannessen, J.A.; Slangen, A.B.; Marzeion, B. Northern North Atlantic sea level in CMIP5 climate models evaluation of mean state, variability and trends against altimetric observations. J. Clim. 2017, 30, 9383–9398. [Google Scholar] [CrossRef]
- Dickson, R.R.; Osborn, T.J.; Hurrell, J.W.; Meincke, J.; Blindheim, J.; Adlandsvik, B.; Vinje, T.; Alekseev, G.; Maslowski, W. The Arctic Ocean Response to the North Atlantic Oscillation. J. Clim. 2000, 13, 2671–2696. [Google Scholar] [CrossRef]
- Raj, R.P.; Chatterjee, S.; Bertino, L.; Turiel, A.; Portabella, M. The Arctic Front and its variability in the Norwegian Sea. Ocean Sci. 2019, 15, 1729–1744. [Google Scholar] [CrossRef] [Green Version]
- Gregory, J.M.; Griffies, S.M.; Hughes, C.W.; Lowe, J.A.; Church, J.A.; Fukimori, I.; Gomez, N.; Kopp, R.E.; Landerer, F.; Cozannet, G.; et al. Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. Surv. Geophys. 2019, 40, 1251–1289. [Google Scholar] [CrossRef] [Green Version]
- Johannessen, J.A.; Raj, R.P.; Nilsen, J.E.Ø.; Pripp, T.; Knudsen, P.; Counillon, F.; Stammer, D.; Bertino, L.; Andersen, O.B.; Serra, N.; et al. Toward improved estimation of the dynamic topography and ocean circulation in the high latitude and Arctic Ocean: The importance of GOCE. Surv. Geophys. 2014, 35, 661–679. [Google Scholar] [CrossRef]
- Raj, R.P.; Nilsen, J.E.Ø.; Johannessen, J.A.; Furevik, T.; Andersen, O.B.; Bertino, L. Quantifying Atlantic Water transport to the Nordic Seas by remote sensing. Remote Sens. Environ. 2018, 216, 758–769. [Google Scholar] [CrossRef]
- Chafik, L.; Nilsson, J.; Skagseth, Ø.; Lundberg, P. On the flow of Atlantic water and temperature anomalies in the Nordic Seas toward the Arctic Ocean. J. Geophys. Res. Oceans 2015, 120, 7897–7918. [Google Scholar] [CrossRef]
- Chafik, L.; Nilsen, J.E.Ø.; Dangendorf, S. Impact of North Atlantic Teleconnection Patterns on Northern European Sea Level. J. Mar. Sci. Eng. 2017, 5, 43. [Google Scholar] [CrossRef] [Green Version]
- Bingham, R.J.; Hughes, C.W. Local diagnostics to estimate density-induced sea level variations over topography and along coastlines. J. Geophys. Res. 2012, 117, C01013. [Google Scholar] [CrossRef] [Green Version]
- Richter, K.; Riva, R.E.M.; Drange, H. Impact of self-attraction and loading effects induced by shelf mass loading on projected regional sea level rise. Geophys. Res. Lett. 2013, 40, 1144–1148. [Google Scholar] [CrossRef]
- Raj, R.P.; Johannessen, J.A. Sea State CCI User Consultation Meeting; Ifremer: Brest, France, 2019. [Google Scholar]
- Melet, A.; Meyssignac, B.; Almar, R.; Le Cozannet, G. Under-estimated wave contribution to coastal sea-level rise. Nat. Clim. Chang. 2018, 8, 234–239. [Google Scholar] [CrossRef]
- Groh, A.; Horwath, M. The method of tailored sensitivity kernels for GRACE mass change estimates. Geophys. Res. Abstr. 2016, 18, EGU2016-12065. [Google Scholar]
- Kwok, R.; Morison, J. Sea surface height and dynamic topography of the ice-covered oceans from CryoSat-2: 2011–2014. J. Geophys. Res. Oceans 2015, 121, 674–692. [Google Scholar] [CrossRef]
- Clark, J.A.; Lingle, C.S. Future sea level changes due to West Antarctic ice sheet fluctuations. Nature 1977, 269, 206–209. [Google Scholar] [CrossRef]
- Mitrovica, J.; Tamisiea, M.; Davis, J.; Milne, G. Recent mass balance of polar ice sheets inferred from patterns of global sea level change. Nature 2001, 409, 1026–1029. [Google Scholar] [CrossRef] [PubMed]
Trend (mm/yr) | 2003–2009 | 2010–2016 |
---|---|---|
SLA | 1.0 | 4.0 |
Steric + Ocean Mass | 4.2 | 5.0 |
Residual trend | −3.2 | −1.0 |
Trend (mm/yr) | 2003–2009 | 2010–2016 |
---|---|---|
SLA | −2.8 | 9.7 |
Steric + Ocean Mass trend (mm/yr) | 1.8 | 8.8 |
Residual trend (mm/yr) | −3.0 | 0.9 |
Trend (mm/yr) | 2003–2009 | 2010–2016 |
---|---|---|
SLA | 9.7 | 2.4 |
Steric + Ocean Mass change | 19.7 | 6.0 |
Residual | −10.0 | −3.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raj, R.P.; Andersen, O.B.; Johannessen, J.A.; Gutknecht, B.D.; Chatterjee, S.; Rose, S.K.; Bonaduce, A.; Horwath, M.; Ranndal, H.; Richter, K.; et al. Arctic Sea Level Budget Assessment during the GRACE/Argo Time Period. Remote Sens. 2020, 12, 2837. https://doi.org/10.3390/rs12172837
Raj RP, Andersen OB, Johannessen JA, Gutknecht BD, Chatterjee S, Rose SK, Bonaduce A, Horwath M, Ranndal H, Richter K, et al. Arctic Sea Level Budget Assessment during the GRACE/Argo Time Period. Remote Sensing. 2020; 12(17):2837. https://doi.org/10.3390/rs12172837
Chicago/Turabian StyleRaj, Roshin P., Ole B. Andersen, Johnny A. Johannessen, Benjamin D. Gutknecht, Sourav Chatterjee, Stine K. Rose, Antonio Bonaduce, Martin Horwath, Heidi Ranndal, Kristin Richter, and et al. 2020. "Arctic Sea Level Budget Assessment during the GRACE/Argo Time Period" Remote Sensing 12, no. 17: 2837. https://doi.org/10.3390/rs12172837