Estimating Land Surface Temperature from Satellite Passive Microwave Observations with the Traditional Neural Network, Deep Belief Network, and Convolutional Neural Network
Abstract
:1. Introduction
2. Datasets
2.1. AMSR-E and AMSR2 Data
2.2. MODIS Land Surface Products
2.3. Reanalysis and Assimilation Datasets
2.4. In-Situ Measurements
2.5. Other Datasets
3. Methodology
3.1. Neural Networks
3.2. Determination of Inputs for the Networks
3.3. Extraction of the Samples
3.4. Implementation of the Networks
4. Results
4.1. Performances of the Different Neural Networks
4.2. Determination of the Best Input Parameter Combinations
4.3. Validation Based on In-Situ LST
4.4. Intercomparison with GlobTemperature AMSR-E LST and LPDR Air Temperature
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhou, J.; Gottsche, F.M.; Zhan, W.; Liu, S.; Cao, R. A Method Based on Temporal Component Decomposition for Estimating 1-km All-Weather Land Surface Temperature by Merging Satellite Thermal Infrared and Passive Microwave Observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4670–4691. [Google Scholar] [CrossRef]
- Chen, Y.; Zhan, W.; Quan, J.; Zhou, J.; Zhu, X.; Sun, H. Disaggregation of Remotely Sensed Land Surface Temperature: A Generalized Paradigm. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5952–5965. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, A.R.; Rokugawa, S.; Hook, S.J.; Matsunaga, T.; Kahle, A.B. Temperature/Emissivity Separation Algorithm Theoretical Basis Document, Version 2.4; ATBD Contract NAS5-31372; NASA: Washington, DC, USA, 1999. [Google Scholar]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Martin, M.; Ghent, D.; Pires, A.; Göttsche, F.M.; Cermak, J.; Remedios, J. Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Data Sets over Multiple Stations and Years. Remote Sens. 2019, 11, 479. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Chen, X.; Chen, W.; Su, Y.; Li, D. A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over Southern China during the strong snow disaster of 2008. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 140–151. [Google Scholar] [CrossRef]
- Prigent, C.; Jimenez, C.; Aires, F. Toward “all weather,” long record, and real-time land surface temperature retrievals from microwave satellite observations: Microwave land surface temperature. J. Geophys. Res. Atmos. 2016, 121, 5699–5717. [Google Scholar] [CrossRef]
- Martins, J.P.A.; Trigo, I.F.; Ghilain, N.; Jimenez, C.; Göttsche, F.M.; Ermida, S.L.; Olesen, F.S.; Gellens-Meulenberghs, F.; Arboleda, A. An All-Weather Land Surface Temperature Product Based on MSG/SEVIRI Observations. Remote Sens. 2019, 11, 3044. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Dai, F.; Zhang, X.; Zhao, S.; Li, M. Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 35–50. [Google Scholar] [CrossRef]
- Huang, C.; Duan, S.B.; Jiang, X.G.; Han, X.J.; Leng, P.; Gao, M.F.; Li, Z.L. A physically based algorithm for retrieving land surface temperature under cloudy conditions from AMSR2 passive microwave measurements. Int. J. Remote Sens. 2019, 40, 1828–1843. [Google Scholar] [CrossRef]
- McFarland, M.J.; Miller, R.L.; Neale, C.M.U. Land surface temperature derived from the SSM/I passive microwave brightness temperatures. IEEE Trans. Geosci. Remote Sens. 1990, 28, 839–845. [Google Scholar] [CrossRef]
- Holmes, T.R.H.; De Jeu, R.A.M.; Owe, M.; Dolman, A.J. Land surface temperature from Ka band (37 GHz) passive microwave observations. J. Geophys. Res. 2009, 114, D04113. [Google Scholar] [CrossRef] [Green Version]
- Fily, M. A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas. Remote Sens. Environ. 2003, 85, 328–338. [Google Scholar] [CrossRef]
- Gao, H.; Fu, R.; Dickinson, R.E.; Juarez, R.I.N. A Practical Method for Retrieving Land Surface Temperature from AMSR-E Over the Amazon Forest. IEEE Trans. Geosci. Remote Sens. 2008, 46, 193–199. [Google Scholar] [CrossRef]
- Royer, A.; Poirier, S. Surface temperature spatial and temporal variations in North America from homogenized satellite SMMR-SSM/I microwave measurements and reanalysis for 1979–2008. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Zhao, T.J.; Zhang, L.X.; Shi, J.C.; Jiang, L.M. A physically based statistical methodology for surface soil moisture retrieval in the Tibet Plateau using microwave vegetation indices. J. Geophys. Res. 2011, 116, D08116. [Google Scholar] [CrossRef]
- André, C.; Ottlé, C.; Royer, A.; Maignan, F. Land surface temperature retrieval over circumpolar Arctic using SSM/I–SSMIS and MODIS data. Remote Sens. Environ. 2015, 162, 1–10. [Google Scholar] [CrossRef]
- Weng, F.; Grody, N.C. Physical retrieval of land surface temperature using the special sensor microwave imager. J. Geophys. Res. Atmos. 1998, 103, 8839–8848. [Google Scholar] [CrossRef]
- Aires, F.; Prigent, C.; Bernardo, F.; Jiménez, C.; Saunders, R.; Brunel, P. A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction. Q. J. R. Meteorol. Soc. 2011, 137, 690–699. [Google Scholar] [CrossRef] [Green Version]
- Galantowicz, J.F.; Moncet, J.L.; Liang, P.; Lipton, A.E.; Uymin, G.; Prigent, C.; Grassotti, C. Subsurface emission effects in AMSR-E measurements: Implications for land surface microwave emissivity retrieval. J. Geophys. Res. 2011, 116, D17105. [Google Scholar] [CrossRef]
- Prigent, C.; Rossow, W.B.; Matthews, E.; Marticorena, B. Microwave radiometric signatures of different surface types in deserts. J. Geophys. Res. Atmos. 1999, 104, 12147–12158. [Google Scholar] [CrossRef] [Green Version]
- Aires, F.; Prigent, C.; Rossow, W.B.; Rothstein, M. A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations. J. Geophys. Res. Atmos. 2001, 106, 14887–14907. [Google Scholar] [CrossRef]
- Jiménez, C.; Prigent, C.; Ermida, S.L.; Moncet, J.L. Inversion of AMSR-E observations for land surface temperature estimation: 1. Methodology and evaluation with station temperature: AMSR-E LAND SURFACE TEMPERATURE. J. Geophys. Res. Atmos. 2017, 122, 3330–3347. [Google Scholar] [CrossRef]
- Ermida, S.L.; Jiménez, C.; Prigent, C.; Trigo, I.F.; DaCamara, C.C. Inversion of AMSR-E observations for land surface temperature estimation: 2. Global comparison with infrared satellite temperature: AMSR-E LAND SURFACE TEMPERATURE. J. Geophys. Res. Atmos. 2017, 122, 3348–3360. [Google Scholar] [CrossRef]
- Moncet, J.L.; Liang, P.; Galantowicz, J.F.; Lipton, A.E.; Uymin, G.; Prigent, C.; Grassotti, C. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control. Available online: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JD015429 (accessed on 1 July 2019).
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Li, H.; Ma, Y.; Wang, J.; Zhang, Y.; Xu, Z.; Xu, T.; Song, L.; Yang, X.; et al. Intercomparison of Six Upscaling Evapotranspiration Methods: From Site to the Satellite Pixel. J. Geophys. Res. Atmos. 2018, 123, 6777–6803. [Google Scholar] [CrossRef]
- Shen, H.; Jiang, Y.; Li, T.; Cheng, Q.; Zeng, C.; Zhang, L. Deep learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data. Remote Sens. Environ. 2020, 240, 111692. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Hang, R.; Liu, Y.; Liu, Q. Comparing the Performance of Neural Network and Deep Convolutional Neural Network in Estimating Soil Moisture from Satellite Observations. Remote Sens. 2018, 10, 1327. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; NourEldeen, N.; Mao, K.; Shi, J.; Li, Z.; Xu, T.; Yuan, Z. Deep Learning Convolutional Neural Network for the Retrieval of Land Surface Temperature from AMSR2 Data in China. Sensors 2019, 19, 2987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, M.; Asanjan, A.A.; Faridzad, M.; Nguyen, P.; Hsu, K.; Sorooshian, S.; Braithwaite, D. PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks. J. Hydrometeorol. 2019, 20, 2273–2289. [Google Scholar] [CrossRef]
- Prakash, S.; Norouzi, H.; Azarderakhsh, M.; Blake, R.; Tesfagiorgis, K. Global Land Surface Emissivity Estimation from AMSR2 Observations. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1270–1274. [Google Scholar] [CrossRef]
- Prakash, S.; Norouzi, H.; Azarderakhsh, M.; Blake, R.; Prigent, C.; Khanbilvardi, R. Estimation of Consistent Global Microwave Land Surface Emissivity from AMSR-E and AMSR2 Observations. J. Appl. Meteorol. Climatol. 2018, 57, 907–919. [Google Scholar] [CrossRef]
- Zhou, J.; Liang, S.; Cheng, J.; Wang, Y.; Ma, J. The GLASS Land Surface Temperature Product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 493–507. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Dong, W. EOL Data Archive—CAMP: Tongyu (Inner Mongolia) Surface Meteorology and Radiation Data Set. Available online: https://data.eol.ucar.edu/dataset/76.141 (accessed on 13 May 2020).
- Liu, S.M.; Xu, Z.W.; Zhu, Z.L.; Jia, Z.Z.; Zhu, M.J. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol. 2013, 487, 24–38. [Google Scholar] [CrossRef]
- Liu, S.M.; Xu, Z.W.; Wang, W.Z.; Jia, Z.Z.; Zhu, M.J.; Bai, J.; Wang, J.M. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 2011, 15, 1291–1306. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe Watershed Allied Telemetry Experimental Research (Hiwater). Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone J. 2018, 17. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, J.; Göttsche, F.M.; Long, Z.; Ma, J.; Luo, R. Investigation and validation of algorithms for estimating land surface temperature from Sentinel-3 SLSTR data. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102136. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, S.; Li, X.; Shi, S.; Wang, J.; Zhu, Z.; Xu, T.; Wang, W.; Ma, M. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. J. Geophys. Res. Atmos. 2013, 118, 13140–13157. [Google Scholar] [CrossRef]
- Liang, S.L. Quantitative Remote Sensing of Land Surfaces; John Wiley & Sons: Hoboken, NJ, USA, 2004; p. 388. [Google Scholar]
- Pearson, R.K. Outliers in process modeling and identification. IEEE Trans. Control Syst. Technol. 2002, 10, 55–63. [Google Scholar] [CrossRef]
- Göttsche, F.M.; Olesen, F.S.; Trigo, I.F.; Bork-Unkelbach, A.; Martin, M.A. Long term validation of land surface temperature retrieved from MSG/SEVIRI with continuous in-situ measurements in Africa. Remote Sens. 2016, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Jones, L.A.; Kimball, J.S. Daily Global Land Surface Parameters Derived from AMSR-E and AMSR2, Version 2; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Du, J.; Kimball, J.S.; Jones, L.A.; Kim, Y.; Glassy, J.; Watts, J.D. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations. Earth Syst. Sci. Data 2017, 9, 791–808. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.A.; Ferguson, C.R.; Kimball, J.S.; Zhang, K.; Chan, S.T.K.; McDonald, K.C.; Njoku, E.G.; Wood, E.F. Satellite Microwave Remote Sensing of Daily Land Surface Air Temperature Minima and Maxima From AMSR-E. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 111–123. [Google Scholar] [CrossRef]
- Jones, L.A.; Kimball, J.S.; McDonald, K.C.; Chan, S.T.K.; Njoku, E.G.; Oechel, W.C. Satellite Microwave Remote Sensing of Boreal and Arctic Soil Temperatures From AMSR-E. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2004–2018. [Google Scholar] [CrossRef]
- Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. arXiv 2015, arXiv:14126806 Cs. [Google Scholar]
- Zheng, D.; Wang, X.; van der Velde, R.; Ferrazzoli, P.; Wen, J.; Wang, Z.; Schwank, M.; Colliander, A.; Bindlish, R.; Su, Z. Impact of surface roughness, vegetation opacity and soil permittivity on L-band microwave emission and soil moisture retrieval in the third pole environment. Remote Sens. Environ. 2018, 209, 633–647. [Google Scholar] [CrossRef]
- Zhan, W.; Zhou, J.; Ju, W.; Li, M.; Sandholt, I.; Voogt, J.; Yu, C. Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model. Remote Sens. Environ. 2014, 143, 1–14. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Zhan, W.; Göttsche, F.M.; Liu, S.; Olesen, F.S.; Hu, W.; Dai, F. A thermal sampling depth correction method for land surface temperature estimation from satellite passive microwave observation over barren land. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4743–4756. [Google Scholar] [CrossRef]
- Foody, G.M. Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens. Environ. 2009, 113, 1658–1663. [Google Scholar] [CrossRef] [Green Version]
- de Beurs, K.M.; Henebry, G.M.; Owsley, B.C.; Sokolik, I. Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001–2013. Remote Sens. Environ. 2015, 170, 48–61. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, T.; Shi, J.; Hu, T.; Roy, A.; Qiu, Y.; Lu, H. Parameterization of the freeze/thaw discriminant function algorithm using dense in-situ observation network data. Int. J. Digit. Earth 2019, 12, 980–994. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, L.; Zhang, Y.; Jiang, L. Microwave emission of soil freezing and thawing observed by a truck-mounted microwave radiometer. Int. J. Remote Sens. 2012, 33, 860–871. [Google Scholar] [CrossRef]
- Cordisco, E.; Prigent, C.; Aires, F. Snow characterization at a global scale with passive microwave satellite observations. J. Geophys. Res. 2006, 111, D19102. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Li, X.; Huang, C.; Liu, S.; Ma, Y.; Chen, H. Representativeness errors of point-scale ground-based solar radiation measurements in the validation of remote sensing products. Remote Sens. Environ. 2016, 181, 198–206. [Google Scholar] [CrossRef]
Station | Longitude | Latitude | Instrument | Surface Type at Station | IGBP Class Percentin MW Pixel * | Period of Measurement | Interval of Measurement (min) | |||
---|---|---|---|---|---|---|---|---|---|---|
Model | Elevation (m) | Height (m) | Diameter of FOV (m) | |||||||
CBS | 128.10°E | 42.40°N | Kipp & Zonen CNR1 | 736 | 6 | 44.78 | Deciduous broadleaf forest | Deciduous broadleafforest: 62.1% Mixed Forests: 29.3% Woody Savannas: 4.4% Grasslands: 0.8% Croplands: 1.1% Urban and Built-up Lands: 2.3% | January 2003–December 2005 | 30 |
TYU | 122.87°E | 44.42°N | Kipp & Zonen CG4 | 184 | 3 | 22.39 | Cropland | Grasslands: 91.6% Croplands: 8.4% | January 2003–December 2004 | 30 |
DXI | 116.43°E | 39.62°N | Kipp & Zonen CNR1 | 20 | 28 | 208.99 | Cropland | Grasslands: 0.8% Croplands: 67.9% Urban and Built-up Lands: 31.3% | January 2009–December 2010 | 10 |
SDQ | 101.14°E | 42.00°N | Kipp & Zonen CNR4 | 873 | 10 | 74.63 | Tamarix | Grasslands: 66.8% Barren: 33.2% | January 2015–December 2016 | 10 |
HMO | 100.99°E | 42.11°N | Kipp & Zonen CNR1 | 1054 | 6 | 44.78 | Desert | Barren: 100% | May 2015–December 2016 | 10 |
Group | Sensor | Condition | Sample Size | ||
---|---|---|---|---|---|
Training Set | Validation Set | Test Set | |||
Group I | AMSR-E | Daytime | 399,351 | 450,171 | 420,655 |
Group II | AMSR-E | Nighttime | 170,144 | 262,803 | 315,708 |
Group III | AMSR2 | Daytime | 1,057,257 | 589,205 | 832,588 |
Group IV | AMSR2 | Nighttime | 570,848 | 400,695 | 448,753 |
Group | Set | NN | DBN | CNN | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MBD (K) | RMSD (K) | R2 | MBD (K) | RMSD (K) | R2 | MBD (K) | RMSD (K) | R2 | ||
Group I (Daytime AMSR-E) | Training | −0.04 | 2.77 | 0.97 | −0.06 | 3.28 | 0.96 | 0.04 | 2.50 | 0.98 |
Validation | −0.03 | 2.99 | 0.97 | −0.03 | 3.34 | 0.96 | 0.08 | 2.88 | 0.97 | |
Test | 0.04 | 3.11 | 0.97 | −0.07 | 3.38 | 0.96 | 0.13 | 3.00 | 0.97 | |
Group II (Nighttime AMSR-E) | Training | −0.09 | 1.56 | 0.98 | −0.05 | 2.03 | 0.96 | −0.01 | 1.32 | 0.98 |
Validation | 0.08 | 1.81 | 0.97 | 0.01 | 2.10 | 0.96 | 0.12 | 1.66 | 0.98 | |
Test | 0.13 | 1.83 | 0.97 | 0.03 | 2.20 | 0.96 | 0.19 | 1.74 | 0.97 | |
Group III (Daytime AMSR2) | Training | 0.12 | 3.12 | 0.97 | −0.03 | 3.46 | 0.96 | 0.01 | 2.90 | 0.97 |
Validation | −0.03 | 3.32 | 0.96 | −0.14 | 3.55 | 0.95 | −0.12 | 3.22 | 0.96 | |
Test | 0.05 | 3.62 | 0.96 | −0.21 | 3.83 | 0.95 | −0.08 | 3.48 | 0.96 | |
Group IV (Nighttime AMSR2) | Training | −0.06 | 1.85 | 0.98 | 0.01 | 2.12 | 0.98 | −0.07 | 1.70 | 0.98 |
Validation | 0.23 | 2.12 | 0.97 | 0.37 | 2.34 | 0.96 | 0.22 | 2.02 | 0.97 | |
Test | −0.13 | 2.19 | 0.97 | −0.01 | 2.38 | 0.96 | −0.06 | 2.10 | 0.97 |
Set | Group I | Group II | Group III | Group IV | ||||
---|---|---|---|---|---|---|---|---|
T1 − T2 ≤ −0.1 K | T1 − T2 ≥ 0.1 K | T1 − T2 ≤ −0.1 K | T1 − T2 ≥ 0.1 K | T1 − T2 ≤ −0.1 K | T1 − T2 ≥ 0.1 K | T1 − T2 ≤ −0.1 K | T1 − T2 ≥ 0.1 K | |
Training set | 0.35 | <0.01 | 0.31 | <0.01 | <0.01 | 0.86 | <0.01 | <0.01 |
Validation set | 0.58 | <0.01 | 0.03 | <0.01 | <0.01 | 0.41 | <0.01 | <0.01 |
Test set | 0.35 | <0.01 | 0.04 | <0.01 | <0.01 | 0.90 | 0.16 | <0.01 |
Combination | BTs | Surface Parameters | Atmospheric Related Parameters | DOY | Number of Parameters | |||
---|---|---|---|---|---|---|---|---|
NDVI | LCTP | SM* and SC | AT-2m | TPWV | ||||
C0 | √ | √ | √ | √ | √ | √ | √ | 38 (40) |
C1 | √ | √ | √ | × | √ | √ | √ | 33 (35) |
C2 | √ | √ | × | × | √ | √ | √ | 16 (18) |
C3 | √ | × | √ | × | √ | √ | √ | 32 (34) |
C4 | √ | × | × | × | √ | √ | √ | 15 (17) |
C5 | √ | √ | √ | √ | √ | × | √ | 37 (39) |
C6 | √ | √ | √ | √ | × | √ | √ | 37 (39) |
C7 | √ | √ | √ | √ | × | × | √ | 36 (38) |
C8 | √ | √ | √ | √ | √ | √ | × | 37 (39) |
C9 | √ | √ | √ | × | √ | × | √ | 32 (34) |
C10 | √ | √ | × | × | √ | × | √ | 15 (17) |
C11 | √ | × | √ | × | √ | × | √ | 31 (33) |
C12 | √ | × | × | × | √ | × | √ | 14 (16) |
C13 | √ | × | × | × | √ | × | × | 13 (15) |
C14 | √ | × | × | × | × | × | × | 12 (14) |
ΔRMSD < −0.5 K | −0.5 K ≤ ΔRMSD ≤ 0.5 K | ΔRMSD > 0.5 | |
---|---|---|---|
Daytime | 47.7% | 29.4% | 22.9% |
Nighttime | 52.3% | 29.1% | 18.6% |
Station | Daytime | Nighttime | ||||||
---|---|---|---|---|---|---|---|---|
MBEGtoMW | MBECNN | STDGtoMW | STDCNN | MBEGtoMW | MBECNN | STDGtoMW | STDCNN | |
CBS | 0.77 | 0.75 | 2.72 | 1.96 | −3.29 | −3.06 | 1.43 | 1.76 |
TYU | 0.32 | −0.45 | 3.27 | 3.43 | −0.09 | −0.31 | 2.64 | 2.96 |
DXI | 2.70 | 1.95 | 2.47 | 2.28 | −2.06 | −2.84 | 1.27 | 1.91 |
SDQ | 4.19 | 3.64 | 3.45 | 2.99 | −0.61 | 1.84 | 1.55 | 3.64 |
HMO | 3.67 | 4.03 | 3.05 | 3.50 | 0.14 | −0.32 | 1.47 | 2.62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhou, J.; Lei, T.; Wu, H.; Zhang, X.; Ma, J.; Zhong, H. Estimating Land Surface Temperature from Satellite Passive Microwave Observations with the Traditional Neural Network, Deep Belief Network, and Convolutional Neural Network. Remote Sens. 2020, 12, 2691. https://doi.org/10.3390/rs12172691
Wang S, Zhou J, Lei T, Wu H, Zhang X, Ma J, Zhong H. Estimating Land Surface Temperature from Satellite Passive Microwave Observations with the Traditional Neural Network, Deep Belief Network, and Convolutional Neural Network. Remote Sensing. 2020; 12(17):2691. https://doi.org/10.3390/rs12172691
Chicago/Turabian StyleWang, Shaofei, Ji Zhou, Tianjie Lei, Hua Wu, Xiaodong Zhang, Jin Ma, and Hailing Zhong. 2020. "Estimating Land Surface Temperature from Satellite Passive Microwave Observations with the Traditional Neural Network, Deep Belief Network, and Convolutional Neural Network" Remote Sensing 12, no. 17: 2691. https://doi.org/10.3390/rs12172691
APA StyleWang, S., Zhou, J., Lei, T., Wu, H., Zhang, X., Ma, J., & Zhong, H. (2020). Estimating Land Surface Temperature from Satellite Passive Microwave Observations with the Traditional Neural Network, Deep Belief Network, and Convolutional Neural Network. Remote Sensing, 12(17), 2691. https://doi.org/10.3390/rs12172691