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Abstract: Soil moisture (SM) plays an important role in hydrological cycle and weather forecasting.
Satellite provides the only viable approach to regularly observe large-scale SM dynamics.
Conventionally, SM is estimated from satellite observations based on the radiative transfer theory.
Recent studies have demonstrated that the neural network (NN) method can retrieve SM with
comparable accuracy as conventional methods. Here, we are interested in whether the NN model
with more complex structures, namely deep convolutional neural network (DCNN), can bring
about further improvement in SM retrievals when compared with the NN model used in recent
studies. To achieve this objective, the same input data are used for the DCNN and NN
models, including L-band Soil Moisture and Ocean Salinity (SMOS) brightness temperature (TB),
C-band Advanced Scatterometer (ASCAT) backscattering coefficients, Moderate Resolution Imaging
Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and soil temperature.
The target SM used to train the DCNN and NN models is the European Center for Medium-range
Weather Forecasts Re-Analysis Interim (ERA-Interim) product. The experiment consists of two
phases: the learning phase from 1 January to 31 December 2015 and the testing phase from 1 January
to 31 December 2016. In the learning phase, we train the DCNN and NN models using the
ERA-Interim SM. When evaluation between DCNN and NN against in situ measurements in the
testing phase, we find that the temporal correlations between DCNN SM and in situ measurements
are higher than those between NN SM and in situ measurements by 6.2% and 2.5% on ascending
and descending orbits, respectively. In addition, from the perspective of temporal and spatial
dynamics, the simulated SM values by DCNN/NN and the ERA-Interim SM agree relatively well at
a global scale. Results suggest that both NN and DCNN models are effective in estimating SM from
satellite observations, and DCNN can achieve slightly better performance than NN.

Keywords: soli moisture retrieval; neural network; deep convolutional neural network

1. Introduction

Soil moisture (SM) is an essential climate variable [1] and one of the most important drivers
of the hydrological cycle, as it governs the redistribution of precipitation between infiltration and
runoff [2]. It is also a key variable in better understanding of the land–atmosphere interactions [3].
Additionally, due to the soil characteristics and water content, events such as rainstorms can lead to
floods or landslides. Having accurate and timely SM data will give better weather forecasts and better
predictions of hazardous events [4].

Remote Sens. 2018, 10, 1327; doi:10.3390/rs10091327 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-0972-2264
https://orcid.org/0000-0002-8161-1780
http://www.mdpi.com/2072-4292/10/9/1327?type=check_update&version=1
http://dx.doi.org/10.3390/rs10091327
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1327 2 of 18

SM data can be obtained from in situ measurements and satellite observations. In situ
measurements provide accurate SM information and enable frequent acquisitions of data each day,
but only for individually discrete locations. Satellite observations can acquire the large-scale SM
dynamics at reasonable temporal intervals. Microwave observations have proven to be one of the most
promising remote sensing approaches to monitor SM at the global scale [5–7].

As an exclusively designed satellite, Soil Moisture and Ocean Salinity (SMOS) has been widely
used for SM retrieval [8–10]. The operational SMOS SM retrieval algorithm is based on a forward
model [11]. It firstly uses the radiation transfer equation to simulate brightness temperature (TB).
Then, the estimated SM values are obtained using an iterative method to minimize the difference
between the simulated TB and the observed one by SMOS satellite. This model is considered to be
local and time-consuming as each new observation needs a minimization process [12].

Different from the forward model, the inverse model provides another avenue to retrieve SM.
Among various inverse models, neural network (NN) is a commonly used one. The NN method
is a fully-connected feedforward model, which can be trained to learn the relationship between the
satellite observations and the target SM values. To train the NN model, many works attempted to use
the in situ measurements as the target data [2,10,13,14]. However, it is difficult to train an effective
model that can be applied to the global SM retrieval when using a few in situ measurements as the
target data. Thus, some works chose the simulated values by the radiative transfer model [15] or the
estimated ones by the global land surface model [16,17] as the target data to train NN. In [12,18,19],
NN was trained to describe the link between the satellite observations and the target SM values come
from the Medium-range Weather Forecasts (ECMWF) model.

As an extension of NN, deep learning, especially a deep convolutional neural network (DCNN),
has attracted increasing attention in the field of remote sensing recently [20,21]. The goal of
deep learning is to automatically construct the complex relationship from input to output in
a hierarchical manner. Though the DCNN method is promising, it has not been applied in estimating
SM from satellite observations. To our knowledge, it is the first attempt to retrieve SM from satellite
observations using a DCNN method. The objective of this study is to investigate whether the DCNN
can bring about improvement in SM retrievals when compared with the NN method used in recent
studies. If so, our second objective is to further identify the advantages and weakness of DCNN and
NN methods in retrieving SM from satellite observations.

2. Datasets

In this section, we describe the data sets used in this paper in detail, including SMOS
observations, Advanced Scatterometer (ASCAT) backscattering coefficients, Moderate Resolution
Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI), ECMWF data
and in situ SM measurements.

2.1. SMOS Data

The SMOS mission is a joint European Space Agency, National Centre for Space Studies, and
Centro para el Desarrollo Tecnologico Industrial program that was launched on 2 November 2009 [11].
The SMOS satellite carries interferometric radiometer that operates at L-band (1.4 GHz). It generates
records of TB over incidence angles from 0◦ to 65◦ with a spatial resolution in the range of 30–50 km [4].
The multi-angular TB is binned in incidence angle bins and the average width of incidence angle
bins is 5◦. The SMOS satellite flies in a sun-synchronous orbit and its time of equator overpass is
6:00 a.m. (ascending node) and 6:00 p.m. (descending node).

The SMOS Level 3 (SMOSL3) gridded multi-angular TB data from both ascending and descending
overpasses are provided by Centre Aval de Traitement des Données SMOS (CATDS) in France.
SMOSL3 TB product provides multi-angular TB data set in a 0.25◦ Equal Area Scalable Earth (EASE)
grid [22]. Consistent with the work in [12], the SMOSL3 TB data in both horizontal and vertical
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polarizations with incidence angles ranging from 20◦ to 60◦ is used. In addition, ascending and
descending orbits data are processed separately.

In addition, the probability of having a radio frequency interferences (RFI) at each grid point
provided by CATDS is also used because the RFI might perturb SMOS mission in certain areas of the
world [23]. Following the work in [24], grid points with a cumulative RFI probability higher than 20%
are filtered during data preprocessing.

2.2. ASCAT Data

ASCAT is a real aperture radar operating at 5.255 GHz (C-band) on board EUMETSAT’s
Meteorological Operational (MetOp) satellite [25]. It measures on both sides of the subsatellite
track, producing two swaths of surface radar backscatter data with good radiometric accuracy and
stability [26]. The incidence angles of ASCAT range from 25◦ to 65◦ with a spatial resolution of
25 km. The MetOp satellite also runs in a sun-synchronous orbit, but its equator overpass time is
approximately 9:30 p.m. (ascending overpass) and 9:30 a.m. (descending overpass).

ASCAT is an active microwaves sensor and has already been used to retrieve SM [26,27].
Here, we use ASCAT backscattering coefficients as auxiliary data. Before using the ASCAT data,
the backscattering coefficients are needed to be normalized to a standard incidence angle. Motivated
by the processing chain of the European remote sensing satellite and ASCAT SM products in [28],
we choose the middle of the observed incidence angle 40◦ as the standard incidence angle. According to
previous studies [26,29], the relationship between backscatter and incidence angle is linear over a large
range of angles. As a result, we use linear regression to obtain the standard backscattering coefficients
at the incidence angle of 40◦. Since the backscattering coefficients can be measured several times per
day, we compute a daily average value.

2.3. MODIS NDVI

NDVI is related to SM in many ecosystems. Paloscia et al. [30] acquired different accuracies with
or without using NDVI for SM retrieval. They found that NDVI information can improve the retrieval
performances. Accordingly, we use the MODIS NDVI product MYD13C1 in this paper. The MYD13C1
is provided as a Level 3 product projected on a 0.05◦ geographic Climate Modeling Grid (CMG). Since
the SMOSL3 TB data are set in a 0.25◦ EASE grid, we use a nearest-neighbor interpolation method to
change the 0.05◦ CMG grid to the 0.25◦ EASE grid.

2.4. ECMWF Data

The European Center for Medium-range Weather Forecasts Re-Analysis Interim (ERA-Interim)
product from ECMWF public datasets web is used here. It is a global atmospheric reanalysis from 1979,
continuously updated in real time [31]. It is produced by a data assimilation system based on
a 2006 release of the ECMWF Integrated Forecasting System. As discussed in [32–34], the Tiled
ECMWF Scheme for Surface Exchanges over Land (TESSEL) land-surface model is used for the
ERA-Interim model. Specifically, the ERA-Interim model uses the TESSEL [35,36] scheme to evolve
the thermal and water storage in the four layers of soil and snow during the forecast. The volumetric
water content in the first layer of soil is used as the target SM values, hereafter is referred to as
ERA-interim SM. Note that, for a good match for the training, the ERA-interim SM with a resolution of
0.25◦ × 0.25◦ is selected. In addition, the simulated SM values from the ERA-interim product can be
acquired four times (12:00 a.m., 6:00 a.m., 12:00 p.m., 6:00 p.m.) a day. In order to be consistent with
the time of SMOS acquisitions, ERA-Interim SMs at the time of 6:00 a.m. and 6:00 p.m. are selected. In
addition, the soil temperature and snow depth in the first layer of soil are also used to filter out the
regions with frozen soils or snow.
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2.5. In Situ SM Measurements

In situ SM measurements from Soil Climate Analysis Network (SCAN) are used to assess the
performance of SM retrieval results. The SCAN provided by the U.S. Department of Agriculture,
Natural Resources Conservation Service contains 232 stations. Each station measures SM every half
hour. In order to be consistent with the time of SMOS acquisitions, in situ measurements of SM from
SCAN sites at the time of 6:00 a.m. and 6:00 p.m. are collected, separately. In addition, the depths of
SM measurements obtained by SM sensors vary from 0.02 m to 2.03 m [37]. Here, we use the in situ
SM measurements in the 0–5 cm depth range, which is consistent with that of ERA-Interim SM [38].

3. Methodology

The goal of SM retrieval is to estimate SM values when given satellite observations. From the
machine learning point of view, this process can be considered as a regression problem, which usually
consists of two phases: the learning phase and the testing phase. In the learning phase, we need
to collect the collocated input and output data to construct a training set. We put SMOSL3 TB
data, ASCAT backscattering coefficients, MODIS NDVI and soil temperature together to generate
a 19-dimensional input vector for each grid all over the globe, where the first 16 inputs correspond
to SMOSL3 TB values in both horizontal and vertical polarizations with incidence angles ranging
from 20◦ to 60◦ (the centers of angle bins are 22.5◦, 27.5◦, 32.5◦, 37.5◦, 42.5◦, 47.5◦, 52.5◦, 57.5◦

respectively), and the other three inputs are the average backscattering coefficient at the incidence
angle 40◦, the MODIS NDVI product MYD13C1, as well as the soil temperature in the first layer of soil;
meanwhile, we use the ERA-Interim SM as the 1-dimensional output value. This training set is used to
train the regression model to learn the fitting coefficients. In the testing phase, the trained model is
used to predict/estimate the SM value once given input data.

3.1. Neural Network

As one of the most widely used regression models in the field of machine learning, NN has been
successfully applied to SM retrieval [12,19,39]. Figure 1 shows an example of NN. It consists of three
layers: the input layer, the hidden layer, and the output layer. The numbers of nodes in each layer are
respectively set as 19, 10 and 1. Here, we choose 10 nodes in the hidden layer empirically because it
can achieve satisfying retrieval results.

Figure 1. The architecture of the NN model.

Assume that the input vector is x, then the output h of the hidden layer can be described as:

h = σ(w1x + b1), (1)

where w1 is the weight between the input node and the hidden node, b1 is the bias and σ is the
nonlinear activation function. Similarly, the estimated SM ŷ of the output layer is:

ŷ = σ(w2h + b2), (2)
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where w2 is the weight between the hidden node and the output node, and b2 is the bias. Without loss
of generality, we also use sigmoid function as the activation function:

σ(x) =
1

1 + e−x . (3)

In the learning phase, NN aims to minimize the loss function between the estimated SM ŷ and
the corresponding ERA-Interim product y. This can be addressed by a classical back-propagation
algorithm [40,41]. In this paper, we use the gradient backpropagation with the Levenberg–Marquardt
algorithm [42]. In addition, we use the Min-Max normalization method to scale all data into the
range [0,1] because it can avoid unnecessary numerical problems and make the network converge
quickly. It is realized by the following:

dnorm =
d− dmin

dmax − dmin
, (4)

where d is the original input data, dmax is the maximum value of the original input data, dmin is the
minimum value of the original input data, and dnorm is the normalized value of d.

In the predicting phase, we can feed the given data to the input layer of NN, and acquire the output
of the hidden layer, which is then used as an input of the output layer to get the estimated SM value.

3.2. Deep Convolutional Neural Network

Different from NN, deep NN (DNN) extends the number of hidden layers to two or more, thus
improving the learning and generalization abilities of networks. As a kind of DNN, DCNN has been
popularly employed in the field of remote sensing [43–45]. Inspired from them, we also design a DCNN
for SM retrieval. The architecture of the designed network is shown in Figure 2, which consists of
an input layer, three convolutional layers, one fully-connected layer, and an output layer. The same
as NN, the input data of DCNN is also a 19-dimensional vector. Thus, we use a one-dimensional
convolutional operator in each convolutional layer. The size and the number of convolutional kernel
are 1× 5 and 12, respectively. We select three convolutional layers because it can achieve better results
than more numbers of convolutional layers, which will be discussed in Section 4.3.

Figure 2. The architecture of the DCNN model.

The core module of DCNN is the convolutional operator. For example, the (l + 1)-th layer output
after the convolutional operator can be written as:

xl+1 = φ(xl ∗ wl+1 + bl+1), (5)

where ‘∗′ is the convolutional operator, xl+1 is the output of the (l + 1)-th layer, xl is the input of the
(l + 1)-th layer, wl+1 is the filter weight in the (l + 1)-th layer, and bl+1 is the bias in the (l + 1)-th layer.
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Different from NN, DCNN often uses Rectified Linear Units (ReLU) as the activation function φ, which
can be defined as:

φ(x) = max(0, x). (6)

After the last convolutional layer, the feature maps are fed into the next layer via
a fully-connected operator. The output h of the fully-connected layer can be described as:

h = φ(x ∗ w1 + b1), (7)

where w1 is the weight between the last convolutional layer and fully-connected layer, b1 is the bias.
After the fully-connected layer, the estimated SM ŷ in the output layer can be obtained by:

ŷ = φ(w2h + b2), (8)

where w2 is the weight between the the fully-connected layer and the output layer, b2 is the bias.
Note that the parameter optimization process of DCNN is the same as NN.

4. Experiments

In this section, we introduce the experimental settings, data preprocessing and hyperparameters
selection of DCNN, and then compare the performance of DCNN model with the NN model.

4.1. Experimental Settings

As shown in Figure 3, our experiment consists of two phases: the learning phase from 1 January
to 31 December 2015 and the testing phase from 1 January to 31 December 2016. In the learning
phase, preprocessing is first conducted, and then hyperparameters are selected. After the training,
SM estimates are obtained from NN and DCNN methods, respectively, and we compare their
performance against ERA-Interim SM. In the testing phase, the trained models obtained from learning
phases are applied to the testing data, and then we evaluate the retrieval quality of DCNN and NN by
comparing with both in situ measurements and ERA-Interim SM. The evaluation against ERA-Interim
SM also contains two parts, at the grid cells where the in situ stations are located and at a global scale.

(a) (b)

Figure 3. Flow chart of experiments. (a) learning phase; (b) testing phase.



Remote Sens. 2018, 10, 1327 7 of 18

Without loss of generality, we use three standard evaluation metrics: the Pearson’s correlation
coefficient R to evaluate the goodness of fit, the bias (mean retrieved SM minus mean target SM) BIAS
and the root mean square error RMSE to evaluate the accuracy of the estimations:

R =
∑n

i=1(ŷi − ŷi)(yi − yi)

∑n
i=1(ŷi − ŷi)2 ∑n

i=1(yi − yi)2
, (9)

BIAS =
∑n

i=1(ŷi − yi)

n
, (10)

RMSE =

√
∑n

i=1(ŷi − yi)2

n
, (11)

where ŷi and yi are the retrieved SM value and the target SM value, respectively. n is the number of all
retrieved SM values.

4.2. Data Preprocessing

Consistent with the work in [12,18], we conduct data filtering before training, for example,
removing grids that might be affected by water bodies, frozen soil, RFI, etc. For the whole data set,
grid cells with a latitude higher than 75◦ or lower than −60◦ are filtered out. Grid cells with frozen soil
whose soil temperature is lower than 273.15 K or covered by snow are also filtered out. Grid cells with
TB lower than 50 K or higher than 400 K are also filtered out. Additionally, SM values are very low and
its uncertainties are possibly high in some regions, such as the Sahara desert. Grid cells corresponding
to these areas are also removed for the whole data set. For the ECMWF data, grid points with SM
values above 0.5 m3/m3 are filtered out because those grid points are highly possible to be water
bodies or wet soil. More importantly, grid cells corresponding to the SCAN sites are also removed
from this subset because they will be used to perform independent tests.

In summary, we collect a total of ∼6 × 106 data from 1 January 2015 to 31 December 2016,
which includes SMOSL3 TB for incidence angles from 20◦ to 60◦, ASCAT backscattering coefficients,
MODIS NDVI, soil temperature and ERA-Interim SM. From this data set, data (about 3× 106) from
1 January to 31 December 2015 are used to train models. The rest ones (about 3 × 106) from 1 January
to 31 December 2016 are used to test the retrieval performance.

4.3. Hyperparameter Selection

A hyperparameter is a parameter that sets a value before a learning process, rather than the
parameter obtained through learning process. For the DCNN model, there are four important
hyperparameters need to be fixed, including the learning rate α, the size of batch ω, the size of
filter 1× c and the number of convolutional layers l. We choose them from the following candidate
sets: α ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1}, ω ∈ {20, 50, 100, 200}, c ∈ {4, 5, 6, 7}, l ∈ {2, 3, 4, 5}.

To show the effects of c on the retrieval performance, we fix other parameters and select c from
{4, 5, 6, 7}. It is interesting to see that, as c increases, R first increases and then decreases when c
exceeds 5 in Figure 4c. In contrast, RMSE first decreases and then increases in Figure 4d. Therefore,
the optimal size of filter is 1× 5.

Similarly, the optimal number of convolutional layers l = 3 can be obtained from Figure 4e,f.
Afterwards, we continue to train the DCNN model on the training data with the above
hyperparameters, and then we will obtain the trained model of DCNN.
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Figure 4. Effects of four hyperparameters on the retrieval performance on the same training data set.
(a) R values achieved by applying different batch sizes and learning rates; (b) RMSE values achieved
by applying different batch sizes and learning rates; (c) R values achieved by applying different sizes
of filters; (d) RMSE values achieved by applying different sizes of filters; (e) R values achieved by
applying different numbers of convolutional layers; (f) RMSE values achieved by applying different
numbers of convolutional layers.

4.4. Performance Comparison

Our comparison analysis focuses on the testing phase, i.e., data from 1 January to
31 December 2016. We apply the trained DCNN/NN models to the testing data, and then compare the
SM retrievals against both in situ measurements and the ERA-Interim SM.

First, we make a full validation against the in situ measurements from SCAN. In general,
we compute the temporal correlation between different SM retrievals (DCNN SM, NN SM and
ERA-Interim SM) and the in situ measurements in the testing phase. Here, the temporal correlation
is the Pearson correlation coefficient of time series for each site. Specifically, we collect in situ SM
measurements and the closest EASE grid cell of different SM retrievals at the time of SMOS overpasses
to generate time series for each site. Note that only time series of different SM retrievals and the in
situ measurements for each site are all available that can be used to compute the temporal correlation.
During the experiment, we totally use 197 time series of the SCAN sites to evaluate the retrieval quality
of DCNN/NN SM and ERA-Interim SM. For each site, R, BIAS and RMSE values between different
SM retrievals and in situ measurements are computed. The min, mean, median and max values of the
above metrics are recorded. Furthermore, we also compute R, BIAS, RMSE between DCNN/NN SM
and ERA-Interim SM over the grid cells where sites from SCAN are located.

Secondly, we evaluate DCNN/NN SM against ERA-Interim SM from the perspective of
temporal dynamics. In order to validate whether DCNN and NN capture the temporal variability of
the ERA-Interim SM, we compute R, BIAS and RMSE between the time series of DCNN/NN SM and
ERA-Interim SM for each gird at a global scale.
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Thirdly, we evaluate DCNN/NN SM against ERA-Interim SM from the perspective of spatial
distribution. In order to validate whether NN and DCNN capture the spatial characteristics of
ERA-Interim SM, we also compute the R, BIAS and RMSE between global SM maps at the annual and
monthly time scale. Note that the global SM maps are transformed into 1D vectors before computing
spatial correlation.

5. Results

5.1. Comparison against In Situ Measurements

When compared with in situ measurements, we compute the temporal correlation between
different SM retrievals (DCNN SM, NN SM and ERA-Interim SM) and the in situ measurements in
the testing phase. It is found that DCNN SM agrees better with in situ measurements than NN SM
(Table 1). The mean value of R between DCNN SM and in situ measurements is higher than that
between NN SM and in situ measurements by 6.2% for SMOS ascending overpass, while the mean
value of R between DCNN SM and in situ measurements is higher than that between NN SM and
in situ measurements by 2.5% for SMOS descending overpass (Table 1). Furthermore, box plots in
Figure 5a show that the median values (the red line) of R between DCNN SM and in situ measurements
are also slightly higher than those between NN SM and in situ measurements. Figure 5b,c demonstrate
similar findings as Figure 5 from the other evaluation metrics BIAS and RMSE.

In addition, significance tests are conducted between the temporal correlation of DCNN SM and
that of NN SM. According to the p-value (p < 0.05) obtained by the significance test method, there is
a statistically significant difference between the R value of DCNN SM and NN SM. In summary,
the comparison against in situ measurements shows the good performance of DCNN/NN SM,
and DCNN SM gives better results than NN SM. In addition, the performance of DCNN/NN SM
retrievals for ascending overpass is generally better than the descending overpass. This may be caused
by the convective rainfall that usually takes place in the afternoon.

Table 1. The min, mean, median and max values of R, BIAS, RMSE between the time series of
DCNN/NN SM and ERA-Interim SM against in situ measurements from SCAN sites in the testing
phase during 1 January to 31 December 2016. Data from ascending and descending orbits are
processed separately.

ASCENDING Orbit DESCENDING Orbit

DCNN SM NN SM ERA-Interim SM DCNN SM NN SM ERA-Interim SM

R

MIN 0.117 0.111 0.102 0.109 0.103 0.107
MEAN 0.564 0.531 0.556 0.530 0.517 0.562

MEDIAN 0.593 0.548 0.567 0.544 0.500 0.573
MAX 0.966 0.947 0.955 0.953 0.955 0.967

BIAS

MIN 0.000 0.009 0.000 0.000 0.001 0.002
MEAN 0.036 0.097 0.035 0.037 0.107 0.040

MEDIAN 0.033 0.096 0.028 0.030 0.111 0.034
MAX 0.129 0.211 0.128 0.115 0.238 0.120

RMSE

MIN 0.035 0.067 0.033 0.025 0.065 0.019
MEAN 0.099 0.140 0.098 0.102 0.156 0.102

MEDIAN 0.098 0.138 0.097 0.101 0.154 0.101
MAX 0.168 0.229 0.180 0.185 0.263 0.183
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Figure 5. Box plots for (a) Pearson correlation coefficient, (b) BIAS and (c) RMSE between DCNN
SM/NN SM/ERA-Interim SM time series and the in situ measurements. The blue boxes contain the
middle 50% of the data, and the red line represents the median value of the distribution. The upper
edge of the box indicates the 75th percentile of the data (Q3), and the lower edge indicates the 25th
percentile (Q1). The mean values are also shown as black crosses. The upper and lower bars represent
the minimum and maximum values of the distribution excluding outliers. Points are considered as
outliers if they are larger than Q3 + 1.5 × IQR or smaller than Q1−1.5 × IQR, where inter quartile
range (IQR) means Q3−Q1.

5.2. Temporal Correlation

Table 2 shows R, BIAS, RMSE values between DCNN/NN SM and ERA-Interim SM over the
grid cells where sites from SCAN are located in the testing phase. It is found that the mean values of
RMSE between DCNN SM and ERA-Interim SM are lower than that between NN SM and ERA-Interim
SM by 67.6% and 69.7% for ascending and descending overpass, respectively. It is also found that
the mean values of BIAS between DCNN SM and ERA-Interim SM are lower than that between NN
SM and ERA-Interim SM by 88.9% and 90.4% for ascending and descending overpass, respectively.
Additionally, the mean value of R between the time series of DCNN SM and ERA-Interim SM is higher
than that between NN SM and in situ measurements by 0.027 for ascending overpass, and the mean
values of R between the time series of DCNN SM and ERA-Interim SM is higher than that between
NN SM and in situ measurements by 0.05 for descending overpass.

Table 2. The min, mean, median and max values of R, BIAS, RMSE between DCNN/NN
SM and ERA-Interim SM in the testing phase. Data from ascending and descending orbits are
processed separately.

ASCENDING Orbit DESCENDING Orbit

DCNN SM NN SM DCNN SM NN SM

R

MIN 0.635 0.606 0.573 0.515
MEAN 0.663 0.636 0.600 0.550

MEDIAN 0.672 0.644 0.599 0.550
MAX 0.682 0.656 0.617 0.565

BIAS

MIN 0.009 0.090 0.000 0.102
MEAN 0.010 0.090 0.010 0.104

MEDIAN 0.011 0.094 0.011 0.104
MAX 0.011 0.096 0.022 0.106

RMSE

MIN 0.035 0.108 0.035 0.119
MEAN 0.036 0.111 0.037 0.122

MEDIAN 0.036 0.111 0.037 0.122
MAX 0.037 0.112 0.038 0.124

Furthermore, the SM estimates from DCNN and NN models in the testing period are compared
with ERA-Interim SM at a global scale (Table 3). It is found that the mean values of RMSE between
DCNN SM and ERA-Interim SM are lower than that between NN SM and ERA-Interim SM by 81.9%
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and 79.6% for ascending and descending overpass, respectively. It is also found that the mean values of
BIAS between DCNN SM and ERA-Interim SM are lower than that between NN SM and ERA-Interim
SM by 92.4% and 89.4% for ascending and descending overpass, respectively. The aforementioned
findings indicate that BIAS and RMSE can be improved by using DCNN when compared with
the ERA-Interim SM at a global scale. In addition, the mean values of R between DCNN SM and
ERA-Interim SM are higher than that between NN SM and ERA-Interim SM by 0.006 and 0.01 for
ascending and descending overpass respectively, which shows that DCNN can keep better temporal
variability of ERA-Interim than NN.

Table 3. Temporal correlation between DCNN/NN SM and ERA-Interim SM in testing phase.
Data from ascending and descending orbits are processed separately.

ASCENDING Orbit DESCENDING Orbit

DCNN SM NN SM DCNN SM NN SM

R 0.576 0.570 0.568 0.558
BIAS 0.014 0.184 0.019 0.180
RMSE 0.036 0.199 0.040 0.196

Figure 6 demonstrates the spatial distributions of R, BIAS and RMSE between DCNN/NN SM
and ERA-Interim SM. From Figure 6a,b, we can see that most regions have high positive correlations,
especially over western North America, eastern South America, central Asia, southern Africa and
southern Australia, while some regions, e.g., northern Africa and northern Australia, have relatively
low positive correlations. In addition, from the difference of R between DCNN SM and NN SM
in Figure 6c, it is found that DCNN achieves slightly better performance than NN in some regions,
such as western North America, eastern South America, central Asia and Australia. It is also observed
in Figure 7 that these regions have relative longer time series than other regions.
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Figure 6. Spatial distribution of R (the top panels), BIAS (the middle panels), RMSE (the bottom panels)
between the time series of DCNN/NN SM and ERA-Interim SM for SMOS ascending overpass in the
testing phase. (a) R between DCNN SM and ERA-Interim SM; (b) R between NN SM and ERA-Interim
SM; (c) difference in R (a minus b); (d) BIAS between DCNNM SM and ERA-Interim SM; (e) BIAS
between NN SM and ERA-Interim SM; (f) difference in BIAS (|d|minus |e|); (g) RMSE between DCNN
SM and ERA-Interim SM; (h) RMSE between NN SM and ERA-Interim SM; (i) difference in RMSE (g
minus h).
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Comparing Figure 6d,e, we can see that bias between DCNN/NN SM and ERA-Interim SM are
different over the same region. The bias between DCNN SM and ERA-Interim SM in most regions
ranges from −0.10 to 0.05 (in rust red), whereas the bias between NN SM and ERA-Interim SM in most
regions ranges from −0.30 to 0.10 (in blue). In addition, from the difference of absolute BIAS between
DCNN SM and NN SM in Figure 6f, it is observed that the bias between DCNN SM and ERA-Interim
SM is smaller than that between NN SM and ERA-Interim SM.

As clearly shown in Figure 6g,h, the values of RMSE between DCNN/NN SM and ERA-Interim
SM are small. The values of RMSE between DCNN SM and ERA-Interim SM are relatively smaller
than that between NN SM and ERA-Interim (Figure 6i), which indicates that DCNN is more effective
in retrieving SM.
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Figure 7. Numbers of training samples for each grid for SMOS ascending overpass in the training phase.

Additionally, according to the previous study in [12], there are some connection between the
temporal correlation and the variance of the time series for the target data. From Figures 6a,b and 8,
we find that regions with a lower temporal correlation are those areas whose variance of ERA-Interim
SM time series are relatively low, while regions with a higher temporal correlation are those regions
whose variance of ERA-Interim SM time series are relatively high.
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Figure 8. Spatial distribution for variance of the time series for ERA-Interim SM for ascending overpass
in the testing phase.

5.3. Spatial Correlation

Table 4 lists spatial correlation between DCNN/NN SM and ERA-Interim SM. It can be observed
that the BIAS and RMSE values between DCNN SM and ERA-Interim SM are similar to those
between NN SM and ERA-Interim, but R values between DCNN SM and ERA-Interim SM are slightly
higher than those between NN SM and ERA-Interim SM. Figure 9 shows the spatial distribution of
yearly average DCNN SM, NN SM and ERA-Interim SM for ascending overpass in the testing phase.
From a global point of view, we can observe that DCNN and NN can achieve similar results to
ERA-Interim, which indicates the effectiveness of DCNN and NN retrieval methods. From a local
point of view, we can see that DCNN can achieve a little better result than NN when compared to
ERA-Interim, especially in western North America and eastern South America.
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Table 4. Spatial correlation between DCNN/NN SM and ERA-interim SM in testing phase from
1 January to 31 December 2016. Data from ascending and descending orbits are processed separately.

ASCENDING Orbit DESCENDING Orbit

DCNN SM NN SM DCNN SM NN SM

R 0.927 0.924 0.926 0.922
BIAS 0.006 0.006 0.009 0.009
RMSE 0.043 0.043 0.045 0.048
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Figure 9. Spatial distribution of the yearly average SM values by DCNN and NN and the corresponding
ERA-Interim SM for ascending overpass in testing phase from 1 January to 31 December 2016. (a) yearly
average DCNN SM; (b) yearly average NN SM; (c) yearly average ERA-Interim SM.

Although similar spatial correlations between DCNN/NN SM and ERA-interim SM is found at the
annual scale, their agreements vary in different months shown in Figure 10. First, the number of data
used in each month is different. Specifically, the data in January, February, November, December are
apparently fewer than those in other months. Second, DCNN achieves better retrieval results than NN
in February, May, September, October, November and December; NN achieves better retrieval results
in January, July and August; DCNN and NN achieve similar results in March, April, and June.

In summary, DCNN and NN obtain similar retrieval results as compared to ERA-interim
SM, while DCNN SM is closer to ERA-interim SM than NN SM at a global scale. In addition,
DCNN achieves better or comparable retrieval results than NN in most times of the year 2016, which
suggests that the retrieval performance of DCNN is slightly better than that of NN.
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DCNN versus ERA-Interim
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ŷ=1.111*y–0.059

de
ns

ity

10

20

30

40

50

60

August 2016
R=0.917 RMSE=0.048

ERA-Interim SM (y)
0 0.1 0.2 0.3 0.4 0.5

D
C
N
N

S
M

(ŷ
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ŷ=0.944*y+0.024

de
ns

ity

10

20

30

40

50

60

May 2016
R=0.929 RMSE=0.042

ERA-Interim SM (y)
0 0.1 0.2 0.3 0.4 0.5

D
C
N
N

S
M

(ŷ
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ŷ=y
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Figure 10. Scatter plot in density of the retrieved SM by DCNN versus ERA-Interim SM (the first and
third column) and NN versus ERA-Interim SM (the second and fourth column) when SMOS ascending
overpass in the testing phase. The solid line represents the ideal retrieval results, while the dashed line
represents the regression.
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6. Discussion

DCNN has been widely used in the field of image recognition, speech recognition and computer
vision fields [46–48], where it can achieve better performance than the traditional NN model.
Recently, it has also been introduced to remote sensing data analysis, such as remote sensing scene
classification [43–45] and object detection [49–51]. However, its superiority has not been explored in
SM retrieval. In this paper, we attempt using it to estimate SM from satellite observations and compare
its performance with NN.

The experimental results show that the temporal and spatial correlations between NN (DCNN)
SM and ERA-Interim SM are 0.558–0.570 (0.568–0.576) and 0.922–0.924 (0.926–0.927), respectively.
These results indicate that DCNN is slightly better than NN in SM retrieval, especially in the regions
(such as western North America, eastern South America, central Asia and Australia) where there
exist more numbers of training samples. This can be explained by the fact that DCNN has more
powerful learning ability.

Nevertheless, the DCNN model has a more complex structure than NN model. As a result,
it usually costs much more time to estimate SM than NN. For example, when the trained NN and
DCNN models are applied to the data set in September 2016 which contains about 5.8× 105 samples,
NN needs about 10 s to retrieve SM values while DCNN needs about 60 s. Note that our experiments
were carried on a personal computer (Intel Core 3.60 GHz processor with 32 GB random access
memory). The software implementation was performed using MATLAB(MathWorks, Inc.).

In addition, the simulated SM values by DCNN and NN are easily affected by the target data
during the training period. In our study, we select the ERA-Interim product as the target data.
ERA-Interim SM is a reliable SM estimate, but it still exists some deviation which may directly affect
the performance of models. In addition, we only use the in situ measurements from SCAN sites, which
may exist uncertainties when evaluated against different SM retrievals. In future research, we will
use other reliable SM estimates and more in situ measurements to further evaluate the performance
of DCNN.

7. Conclusions

In this paper, we compare the performance of DCNN and NN in estimating SM from
satellite observations. The same input data are used for the DCNN and NN models, including
L-band SMOSL3 TB data, ASCAT backscattering coefficients, MODIS NDVI and soil temperature.
The target SM data used to train the DCNN and NN model is the ERA-Interim product. We apply
the trained DCNN/NN models to the testing data, and then compare the different SM retrievals
against both in situ measurements and the ERA-Interim SM. The experimental results indicate that
DCNN works very well and gives better results than NN when evaluated against in situ measurements
from SCAN sites in the testing phase. Furthermore, the estimated SM values by DCNN/NN and
ERA-Interim SM agree relatively well at a global scale. In summary, both NN and DCNN methods are
effective in estimating SM from satellite observations and the performance of DCNN is slightly better
than NN.
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