Monitoring Water Level Change and Seasonal Vegetation Change in the Coastal Wetlands of Louisiana Using L-Band Time-Series
Abstract
:1. Introduction
2. Wax Lake Wetlands and In Situ Data
3. Satellite Data and Data Processing
3.1. Phased Array Type L-Band Synthetic Aperture Radar (PALSAR)
3.2. InSAR Processing
3.2.1. Interferometric Coherence
3.2.2. Interferometric Phase: Unwrapping and Calibration
3.2.3. Connected Component
3.3. PolSAR Processing
3.4. Moderate Resolution Imaging Spectroradiometer (MODIS)
4. Results and Discussion
4.1. Interferometric Coherence and Vegetation Cover
4.2. Interferometric Phase Difference and Water Level Change
4.2.1. Interferogram Calibration
4.2.2. Scattering Decomposition
4.2.3. Validation at CRMS Stations
4.2.4. River Discharge Influence at swamps
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United States, Environmental Protection Agency, Office of Wetlands and Watersheds. America’s Wetlands: Our Vital Link between Land and Water; U.S. Environmental Protection Agency, Office of Water, Office of Wetlands, Oceans, and Watersheds: Washington, DC, USA, 1995.
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J. Climate change: Protect the world’s deltas. Nature 2014, 516, 31–33. [Google Scholar] [CrossRef] [Green Version]
- Twilley, R.R.; Bentley, S.; Chen, Q.; Edmonds, D.A.; Hagen, S.C.; Lam, N.S.-N.; Willson, C.S.; Xu, K.; Braud, D.; Peele, R.H.; et al. Co-evolution of wetland landscapes, flooding, and human settlement in the Mississippi River Delta Plain. Sustain. Sci. 2016, 11, 711–731. [Google Scholar] [CrossRef] [Green Version]
- Syvitski, J. Deltas at risk. Sustain. Sci. 2008, 3, 23–32. [Google Scholar] [CrossRef]
- Couvillion, B.R.; Barras, J.A.; Steyer, G.D.; Sleavin, W.; Fischer, M.; Beck, H.; Trahan, N.; Griffin, B.; Heckman, D. Land Area Change in Coastal Louisiana from 1932 to 2010; Scientific Investigations Map 3164, scale 1:265,000; USGS Publication: Reston, VA, USA, 2011. [CrossRef]
- Couvillion, B.R.; Fischer, M.; Beck, H.J.; Sleavin, W.J. Spatial Configuration Trends in Coastal Louisiana from 1985 to 2010. Wetlands 2016, 36, 347–359. [Google Scholar] [CrossRef]
- Sasser, C.E.; Visser, J.; Mouton, E.; Linscombe, J.; Hartley, S.B. Vegetation Types in Coastal Louisiana in 2013; Scientific Investigations Map 3290, 1 sheet, scale 1:550,000; USGS Publication: Reston, VA, USA, 2014. [CrossRef]
- Steyer, G.D.; Sasser, C.E.; Visser, J.M.; Swenson, E.M.; Nyman, J.A.; Raynie, R.C. A Proposed Coast-Wide Reference Monitoring System for Evaluating Wetland Restoration Trajectories in Louisiana. Environ. Monit. Assess. 2003, 81, 107–117. [Google Scholar] [CrossRef]
- Hiatt, M.; Snedden, G.A.; Day, J.W.; Rohli, R.V.; Nyman, J.A.; Lane, R.; Sharp, L.A. Drivers and impacts of water level fluctuations in the Mississippi River delta: Implications for delta restoration. Estuar. Coast. Shelf Sci. 2019, 224, 117–137. [Google Scholar] [CrossRef]
- Lu, Z.; Kwoun, O.-I. Radarsat-1 and ERS InSAR Analysis Over Southeastern Coastal Louisiana: Implications for Mapping Water-Level Changes Beneath Swamp Forests. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2167–2184. [Google Scholar] [CrossRef]
- Hess, L.L.; Melack, J.M.; Simonett, D.S. Radar detection of flooding beneath the forest canopy: A review. Int. J. Remote Sens. 1990, 11, 1313–1325. [Google Scholar] [CrossRef]
- Cloude, S.R. Polarisation: Applications in Remote Sensing; Oxford U. Press: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Wdowinski, S.; Kim, S.-W.; Amelung, F.; Dixon, T.; Miralles-Wilhelm, F.; Sonenshein, R. Space-based detection of wetlands’ surface water level changes from L-band SAR interferometry. Remote Sens. Environ. 2008, 112, 681–696. [Google Scholar] [CrossRef]
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Brisco, B.; Motagh, M. Wetland Water Level Monitoring Using Interferometric Synthetic Aperture Radar (InSAR): A Review. Can. J. Remote Sens. 2018, 44, 247–262. [Google Scholar] [CrossRef]
- Hong, S.-H.; Wdowinski, S. Multitemporal Multitrack Monitoring of Wetland Water Levels in the Florida Everglades Using ALOS PALSAR Data With Interferometric Processing. IEEE Geosci. Remote Sens. Lett. 2013, 11, 1355–1359. [Google Scholar] [CrossRef]
- Oliver-Cabrera, T.; Wdowinski, S. InSAR-Based Mapping of Tidal Inundation Extent and Amplitude in Louisiana Coastal Wetlands. Remote Sens. 2016, 8, 393. [Google Scholar] [CrossRef] [Green Version]
- Brisco, B.; Ahern, F.; Murnaghan, K.; White, L.; Canisus, F.; Lancaster, P. Seasonal Change in Wetland Coherence as an Aid to Wetland Monitoring. Remote Sens. 2017, 9, 158. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Crane, M.; Kwoun, O.-I.; Wells, C.; Swarzenski, C.; Rykhus, R. C-band radar observes water level change in swamp forests. Eos Trans. Am. Geophys. Union 2005, 86, 141. [Google Scholar] [CrossRef]
- Kim, S.-W.; Wdowinski, S.; Amelung, F.; Dixon, T.; Won, J.-S. Interferometric Coherence Analysis of the Everglades Wetlands, South Florida. IEEE Trans. Geosci. Remote Sens. 2013, 51, 5210–5224. [Google Scholar] [CrossRef]
- Jet Propulsion Laboratory. NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook; National Aeronautics and Space Administration (NASA): Pasadena, CA, USA, 2019.
- Rosen, P.A.; Gurrola, E.M.; Sacco, G.F.; Zebker, H. The InSAR scientific computing environment. In Proceedings of the EUSAR 2012, 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012. [Google Scholar]
- Kim, J.-W.; Lu, Z.; Lee, H.; Shum, C.K.; Swarzenski, C.M.; Doyle, T.W.; Baek, S.-H. Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands. Remote Sens. Environ. 2009, 113, 2356–2365. [Google Scholar] [CrossRef]
- Homer, C.G.; Fry, J.A.; Barnes, C. The National Land Cover Database; US Geological Survey: Reston, VA, USA, 2012.
- Steyer, G.D. Coastwide Reference Monitoring System (CRMS); US Geological Survey: Reston, VA, USA, 2010.
- Google. (n.d.) [Google Maps, Wax Lake, LA]. Available online: https://goo.gl/maps/UeX3XBQESjck1dmG8 (accessed on 20 June 2020).
- Coastal Protection and Restoration Authority (CPRA) of Louisiana. 2007–2011. Coastwide Reference Monitoring System-Wetlands Monitoring Data. Retrieved from Coastal Information Management System (CIMS) Database. Available online: http://cims.coastal.louisiana.gov (accessed on 2 February 2017).
- Dataset: U.S. Geological Survey. USGS NED 1/3 arc-second n30w091 1 × 1 degree ArcGrid 2016; U.S. Geological Survey: Reston, VA, USA, 2016.
- Dataset: U.S. Geological Survey. USGS NED 1/3 arc-second n30w092 1 × 1 degree ArcGrid 2016; U.S. Geological Survey: Reston, VA, USA, 2016.
- Archuleta, C.-A.M.; Constance, E.W.; Arundel, S.T.; Lowe, A.J.; Mantey, K.S.; Phillips, L.A. The National Map Seamless Digital Elevation Model Specifications; US Geological Survey: Reston, VA, USA, 2017; Volume 11, Chapter 9; p. 39. [CrossRef] [Green Version]
- ALOS PALSAR. L1.0 2007–2011. Accessed through ASF DAAC. Available online: http://www.asf.alaska.edu (accessed on 19 October 2018).
- Hong, S.-H.; Wdowinski, S.; Kim, S.-W.; Won, J.-S. Multi-temporal monitoring of wetland water levels in the Florida Everglades using interferometric synthetic aperture radar (InSAR). Remote Sens. Environ. 2010, 114, 2436–2447. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Melack, J.M.; Dunne, T.; Mertes, L.A.K.; Hess, L.L.; Smith, L.C. Interferometric radar measurements of water level changes on the Amazon flood plain. Nature 2000, 404, 174–177. [Google Scholar] [CrossRef]
- Mukul, M.; Srivastava, V.; Jade, S.; Mukul, M. Uncertainties in the Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian Himalaya and Peninsula. Sci. Rep. 2017, 7, 41672. [Google Scholar] [CrossRef] [Green Version]
- The Western North America InSAR (WInSAR) Consortium. Available online: https://winsar.unavco.org/ (accessed on 21 July 2020).
- Rosen, P.; Hensley, S.; Joughin, I.; Li, F.; Madsen, S.; Rodriguez, E.; Goldstein, R. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Simard, M.; Denbina, M. An Assessment of Temporal Decorrelation Compensation Methods for Forest Canopy Height Estimation Using Airborne L-Band Same-Day Repeat-Pass Polarimetric SAR Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 95–111. [Google Scholar] [CrossRef]
- Morishita, Y.; Hanssen, R.F. Temporal Decorrelation in L-, C-, and X-band Satellite Radar Interferometry for Pasture on Drained Peat Soils. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1096–1104. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A 2001, 18, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Van Zyl, J.J.; Arii, M.; Kim, Y. Model-Based Decomposition of Polarimetric SAR Covariance Matrices Constrained for Nonnegative Eigenvalues. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3452–3459. [Google Scholar] [CrossRef]
- Pottier, E.; Ferro-Famil, L.; Allain, S.; Cloude, S.; Hajnsek, I.; Papathanassiou, K.; Moreira, A.; Williams, M.; Minchella, A.; LaValle, M.; et al. Overview of the PolSARpro V4.0 software: The open source toolbox for polarimetric and interferometric polarimetric SAR data processing. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006; NASA EOSDIS LP DAAC: Sioux Falls, SD, USA, 2015. [CrossRef]
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Brisco, B.; Motagh, M. Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands. ISPRS J. Photogramm. Remote Sens. 2018, 142, 78–93. [Google Scholar] [CrossRef]
- Pinto, N.; Simard, M.; Dubayah, R. Using InSAR Coherence to Map Stand Age in a Boreal Forest. Remote Sens. 2012, 5, 42–56. [Google Scholar] [CrossRef] [Green Version]
- Simard, M.; Hensley, S.; LaValle, M.; Dubayah, R.; Pinto, N.; Hofton, M. An Empirical Assessment of Temporal Decorrelation Using the Uninhabited Aerial Vehicle Synthetic Aperture Radar over Forested Landscapes. Remote Sens. 2012, 4, 975–986. [Google Scholar] [CrossRef] [Green Version]
- Google. (n.d.) [Google Maps, Belle Isle, LA]. Available online: https://goo.gl/maps/MHwYjwsjNCUrrA5U6 (accessed on 20 June 2020).
- Google. (n.d.) [Google Maps, Lake Palourde St, Franklin, LA]. Available online: https://goo.gl/maps/xJZxmJXsWmuVUuvw7 (accessed on 20 June 2020).
- Google. (n.d.) [Google Maps, Mobil Oil Ln Franklin, LA]. Available online: https://goo.gl/maps/oPhRwhL7c7MFS8pU6 (accessed on 20 June 2020).
- Swarzenski, C.M. Surface-water hydrology of the Gulf Intracoastal Waterway in South-Central Louisiana, 1996–99; US Geological Survey: Reston, VA, USA, 2003.
CRMS No. | Wetland Type | Hourly Water Level Data Availability | CRMS Wetland Elevation (cm) | USGS DEM Wetland Elevation (cm) |
---|---|---|---|---|
CRMS0461 | Fresh Marsh | 11/04/06~ | 31.8 | 32.2 |
CRMS0463 | Fresh Marsh | 12/13/06~ | Floating Marsh | 47.7 |
CRMS0464 | Fresh Marsh | 11/28/06~ | Floating Marsh | 21.1 |
CRMS0465 | Fresh Marsh | 11/28/06~ | Floating Marsh | −24.4 |
CRMS0479 | Fresh Marsh | 03/06/08~ | 24.1 | 54.3 |
CRMS0482 | Fresh Marsh | 06/07/07~ | 22.3 | 52 |
CRMS2568 | Fresh Marsh | 06/07/07~ | 24.1 | 31.9 |
CRMS4014 | Fresh Marsh | 07/09/07~ | 43.7 | 66.4 |
CRMS4016 | Fresh Marsh | 06/07/07~ | 35.1 | 28 |
CRMS4779 | Swamp | 02/01/08~ | 27.5 | 45 |
CRMS4782 | Swamp | 02/01/08~ | 55.6 | 64.4 |
CRMS4808 | Swamp | 01/22/08~ | 31.8 | 44.7 |
CRMS4809 | Swamp | 03/26/14~ | 32.7 | 47 |
CRMS4900 | Swamp | 11/14/06~ | 28.4 | 48.2 |
CRMS4938 | Swamp | 02/04/08~ | 46.1 | 79.8 |
CRMS5003 | Swamp | 02/04/08~ | 11.3 | 42.98 |
CRMS6008 | Swamp | 02/01/08~ | −18.3 | 48.9 |
CRMS6038 | Swamp | 02/04/08~ | 54.4 | 52.9 |
CRMS6042 | Swamp | 03/03/10~ | 46.4 | 62.3 |
No. | ALOS ID | Acquisition Time (UTC) | Observation Mode |
---|---|---|---|
1 | ALPSRP091770580 | 10/15/07, 04:36:58 | SM3-FBD |
2 | ALPSRP098480580 | 11/30/07, 04:36:38 | SM3-FBS |
3 | ALPSRP105190580 | 01/15/08, 04:36:10 | SM3-FBS |
4 | ALPSRP111900580 | 03/01/08, 04:35:35 | SM3-FBS |
5 | ALPSRP118610580 | 04/16/08, 04:34:50 | SM3-FBS |
6 | ALPSRP125320580 | 06/01/08, 04:34:01 | SM3-FBD |
7 | ALPSRP132030580 | 07/17/08, 04:33:57 | SM3-FBD |
8 | ALPSRP138740580 | 09/01/08, 04:34:43 | SM3-FBD |
9 | ALPSRP145450580 | 10/17/08, 04:35:36 | SM3-FBD |
10 | ALPSRP158870580 | 01/17/09, 04:37:06 | SM3-FBS |
11 | ALPSRP165580580 | 03/04/09, 04:37:40 | SM3-FBS |
12 | ALPSRP212550580 | 01/20/10, 04:39:00 | SM3-FBS |
13 | ALPSRP219260580 | 03/07/10, 04:38:46 | SM3-FBS |
14 | ALPSRP225970580 | 04/22/10, 04:38:24 | SM3-FBS |
15 | ALPSRP232680580 | 06/07/10, 04:37:57 | SM3-FBD |
16 | ALPSRP239390580 | 07/23/10, 04:37:28 | SM3-FBD |
17 | ALPSRP246100580 | 09/07/10, 04:36:55 | SM3-FBD |
18 | ALPSRP252810580 | 10/23/10, 04:36:14 | SM3-FBD |
19 | ALPSRP259520580 | 12/08/10, 04:35:28 | SM3-FBD |
20 | ALPSRP266230580 | 01/23/11, 04:34:35 | SM3-FBS |
21 | ALPSRP202630580 | 11/13/09, 04:30:30 | SM2-PLR |
22 | ALPSRP276440580 | 04/03/11, 04:24:22 | SM2-PLR |
No. | Acquisition Period | Perpendicular Baseline | Estimated Error for Water Level Change |
---|---|---|---|
1 | 10/15/07~11/30/07 | −56 m | 0.01 cm |
2 | 11/30/07~01/15/08 | 434 m | 0.11 cm |
3 | 01/15/08~03/01/08 | 512 m | 0.13 cm |
4 | 03/01/08~04/16/08 | 292 m | 0.08 cm |
5 | 04/16/08~06/01/08 | −227 m | 0.06 cm |
6 | 06/01/08~07/17/08 | −2405 m | 0.62 cm |
7 | 07/17/08~09/01/08 | −2026 m | 0.53 cm |
8 | 09/01/08~10/17/08 | 923 m | 0.24 cm |
9 | 01/17/09~03/04/09 | 101 m | 0.03 cm |
10 | 01/20/10~03/07/10 | 499 m | 0.13 cm |
11 | 03/07/10~04/22/10 | 76 m | 0.02 cm |
12 | 04/22/10~06/07/10 | 93 m | 0.02 cm |
13 | 06/07/10~07/23/10 | 209 m | 0.05 cm |
14 | 07/23/10~09/07/10 | 50 m | 0.01 cm |
15 | 09/07/10~10/23/10 | 311 m | 0.08 cm |
16 | 10/23/10~12/08/10 | 4 m | 0 cm |
17 | 12/08/10~01/23/11 | 390 m | 0.10 cm |
Acquisition Period | Discharge (%) | ||
---|---|---|---|
03/01/08~04/16/08 | 96 | 73.4 | 70.0 |
04/16/08~06/01/08 | 98 | −39.6 | −40.3 |
01/17/09~03/04/09 | 99 | −13.0 | −12.8 |
01/20/10~03/07/10 | 99 | 24.5 | 24.8 |
03/07/10~04/22/10 | 93 | 2.7 | 2.5 |
04/22/10~06/07/10 | 87 | 25.6 | 21.8 |
06/07/10~07/23/10 | 82 | −41.5 | −50.5 |
07/23/10~09/07/10 | 72 | −25.1 | −35.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, T.-H.; Simard, M.; Denbina, M.; Lamb, M.P. Monitoring Water Level Change and Seasonal Vegetation Change in the Coastal Wetlands of Louisiana Using L-Band Time-Series. Remote Sens. 2020, 12, 2351. https://doi.org/10.3390/rs12152351
Liao T-H, Simard M, Denbina M, Lamb MP. Monitoring Water Level Change and Seasonal Vegetation Change in the Coastal Wetlands of Louisiana Using L-Band Time-Series. Remote Sensing. 2020; 12(15):2351. https://doi.org/10.3390/rs12152351
Chicago/Turabian StyleLiao, Tien-Hao, Marc Simard, Michael Denbina, and Michael P. Lamb. 2020. "Monitoring Water Level Change and Seasonal Vegetation Change in the Coastal Wetlands of Louisiana Using L-Band Time-Series" Remote Sensing 12, no. 15: 2351. https://doi.org/10.3390/rs12152351