A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Data Preprocessing
2.2.2. Model Architectures
2.2.3. Evaluation Metrics
2.2.4. Hyperparameters and Experiments
3. Results
3.1. Fine-tuning Results
3.2. Prediction Results for PlanetScope and Airborne Data
3.3. Transfer Results (Hesse Data)
4. Discussion
4.1. Comparison to Other Remote-Sensing Approaches
4.2. Limitations of the Proposed Approach
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Network |
DSM | Digital Surface Model |
GPU | Graphics Processing Unit |
IoU | Intersection over Union |
LWF | Bavarian State Institute of Forestry |
ReLu | Rectificed Linear Unit |
References
- Dorland, C.; Tol, R.S.J.; Palutkof, J.P. Vulnerability of The Netherlands and Northwest Europe to storm damage under climate change. Clim. Chang. 1999, 43, 513–535. [Google Scholar] [CrossRef]
- Bavarian State Ministry of Food, Agriculture and Forest. Annual Report 2017; Bavarian State Ministry of Food, Agriculture and Forest: Munich, Germany, July 2018; p. 62. [Google Scholar]
- Chehata, N.; Orny, C.; Boukir, S.; Guyon, D.; Wigneron, J.P. Object-based change detection in wind storm-damaged forest using high-resolution multispectral images. Int. J. Remote Sens. 2014, 35, 4758–4777. [Google Scholar] [CrossRef]
- Duda, R.; Hart, P.; Stork, D. Pattern Classification, 2nd ed.; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Ekstrand, S. Landsat TM-based forest damage assessment: Correction for topographic effects. Photogramm. Eng. Remote Sens. 1996, 62, 151–161. [Google Scholar]
- Schwarz, M.; Steinmeier, C.; Waser, L. Detection of storm losses in alpine forest areas by different methodic approaches using high-resolution satellite data. In Proceedings of the 21st EARSeL Symposium: Observing Our Environment from Space: New Solutions for a New Millenium, Paris, France, 14–16 May 2001; pp. 251–257. [Google Scholar]
- Rüetschi, M.; Small, D.; Wasser, L. Rapid detection of windthrows using sentinel-1 C-band SAR data. Remote Sens. 2009, 2, 115. [Google Scholar] [CrossRef]
- Mokroš, M.; Výbošťok, J.; Merganič, J.; Hollaus, M.; Barton, I.; Koreň, M.; Tomaštík, J.; Čerňava, J. Early stage forest windthrow estimation based on unmanned aircraft system imagery. Forests 2017, 9, 306. [Google Scholar] [CrossRef]
- Hamdi, Z.; Brandmeier, M.; Straub, C. Forest damage assessment using deep learning on high resolution remote sensing data. Remote Sens. 2019, 17, 1976. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Rezaee, M.; Mohammadimanesh, F.; Zhang, Y. Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery. Remote Sens. 2018, 10, 1119. [Google Scholar] [CrossRef]
- Lin, H.; Shi, Z.; Zou, Z. Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1665–1669. [Google Scholar] [CrossRef]
- PlanetLabs. Available online: https://www.planet.com/ (accessed on 20 December 2019).
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. Med. Image Comput. Comput. Assist. Interv. (MICCAI) 2015, 9351, 234–241. [Google Scholar]
- International Symposium on Biomedical Imaging. Available online: https://biomedicalimaging.org/2015/ (accessed on 20 December 2019).
- Simonyam, K.; Zisserman, A. Very deep convolutional networks for large scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- ImageNet. Available online: http://www.image-net.org/ (accessed on 12 December 2019).
- Powers, D. Evaluation: From precision, recall and F-factor to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2011, 2, 37–53. [Google Scholar]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 658–666. [Google Scholar]
- Agarap, A. Deep learning using retified linear units (ReLU). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Hu, X.; Chen, G. Efficient backpropagation learning using optimal learning rate and momentum. Neural Netw. 1997, 10, 517–527. [Google Scholar]
- Japkowicz, N.; Stephen, S. The class imbalance problem: A systematic study. Intell. Data Anal. 2002, 6, 429–449. [Google Scholar] [CrossRef]
- He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar]
- Dong, Q.; Gong, S.; Zhu, X. Imbalanced deep learning by minority class incremental rectification. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1367–1381. [Google Scholar] [CrossRef] [PubMed]
- Shendryk, Y.; Rist, Y.; Ticehurst, C.; Thorburn, P. Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery. ISPRS J. Photogramm. Remote Sens. 2019, 157, 124–136. [Google Scholar] [CrossRef]
128 × 128 | 256 × 256 | ||||||
---|---|---|---|---|---|---|---|
Scenario | Learning Rate | Number of Blocks | Number of Filters Per Block | IoU | Seconds | IoU | Seconds |
1 | 0.001 | 4 | [32,32,32,32] | 0.4573 | 290 | 0.4588 | 475 |
2 | 0.0015 | 5 | [8,16,32,64] | 0.4566 | 260 | 0.4574 | 445 |
3 | 0.001 | 3 | [16,32,64] | 0.4461 | 370 | 0.4512 | 530 |
4 | 0.002 | 4 | [16,16,32,32] | 0.4481 | 310 | 0.4577 | 420 |
5 | 0.001 | 5 | [8,16,32,64,128] | 0.4632 | 410 | 0.4658 | 610 |
Scenario | Number of Blocks | Number of Filters Per Block | IoU | Seconds Per Epoch |
---|---|---|---|---|
1 | 4 | [64,64,64,64] | 0.4666 | 880 |
2 | 5 | [8,16,32,64,128] | 0.4658 | 610 |
3 | 4 | [16,32,64,128] | 0.4640 | 760 |
4 | 3 | [32,64,128] | 0.4629 | 830 |
5 | 6 | [4,8,16,32,64,128] | 0.4527 | 600 |
6 | 5 | [4,8,16,32,64] | 0.4365 | 410 |
7 | 5 | [16,16,16,16,16] | 0.4457 | 430 |
8 | 4 | [32,32,32,32] | 0.4576 | 480 |
9 | 5 | [64,32,16,8,4] | 0.4382 | 600 |
10 | 4 | [64,32,16,8] | 0.4538 | 560 |
Model | Data | Learning Rate | Threshold (Accuracy = max) | Accuracy | Threshold (IoU = max) | IoU |
---|---|---|---|---|---|---|
U-Net | Planet | 0.002 | 0.26 | 92% | 0.12 | 0.55 |
U-Net | Airborne Data | 0.002 | 0.67 | 86% | 0.58 | 0.73 |
VGG19 | Airborne Data | 0.002 | 0.39 | 83% | 0.51 | 0.76 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deigele, W.; Brandmeier, M.; Straub, C. A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data. Remote Sens. 2020, 12, 2121. https://doi.org/10.3390/rs12132121
Deigele W, Brandmeier M, Straub C. A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data. Remote Sensing. 2020; 12(13):2121. https://doi.org/10.3390/rs12132121
Chicago/Turabian StyleDeigele, Wolfgang, Melanie Brandmeier, and Christoph Straub. 2020. "A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data" Remote Sensing 12, no. 13: 2121. https://doi.org/10.3390/rs12132121
APA StyleDeigele, W., Brandmeier, M., & Straub, C. (2020). A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data. Remote Sensing, 12(13), 2121. https://doi.org/10.3390/rs12132121