A Review of Terrestrial Carbon Assessment Methods Using Geo-Spatial Technologies with Emphasis on Arid Lands
Abstract
:1. Introduction
- To summarize traditional methods used for biomass and carbon assessment in terrestrial ecosystems;
- To highlight the growing developments in biomass and terrestrial carbon stock assessment through the use of geo-spatial technologies with emphasis on arid lands;
- To identify significant RS variables sensitive to measurable biophysical predictors;
- To identify the gaps and limitations of RS-GIS based methods as well as to address the need for further work to overcome them.
- Section 1: provides an introduction and background information;
- Section 2: gives an overview of the traditional methods used in biomass estimation;
- Section 5: surveys all biophysical predictors used in RS technology;
- Section 6: identifies significant RS variables;
- Section 7: highlights RS-GIS integrated models;
- Section 8: presents arid lands case studies with challenges and opportunities;
- Section 9: identifies gaps and limitations of the geo-spatial approaches for biomass estimation and;
- Section 10: presents conclusions, recommendations and the need for future work.
2. Traditional Methods in Biomass Estimation
2.1. Allometric Equations
3. Geo-Spatial Approach for Estimating AGB
4. RS-Based Methods
5. Biophysical Predictors
6. Remote Sensing Variables
7. RS-GIS Integrated Models
8. Arid Lands Case Studies with Challenges and Opportunities
9. Merits, Gaps, Limitations and Accuracy of the Geo-Spatial Methods
- Measuring other plants’ variables rather than limiting our research to VIs. As these indices suffer from several weaknesses in arid lands ecosystems, as explained above.
- Measuring chlorophyll fluorescence (ChlF) (which is the re-emittance of excess energy by the photosystems during the light reactions of photosynthesis [185]. This is highly related to total AGB,
- Finally, hyperspectral imaging spectroscopy can provide more information relative to traditional multispectral platforms. A single full-range hyperspectral reflectance spectrum (400–2500 nm) can provide information on a variety of functional traits, including vegetation water, nitrogen, chlorophyll, carotenoid, and xanthophyll dynamics [188,189,190] that can be used to map functional traits and life history strategies across the landscape [190].
10. Conclusions–Recommendations and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Lackner, K.S. A guide to CO2 sequestration. Science 2003, 300, 1677–1678. [Google Scholar] [CrossRef] [PubMed]
- Brown, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer; Food & Agriculture Organization: Rome, Italy, 1997; Volume 134. [Google Scholar]
- Bestelmeyer, B.T.; Okin, G.S.; Duniway, M.C.; Archer, S.R.; Sayre, N.F.; Williamson, J.C.; Herrick, J.E. Desertification, land use, and the transformation of global drylands. Front. Ecol. Environ. 2015, 13, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biederman, J.A.; Scott, R.L.; Bell, T.W.; Bowling, D.R.; Dore, S.; Garatuza-Payan, J.; Kolb, T.E.; Krishnan, P.; Krofcheck, D.J.; Litvak, M.E. CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America. Glob. Chang. Biol. 2017, 23, 4204–4221. [Google Scholar] [CrossRef]
- Humphrey, V.; Zscheischler, J.; Ciais, P.; Gudmundsson, L.; Sitch, S.; Seneviratne, S.I. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 2018, 560, 628–631. [Google Scholar] [CrossRef]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.; Badola, R.; Hussain, S.A. A review of protocols used for assessment of carbon stock in forested landscapes. Environ. Sci. Policy 2012, 16, 81–89. [Google Scholar] [CrossRef]
- Vicharnakorn, P.; Shrestha, R.P.; Nagai, M.; Salam, A.P.; Kiratiprayoon, S. Carbon stock assessment using remote sensing and forest inventory data in Savannakhet, Lao PDR. Remote Sens. 2014, 6, 5452–5479. [Google Scholar] [CrossRef] [Green Version]
- Clerici, N.; Rubiano, K.; Abd-Elrahman, A.; Posada Hoestettler, J.M.; Escobedo, F.J. Estimating aboveground biomass and carbon stocks in periurban Andean secondary forests using very high resolution imagery. Forests 2016, 7, 138. [Google Scholar] [CrossRef] [Green Version]
- Corona-Núñez, R.O.; Campo, J.; Williams, M. Aboveground carbon storage in tropical dry forest plots in Oaxaca, Mexico. For. Ecol. Manag. 2018, 409, 202–214. [Google Scholar] [CrossRef]
- United Nation the Kyoto Protocol—Status of Ratification|UNFCCC. Available online: https://unfccc.int/process/the-kyoto-protocol/status-of-ratification (accessed on 25 December 2019).
- Dick, O.B.; Wondrade, N. Estimating above Ground Biomass and Carbon Stock in the Lake Hawassa Watershed, Ethiopia by Integrating Remote Sensing and Allometric Equations. For. Res. Open Access 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Ekoungoulou, R.; Liu, X.; Loumeto, J.J.; Ifo, S.A.; Bocko, Y.E.; Fleury, E.K.; Niu, S. Tree Allometry in Tropical Forest of Congo for Carbon Stocks Estimation in above-Ground Biomass. Open J. For. 2014, 4, 481. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.L.; Sahoo, U.K.; Kenye, A.; Gogoi, A. Assessment of Growth, Carbon Stock and Sequestration Potential of Oil Palm Plantations in Mizoram, Northeast India. J. Environ. Prot. 2018, 9, 912. [Google Scholar] [CrossRef] [Green Version]
- Prayogo, C.; Sari, R.R.; Asmara, D.H.; Rahayu, S.; Hairiah, K. Allometric Equation for Pinang (Areca catechu) Biomass and C Stocks. AGRIVITA J. Agric. Sci. 2018, 40, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Khalid, N.; Hamid, J.R.A. Development of Allometric Equation for Estimating Aboveground Biomass in Ampang Forest Reserve, Malaysia. J. Biodivers. Manag. For. 2017, 4, 2. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2007, 2, 045023. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Koala, J.; Sawadogo, L.; Savadogo, P.; Aynekulu, E.; Heiskanen, J.; Saïd, M. Allometric equations for below-ground biomass of four key woody species in West African savanna-woodlands. Silva Fenn. 2017, 51, 1631. [Google Scholar] [CrossRef] [Green Version]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC guidelines for national greenhouse gas inventories. Inst. Glob. Environ. Strateg. Hayama Jpn. 2006, 2, 48–56. [Google Scholar]
- Kumar, L.; Sinha, P.; Taylor, S.; Alqurashi, A.F. Review of the use of remote sensing for biomass estimation to support renewable energy generation. J. Appl. Remote Sens. 2015, 9, 097696. [Google Scholar] [CrossRef]
- Fonton, N.H.; Medjibé, V.; Djomo, A.; Kondaoulé, J.; Rossi, V.; Ngomanda, A.; Maïdou, H. Analyzing accuracy of the power functions for modeling aboveground biomass rediction in Congo basin tropical forests. Open J. For. 2017, 7, 388–402. [Google Scholar]
- Cairns, M.A.; Brown, S.; Helmer, E.H.; Baumgardner, G.A. Root biomass allocation in the world’s upland forests. Oecologia 1997, 111, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Mutanga, O. Remote Sensing of above-Ground Biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- Joshi, H.G.; Ghose, M. Community structure, species diversity, and aboveground biomass of the Sundarbans mangrove swamps. Trop. Ecol. 2014, 55, 283–303. [Google Scholar]
- Cihlar, J.; Denning, S.; Ahem, F.; Arino, O.; Belward, A.; Bretherton, F.; Cramer, W.; Dedieu, G.; Field, C.; Francey, R. Initiative to quantify terrestrial carbon sources and sinks. Eos Trans. Am. Geophys. Union 2002, 83, 1–7. [Google Scholar] [CrossRef]
- Kankare, V.; Vastaranta, M.; Holopainen, M.; Räty, M.; Yu, X.; Hyyppä, J.; Hyyppä, H.; Alho, P.; Viitala, R. Retrieval of forest aboveground biomass and stem volume with airborne scanning LiDAR. Remote Sens. 2013, 5, 2257–2274. [Google Scholar] [CrossRef] [Green Version]
- Wannasiri, W.; Nagai, M.; Honda, K.; Santitamnont, P.; Miphokasap, P. Extraction of mangrove biophysical parameters using airborne LiDAR. Remote Sens. 2013, 5, 1787–1808. [Google Scholar] [CrossRef] [Green Version]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Haughton, N.; Abramowitz, G.; De Kauwe, M.G.; Pitman, A.J. Does predictability of fluxes vary between FLUXNET sites? Biogeosciences 2018, 15, 4495–4513. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.B.; Archer, S.R. Scale-dependent influence of topography-based hydrologic features on patterns of woody plant encroachment in savanna landscapes. Landsc. Ecol. 2005, 20, 733–742. [Google Scholar] [CrossRef]
- Cheng, T.; Song, R.; Li, D.; Zhou, K.; Zheng, H.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Spectroscopic Estimation of Biomass in Canopy Components of Paddy Rice Using Dry Matter and Chlorophyll Indices. Remote Sens. 2017, 9, 319. [Google Scholar] [CrossRef] [Green Version]
- Yuen, J.Q.; Fung, T.; Ziegler, A.D. Review of allometric equations for major land covers in SE Asia: Uncertainty and implications for above-and below-ground carbon estimates. For. Ecol. Manag. 2016, 360, 323–340. [Google Scholar] [CrossRef]
- Maulana, S.I.; Wibisono, Y.; Utomo, S. Development of local allometric equation to estimate total aboveground biomass in Papua tropical forest. Indones. J. For. Res. 2016, 3, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Mokany, K.; Raison, R.; Prokushkin, A.S. Critical analysis of root: Shoot ratios in terrestrial biomes. Glob. Chang. Biol. 2006, 12, 84–96. [Google Scholar] [CrossRef]
- Ramankutty, N.; Gibbs, H.K.; Achard, F.; Defries, R.; Foley, J.A.; Houghton, R.A. Challenges to estimating carbon emissions from tropical deforestation. Glob. Chang. Biol. 2007, 13, 51–66. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of biomass in the global carbon cycle. J. Geophys. Res. Biogeosciences 2009, 114. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soil, 12th ed.; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Ponce-Hernandez, R.; Koohafkan, P.; Antoine, J. Assessing Carbon Stocks and Modelling Win-Win Scenarios of Carbon Sequestration through Land-Use Changes; Food & Agriculture Organization: Rome, Italy, 2004; Volume 1. [Google Scholar]
- Picard, N.; Saint-André, L.; Henry, M. Manual for Building Tree Volume and Biomass Allometric Equations: From Field Measurement to Prediction; FAO: Rome, Italy, 2012. [Google Scholar]
- Mahmood, H.; Siddique, M.R.; Costello, L.; Birigazzi, L.; Abdullah, S.R.; Henry, M.; Siddiqui, B.N.; Aziz, T.; Ali, S.; Al Mamun, A. Allometric models for estimating biomass, carbon and nutrient stock in the Sal zone of Bangladesh. iFor. Biogeosci. For. 2019, 12, 69. [Google Scholar] [CrossRef]
- Vashum, K.T.; Jayakumar, S. Methods to estimate above-ground biomass and carbon stock in natural forests—A review. J. Ecosyst. Ecogr. 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Russell, C.E. Nutrient Cycling and Productivity of Native and Plantation Forests at Jari Florestal, Para, Brazil; University of Georgia: Athens, GA, USA, 1983. [Google Scholar]
- Deans, J.D.; Moran, J.; Grace, J. Biomass relationships for tree species in regenerating semi-deciduous tropical moist forest in Cameroon. For. Ecol. Manag. 1996, 88, 215–225. [Google Scholar] [CrossRef]
- Brown, I.F.; Martinelli, L.A.; Thomas, W.W.; Moreira, M.Z.; Ferreira, C.C.; Victoria, R.A. Uncertainty in the biomass of Amazonian forests: An example from Rondonia, Brazil. For. Ecol. Manag. 1995, 75, 175–189. [Google Scholar] [CrossRef]
- Khalid, H.; Zin, Z.Z.; Anderson, J.M. Quantification of oil palm biomass and nutrient value in a mature plantation. I. Above-ground biomass. J. Oil Palm Res. 1999, 11, 23–32. [Google Scholar]
- Duncanson, L.; Rourke, O.; Dubayah, R. Small sample sizes yield biased allometric equations in temperate forests. Sci. Rep. 2015, 5, 17153. [Google Scholar] [CrossRef] [Green Version]
- Sileshi, G.W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 2014, 329, 237–254. [Google Scholar] [CrossRef]
- Cheng, Z.; Gamarra, J.G.P.; Birigazzi, L. Inventory of Allometric Equations for Estimation Tree Biomass—A Database for China; UNREDD Programme: Rome, Italy, 2014. [Google Scholar]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Sajdak, M.; Velázquez-Martí, B.; López-Cortés, I. Quantitative and qualitative characteristics of biomass derived from pruning Phoenix canariensis hort. ex Chabaud. and Phoenix dactilifera L. Renew. Energy 2014, 71, 545–552. [Google Scholar] [CrossRef]
- Sanquetta, C.R.; PéllicoNetto, S.; Dalla Corte, A.P.; Lourenço, A. Quantifying biomass and carbon stocks in oil palm (Elaeis guineensis Jacq.) in Northeastern Brazil. Afr. J. Agric. Res. 2015, 10, 4067–4075. [Google Scholar]
- Henson, I.E.; Chang, K.C. Oil palm plantations and forest loss an objective appraisal. In Proceedings of the PIPOC 2003 International Palm Oil Congress, Kuala Lumpur, Malaysia, 25–29 September 2003; pp. 960–974. [Google Scholar]
- Issa, S.; Dahy, B.; Saleous, N.; Ksiksi, T. Carbon stock assessment of date palm using remote sensing coupled with field-based measurements in Abu Dhabi (United Arab Emirates). Int. J. Remote Sens. 2019, 40, 7561–7580. [Google Scholar] [CrossRef]
- Issa, S.; Dahy, B.; Ksiksi, T.; Saleous, N. Development of a New Allometric Equation Correlated WITH RS Variables for the Assessment of Date Palm Biomass. In Proceedings of the 39th Asian Conference on Remote Sensing (ACRS 2018), Kuala Lumpur, Malaysia, 15–19 October 2018. [Google Scholar]
- Dahy, B.; Issa, S.; Ksiksi, T.; Saleous, N. Non-Conventional Methods as a New Alternative for the Estimation of Terrestrial Biomass and Carbon Sequestered: Mini Review. World J. Agric. Soil Sci. 2019. [Google Scholar] [CrossRef]
- Jucker, T.; Caspersen, J.; Chave, J.; Antin, C.; Barbier, N.; Bongers, F.; Dalponte, M.; van Ewijk, K.Y.; Forrester, D.I.; Haeni, M. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Chang. Biol. 2017, 23, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Saldarriaga, J.G.; West, D.C.; Tharp, M.L.; Uhl, C. Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. J. Ecol. 1988, 938–958. [Google Scholar] [CrossRef]
- Hughes, R.F.; Kauffman, J.B.; Jaramillo, V.J. Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 1999, 80, 1892–1907. [Google Scholar]
- Thenkabail, P.S.; Stucky, N.; Griscom, B.W.; Ashton, M.S.; Diels, J.; van der Meer, B.; Enclona, E. Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data. Int. J. Remote Sens. 2004, 25, 5447–5472. [Google Scholar] [CrossRef]
- Corley, R.H.V.; Tinker, P.B.H. The Oil Palm; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Dewi, S.; Khasanah, N.; Rahayu, S.; Ekadinata, A.; Van Noordwijk, M. Carbon Footprint of Indonesian Palm Oil Production: A Pilot Study; World Agroforestry Centre-ICRAF, SEA Regional Office: Bogor, Indonesia, 2009; Volume 8. [Google Scholar]
- Goodman, R.C.; Phillips, O.L.; del Castillo Torres, D.; Freitas, L.; Cortese, S.T.; Monteagudo, A.; Baker, T.R. Amazon palm biomass and allometry. For. Ecol. Manag. 2013, 310, 994–1004. [Google Scholar] [CrossRef]
- Da Silva, F.; Suwa, R.; Kajimoto, T.; Ishizuka, M.; Higuchi, N.; Kunert, N. Allometric equations for estimating biomass of Euterpe precatoria, the most abundant palm species in the Amazon. Forests 2015, 6, 450–463. [Google Scholar] [CrossRef] [Green Version]
- Zahabu, E.; Mugasha, W.A.; Malimbwi, R.E.; Katani, J.Z. Allometric Biomass and Volume Models for Coconut Trees; E&D Vision Publishing Ltd.: Dares Salaam, Tanzania, 2018. [Google Scholar]
- Hickey, S.M.; Callow, N.J.; Phinn, S.; Lovelock, C.E.; Duarte, C.M. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach. Estuar. Coast. Shelf Sci. 2018, 200, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Shi, Y.; Jin, Y.; Wang, L. A GIS-based approach for quantifying and mapping carbon sink and stock values of forest ecosystem: A case study. Energy Procedia 2011, 5, 1535–1545. [Google Scholar] [CrossRef] [Green Version]
- Kamusoko, C.; Aniya, M. Hybrid classification of Landsat data and GIS for land use/cover change analysis of the Bindura district, Zimbabwe. Int. J. Remote Sens. 2009, 30, 97–115. [Google Scholar] [CrossRef]
- Ardö, J.; Olsson, L. Assessment of soil organic carbon in semi-arid Sudan using GIS and the CENTURY model. J. Arid Environ. 2003, 54, 633–651. [Google Scholar] [CrossRef]
- Iizuka, K.; Tateishi, R. Estimation of CO2 sequestration by the forests in Japan by discriminating precise tree age category using remote sensing techniques. Remote Sens. 2015, 7, 15082–15113. [Google Scholar] [CrossRef] [Green Version]
- Main-Knorn, M.; Moisen, G.G.; Healey, S.P.; Keeton, W.S.; Freeman, E.A.; Hostert, P. Evaluating the remote sensing and inventory-based estimation of biomass in the western Carpathians. Remote Sens. 2011, 3, 1427–1446. [Google Scholar] [CrossRef] [Green Version]
- Makinde, E.O.; Womiloju, A.A.; Ogundeko, M.O. The geospatial modelling of carbon sequestration in Oluwa Forest, Ondo State, Nigeria. Eur. J. Remote Sens. 2017, 50, 397–413. [Google Scholar] [CrossRef]
- Pflugmacher, D. Remote Sensing of Forest Biomass Dynamics Using Landsat-Derived Disturbance and Recovery History and Lidar Data; Oregon State University: Corvallis, OR, USA, 2011. [Google Scholar]
- Hebbar, R.; Ravishankar, H.M.; Subramoniam, S.R.; Uday, R.; Dadhwal, V.K. Object oriented classification of high resolution data for inventory of horticultural crops. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 745. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Bryceson, K.P. Likely locust infestation areas in western New South Wales, Australia, located by satellite. Geocarto Int. 1991, 6, 21–37. [Google Scholar] [CrossRef]
- Anderson, G.L.; Everitt, J.H.; Richardson, A.J.; Escobar, D.E. Using satellite data to map false broomweed (Ericameria austrotexana) infestations on south Texas rangelands. Weed Technol. 1993, 7, 865–871. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Ozdemir, I. Estimating stem volume by tree crown area and tree shadow area extracted from pan-sharpened Quickbird imagery in open Crimean juniper forests. Int. J. Remote Sens. 2008, 29, 5643–5655. [Google Scholar] [CrossRef]
- Næesset, E.; Økland, T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens. Environ. 2002, 79, 105–115. [Google Scholar] [CrossRef]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can. J. Remote Sens. 2003, 29, 564–577. [Google Scholar] [CrossRef]
- Song, C.; Dickinson, M.B.; Su, L.; Zhang, S.; Yaussey, D. Estimating average tree crown size using spatial information from Ikonos and QuickBird images: Across-sensor and across-site comparisons. Remote Sens. Environ. 2010, 114, 1099–1107. [Google Scholar] [CrossRef]
- Shafri, H.Z.; Anuar, M.I.; Seman, I.A.; Noor, N.M. Spectral discrimination of healthy and Ganoderma-infected oil palms from hyperspectral data. Int. J. Remote Sens. 2011, 32, 7111–7129. [Google Scholar] [CrossRef]
- Henry, M.; Picard, N.; Trotta, C.; Manlay, R.; Valentini, R.; Bernoux, M.; Saint André, L. Estimating tree biomass of sub-Saharan African forests: A review of available allometric equations. Silva Fenn. 2011, 45, 477–569. [Google Scholar] [CrossRef] [Green Version]
- TSITSI, B. Remote sensing of aboveground forest biomass: A review. Trop. Ecol. 2016, 57, 125–132. [Google Scholar]
- Phiri, D.; Morgenroth, J. Developments in Landsat land cover classification methods: A review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef] [Green Version]
- Shaharum, N.S.N.; Shafri, H.Z.M.; Gambo, J.; Abidin, F.A.Z. Mapping of Krau Wildlife Reserve (KWR) protected area using Landsat 8 and supervised classification algorithms. Remote Sens. Appl. Soc. Environ. 2018, 10, 24–35. [Google Scholar] [CrossRef]
- Gilbertson, J.K.; Kemp, J.; Van Niekerk, A. Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques. Comput. Electron. Agric. 2017, 134, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Jawak, S.D.; Devliyal, P.; Luis, A.J. A comprehensive review on pixel oriented and object oriented methods for information extraction from remotely sensed satellite images with a special emphasis on cryospheric applications. Adv. Remote Sens. 2015, 4, 177. [Google Scholar] [CrossRef] [Green Version]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Pandit, S.; Tsuyuki, S.; Dube, T. Estimating above-ground biomass in sub-tropical buffer zone community Forests, Nepal, using Sentinel 2 data. Remote Sens. 2018, 10, 601. [Google Scholar] [CrossRef] [Green Version]
- Wani, A.A.; Joshi, P.K.; Singh, O. Estimating biomass and carbon mitigation of temperate coniferous forests using spectral modeling and field inventory data. Ecol. Inform. 2015, 25, 63–70. [Google Scholar] [CrossRef]
- Clewley, D.; Lucas, R.; Accad, A.; Armston, J.; Bowen, M.; Dwyer, J.; Pollock, S.; Bunting, P.; McAlpine, C.; Eyre, T. An approach to mapping forest growth stages in Queensland, Australia through integration of ALOS PALSAR and Landsat sensor data. Remote Sens. 2012, 4, 2236–2255. [Google Scholar] [CrossRef] [Green Version]
- Robinson, C.; Saatchi, S.; Neumann, M.; Gillespie, T. Impacts of spatial variability on aboveground biomass estimation from L-band radar in a temperate forest. Remote Sens. 2013, 5, 1001–1023. [Google Scholar] [CrossRef] [Green Version]
- Castel, T.; Guerra, F.; Ruiz, A.; Albarran, V.; Caraglio, Y.; Houllier, F. Retrieval biomass of a large Venezuelan pine plantation using JERS-1 SAR data. In Proceedings of the Geoscience and Remote Sensing Symposium, 2000 (IGARSS 2000), Honolulu, HI, USA, 24–28 July 2000; Volume 1, pp. 396–398. [Google Scholar]
- Wijaya, A.; Gloaguen, R. Fusion of ALOS Palsar and Landsat ETM data for land cover classification and biomass modeling using non-linear methods. In Proceedings of the Geoscience and Remote Sensing Symposium, 2009 IEEE International (IGARSS 2009), Cape Town, South Africa, 12–17 July 2009; Volume 1, p. III-581. [Google Scholar]
- Eisfelder, C.; Kuenzer, C.; Dech, S. Derivation of biomass information for semi-arid areas using remote-sensing data. Int. J. Remote Sens. 2012, 33, 2937–2984. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Rosema, A. Using METEOSAT for operational evapotranspiration and biomass monitoring in the Sahel region. Remote Sens. Environ. 1993, 46, 27–44. [Google Scholar] [CrossRef]
- Williams, C.A. Integration of remote sensing and modeling to understand carbon fluxes and climate interactions in Africa. In Ecosystem Function in Savannas: Measurement and Modeling at Landscape to Global Scales; Hill, M.J., Hanan, N., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 327–346. [Google Scholar]
- Morel, A.C.; Fisher, J.B.; Malhi, Y. Evaluating the potential to monitor aboveground biomass in forest and oil palm in Sabah, Malaysia, for 2000–2008 with Landsat ETM+ and ALOS-PALSAR. Int. J. Remote Sens. 2012, 33, 3614–3639. [Google Scholar] [CrossRef]
- Mutanga, O.; Rugege, D. Integrating remote sensing and spatial statistics to model herbaceous biomass distribution in a tropical savanna. Int. J. Remote Sens. 2006, 27, 3499–3514. [Google Scholar] [CrossRef]
- Wu, C.; Shen, H.; Wang, K.; Shen, A.; Deng, J.; Gan, M. Landsat imagery-based above ground biomass estimation and change investigation related to human activities. Sustainability 2016, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Kelsey, K.C.; Neff, J.C. Estimates of aboveground biomass from texture analysis of Landsat imagery. Remote Sens. 2014, 6, 6407–6422. [Google Scholar] [CrossRef] [Green Version]
- Chong, K.L.; Kanniah, K.D.; Pohl, C.; Tan, K.P. A review of remote sensing applications for oil palm studies. Geo-Spat. Inf. Sci. 2017, 20, 184–200. [Google Scholar] [CrossRef] [Green Version]
- McMorrow, J. Linear regression modelling for the estimation of oil palm age from Landsat TM. Int. J. Remote Sens. 2001, 22, 2243–2264. [Google Scholar] [CrossRef]
- Xiaoming, F.; Yingshi, Z.; Yan, L. Remote sensing linked modeling of the aboveground biomass of semiarid grassland in Inner Mongolia. In Proceedings of the Geoscience and Remote Sensing Symposium, 2005 (IGARSS 2005), Seoul, Korea, 25–29 July 2005; Volume 5, pp. 3047–3050. [Google Scholar]
- Tan, K.P.; Kanniah, K.D.; Cracknell, A.P. Use of UK-DMC 2 and ALOS PALSAR for studying the age of oil palm trees in southern peninsular Malaysia. Int. J. Remote Sens. 2013, 34, 7424–7446. [Google Scholar] [CrossRef]
- Im, J.; Jensen, J.R. Hyperspectral remote sensing of vegetation. Geogr. Compass 2008, 2, 1943–1961. [Google Scholar] [CrossRef]
- Suganuma, H.; Abe, Y.; Taniguchi, M.; Tanouchi, H.; Utsugi, H.; Kojima, T.; Yamada, K. Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia. For. Ecol. Manag. 2006, 222, 75–87. [Google Scholar] [CrossRef]
- Greenberg, J.A.; Dobrowski, S.Z.; Ustin, S.L. Shadow allometry: Estimating tree structural parameters using hyperspatial image analysis. Remote Sens. Environ. 2005, 97, 15–25. [Google Scholar] [CrossRef]
- St-Onge, B.; Hu, Y.; Vega, C. Mapping the height and above-ground biomass of a mixed forest using lidar and stereo Ikonos images. Int. J. Remote Sens. 2008, 29, 1277–1294. [Google Scholar] [CrossRef]
- Reinartz, P.; Müller, R.; Hoja, D.; Lehner, M.; Schroeder, M. Comparison and fusion of DEM derived from SPOT-5 HRS and SRTM data and estimation of forest heights. In Proceedings of the EARSeL Workshop on 3D-Remote Sensing, Porto, Portugal, 10–11 June 2005; Volume 1. [Google Scholar]
- Wallerman, J.; Fransson, J.E.; Bohlin, J.; Reese, H.; Olsson, H. Forest mapping using 3D data from SPOT-5 HRS and Z/I DMC. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Sydney, Australia, 13–16 December 2010; pp. 64–67. [Google Scholar]
- Das, S.; Singh, T.P. Correlation analysis between biomass and spectral vegetation indices of forest ecosystem. Int. J. Eng. Res. Technol. 2012, 1, 1–13. [Google Scholar]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Patel, N.K.; Saxena, R.K.; Shiwalkar, A. Study of fractional vegetation cover using high spectral resolution data. J. Indian Soc. Remote Sens. 2007, 35, 73–79. [Google Scholar] [CrossRef]
- Günlü, A.; Ercanli, I.; Başkent, E.Z.; Çakır, G. Estimating aboveground biomass using Landsat TM imagery: A case study of Anatolian Crimean pine forests in Turkey. Ann. For. Res. 2014, 57, 289–298. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G.; Major, D.J. TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In Proceedings of the 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 10–14 July 1989; Volume 3, pp. 1355–1358. [Google Scholar]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Pinty, B.; Verstraete, M.M. GEMI: A non-linear index to monitor global vegetation from satellites. Vegetatio 1992, 101, 15–20. [Google Scholar] [CrossRef]
- Turner, D.P.; Cohen, W.B.; Kennedy, R.E.; Fassnacht, K.S.; Briggs, J.M. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 1999, 70, 52–68. [Google Scholar] [CrossRef]
- Jackson, R.D.; Huete, A.R. Interpreting vegetation indices. Prev. Vet. Med. 1991, 11, 185–200. [Google Scholar] [CrossRef]
- Sonnenschein, R.; Kuemmerle, T.; Udelhoven, T.; Stellmes, M.; Hostert, P. Differences in Landsat-based trend analyses in drylands due to the choice of vegetation estimate. Remote Sens. Environ. 2011, 115, 1408–1420. [Google Scholar] [CrossRef]
- Aly, A.A.; Al-Omran, A.M.; Sallam, A.S.; Al-Wabel, M.I.; Al-Shayaa, M.S. Vegetation cover change detection and assessment in arid environment using multi-temporal remote sensing images and ecosystem management approach. Solid Earth 2016, 7, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Srestasathiern, P.; Rakwatin, P. Oil palm tree detection with high resolution multi-spectral satellite imagery. Remote Sens. 2014, 6, 9749–9774. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Lu, D.; Wang, G.; Wu, C.; Huang, Y.; Yu, S. Examining spectral reflectance saturation in Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sens. 2016, 8, 469. [Google Scholar] [CrossRef] [Green Version]
- Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
- Singh, M.; Malhi, Y.; Bhagwat, S. Evaluating land use and aboveground biomass dynamics in an oil palm–dominated landscape in Borneo using optical remote sensing. J. Appl. Remote Sens. 2014, 8, 083695. [Google Scholar] [CrossRef] [Green Version]
- Gizachew, B.; Solberg, S.; Næesset, E.; Gobakken, T.; Bollandsås, O.M.; Breidenbach, J.; Zahabu, E.; Mauya, E.W. Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data. Carbon Balance Manag. 2016, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil carbon dynamics in cropland and rangeland. Environ. Pollut. 2002, 116, 353–362. [Google Scholar] [CrossRef]
- Montaghi, A.; Corona, P.; Dalponte, M.; Gianelle, D.; Chirici, G.; Olsson, H. akan Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, A.; Jayakumar, S.; Haroon, R.M.; Bhaskaran, A.; Arockiasamy, D.I. Carbon sequestration: Estimation of carbon stock in natural forests using geospatial technology in the Eastern Ghats of Tamil Nadu, India. Curr. Sci. 2007, 323–331. [Google Scholar]
- Cho, M.A.; Mathieu, R.; Asner, G.P.; Naidoo, L.; van Aardt, J.; Ramoelo, A.; Debba, P.; Wessels, K.; Main, R.; Smit, I.P. Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system. Remote Sens. Environ. 2012, 125, 214–226. [Google Scholar] [CrossRef]
- Holm, A.M.; Cridland, S.W.; Roderick, M.L. The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrubland of Western Australia. Remote Sens. Environ. 2003, 85, 145–158. [Google Scholar] [CrossRef]
- Thakur, T.; Swamy, S.L. Analysis of land use, diversity, biomass, C and nutrient storage of a dry tropical forest ecosystem of India using satellite remote sensing and GIS techniques. In Proceedings of the International Forestry and Environment Symposium; University of Sri Jayewardenepura, Nugegoda, Sri Lanka, 26–27 November 2010; Volume 15. [Google Scholar]
- Ozdemir, I.; Karnieli, A. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 701–710. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Ju, W.; Li, M. IA-SDSS: A GIS-based land use decision support system with consideration of carbon sequestration. Environ. Model. Softw. 2010, 25, 539–553. [Google Scholar] [CrossRef]
- Gernhardt, S.; Adam, N.; Eineder, M.; Bamler, R. Potential of very high resolution SAR for persistent scatterer interferometry in urban areas. Ann. GIS 2010, 16, 103–111. [Google Scholar] [CrossRef]
- Li, M.; Tan, Y.; Pan, J.; Peng, S. Modeling forest aboveground biomass by combining spectrum, textures and topographic features. Front. For. China 2008, 3, 10–15. [Google Scholar] [CrossRef]
- Baumann, G. How to assess rangeland condition in semiarid ecosystems? In The Indicative Value of Vegetation in the High Atlas Mountains, Morocco; Universität zu Köln: Cologne, Germany, 2009. [Google Scholar]
- Aranha, J.T.; Viana, H.F.; Rodrigues, R. Vegetation classification and quantification by satellite image processing. A case study in North Portugal. In Proceedings of the International Conference and Exhibition on Bioenergy; Universidade do Minho, Guimarães, Portugal, 6–9 April 2008; p. 7. [Google Scholar]
- Le Maire, G.; François, C.; Soudani, K.; Berveiller, D.; Pontailler, J.-Y.; Bréda, N.; Genet, H.; Davi, H.; Dufrêne, E. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 2008, 112, 3846–3864. [Google Scholar] [CrossRef]
- Maynard, C.L.; Lawrence, R.L.; Nielsen, G.A.; Decker, G. Modeling vegetation amount using bandwise regression and ecological site descriptions as an alternative to vegetation indices. GIScience Remote Sens. 2007, 44, 68–81. [Google Scholar] [CrossRef]
- Labrecque, S.; Fournier, R.A.; Luther, J.E.; Piercey, D. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. For. Ecol. Manag. 2006, 226, 129–144. [Google Scholar] [CrossRef]
- Smith, W.K.; Dannenberg, M.P.; Yan, D.; Herrmann, S.; Barnes, M.L.; Barron-Gafford, G.A.; Biederman, J.A.; Ferrenberg, S.; Fox, A.M.; Hudson, A.; et al. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sens. Environ. 2019, 233, 111401. [Google Scholar] [CrossRef]
- Qi, J.; Huete, A.R.; Cabot, F.; Chehbouni, A. Bidirectional properties and utilizations of high-resolution spectra from a semiarid watershed. Water Resour. Res. 1994, 30, 1271–1279. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Rango, A. Remote sensing applications to hydrology: Introduction. Hydrol. Sci. J. 1996, 41, 429–431. [Google Scholar] [CrossRef]
- Al-Ahmadi, F.S.; Hames, A.S. Comparison of four classification methods to extract land use and land cover from raw satellite images for some remote arid areas, kingdom of Saudi Arabia. Earth 2009, 20, 167–190. [Google Scholar] [CrossRef]
- Abburu, S.; Golla, S.B. Satellite image classification methods and techniques: A review. Int. J. Comput. Appl. 2015, 119. [Google Scholar] [CrossRef]
- Wylie, B.; Denda, I.; Pieper, R.; Harrington, J.; Reed, B.; Southward, G. Satellite-Based Herbaceous Biomass Estimates in the Pastoral Zone of Niger. J. Range Manag. 1995, 48, 159–164. [Google Scholar] [CrossRef]
- Schucknecht, A.; Meroni, M.; Kayitakire, F.; Rembold, F.; Boureima, A. Biomass estimation to support pasture management in Niger. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 109. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J.; Vanpraet, C.L.; Sharman, M.J.; Van Ittersum, G. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sens. Environ. 1985, 17, 233–249. [Google Scholar] [CrossRef]
- Diouf, A.; Lambin, E.F. Monitoring land-cover changes in semi-arid regions: Remote sensing data and field observations in the Ferlo, Senegal. J. Arid Environ. 2001, 48, 129–148. [Google Scholar] [CrossRef]
- Olsen, J.L.; Miehe, S.; Ceccato, P.; Fensholt, R. Does EO NDVI seasonal metrics capture variations in species composition and biomass due to grazing in semi-arid grassland savannas? Biogeosciences 2015, 12, 4407–4419. [Google Scholar] [CrossRef] [Green Version]
- McGwire, K.; Minor, T.; Fenstermaker, L. Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments. Remote Sens. Environ. 2000, 72, 360–374. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, G.; Zhang, X. Estimation of green aboveground biomass of desert steppe in Inner Mongolia based on red-edge reflectance curve area method. Biosyst. Eng. 2011, 109, 385–395. [Google Scholar] [CrossRef]
- Mangiarotti, S.; Mazzega, P.; Jarlan, L.; Mougin, E.; Baup, F.; Demarty, J. Evolutionary bi-objective optimization of a semi-arid vegetation dynamics model with NDVI and σ 0 satellite data. Remote Sens. Environ. 2008, 112, 1365–1380. [Google Scholar] [CrossRef]
- Svoray, T.; Shoshany, M. Herbaceous biomass retrieval in habitats of complex composition: A model merging SAR images with unmixed Landsat TM data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1592–1601. [Google Scholar] [CrossRef]
- Svoray, T.; Shoshany, M. SAR-based estimation of areal aboveground biomass (AAB) of herbaceous vegetation in the semi-arid zone: A modification of the water-cloud model. Int. J. Remote Sens. 2002, 23, 4089–4100. [Google Scholar] [CrossRef]
- Svoray, T.; Shoshany, M.; Curran, P.J.; Foody, G.M.; Perevolotsky, A. Relationship between green leaf biomass volumetric density and ERS-2 SAR backscatter of four vegetation formations in the semi-arid zone of Israel. Int. J. Remote Sens. 2001, 22, 1601–1607. [Google Scholar] [CrossRef]
- Zandler, H.; Brenning, A.; Samimi, C. Quantifying dwarf shrub biomass in an arid environment: Comparing empirical methods in a high dimensional setting. Remote Sens. Environ. 2015, 158, 140–155. [Google Scholar] [CrossRef]
- Lal, R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Clim. Chang. 2001, 51, 35–72. [Google Scholar] [CrossRef]
- Oldeland, J.; Dorigo, W.; Wesuls, D.; Jürgens, N. Mapping bush encroaching species by seasonal differences in hyperspectral imagery. Remote Sens. 2010, 2, 1416–1438. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Brandt, M.; Liu, Y.Y.; Verger, A.; Tagesson, T.; Diouf, A.A.; Rasmussen, K.; Mbow, C.; Wang, Y.; Fensholt, R. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 2016, 177, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Bradley, A.V.; Haughan, A.E.; Al-Dughairi, A.; McLaren, S.J. Spatial variability in shrub vegetation across dune forms in central Saudi Arabia. J. Arid Environ. 2019, 161, 72–84. [Google Scholar] [CrossRef]
- Drake, J.B.; Knox, R.G.; Dubayah, R.O.; Clark, D.B.; Condit, R.; Blair, J.B.; Hofton, M. Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensing: Factors affecting the generality of relationships. Glob. Ecol. Biogeogr. 2003, 12, 147–159. [Google Scholar] [CrossRef]
- Carson, H.W.; Lass, L.W.; Callihan, R.H. Detection of yellow hawkweed (Hieracium pratense) with high resolution multispectral digital imagery. Weed Technol. 1995, 9, 477–483. [Google Scholar] [CrossRef]
- Franklin, J.F.; Spies, T.A.; Van Pelt, R.; Carey, A.B.; Thornburgh, D.A.; Berg, D.R.; Lindenmayer, D.B.; Harmon, M.E.; Keeton, W.S.; Shaw, D.C. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 2002, 155, 399–423. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Johnson, D.M.; Lyon, J.G.; Crotwell, J. Impacts of imagery temporal frequency on land-cover change detection monitoring. Remote Sens. Environ. 2004, 89, 444–454. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Ohmann, J.; Gregory, M.; Roberts, H.; Yang, Z.; Bell, D.M.; Kane, V.; Hughes, M.J.; Cohen, W.B.; Powell, S. An empirical, integrated forest biomass monitoring system. Environ. Res. Lett. 2018, 13, 025004. [Google Scholar] [CrossRef]
- Timothy, D.; Onisimo, M.; Riyad, I. Quantifying aboveground biomass in African environments: A review of the trade-offs between sensor estimation accuracy and costs. Trop. Ecol. 2016, 57, 393–405. [Google Scholar]
- Basuki, T.M.; Van Laake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar] [CrossRef]
- Kajisa, T.; Murakami, T.; Mizoue, N.; Top, N.; Yoshida, S. Object-based forest biomass estimation using Landsat ETM+ in Kampong Thom Province, Cambodia. J. For. Res. 2009, 14, 203–211. [Google Scholar] [CrossRef]
- Hame, T.; Salli, A.; Andersson, K.; Lohi, A. A new methodology for the estimation of biomass of coniferdominated boreal forest using NOAA AVHRR data. Int. J. Remote Sens. 1997, 18, 3211–3243. [Google Scholar] [CrossRef]
- He, Q. Estimation of coniferous forest above-ground biomass using LiDAR and SPOT-5 data. In Proceedings of the 2012 2nd Remote Sensing, Environment and Transportation Engineering (RSETE), Nanjing, China, 1–3 June 2012; pp. 1–4. [Google Scholar]
- Basuki, T.M.; Skidmore, A.K.; Hussin, Y.A.; Van Duren, I. Estimating tropical forest biomass more accurately by integrating ALOS PALSAR and Landsat-7 ETM+ data. Int. J. Remote Sens. 2013, 34, 4871–4888. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.O.; Jones, L.A.; Kimball, J.S.; McDonald, K.C. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sens. Environ. 2011, 115, 1102–1114. [Google Scholar] [CrossRef]
- Brandt, M.; Wigneron, J.-P.; Chave, J.; Tagesson, T.; Penuelas, J.; Ciais, P.; Rasmussen, K.; Tian, F.; Mbow, C.; Al-Yaari, A. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2018, 2, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant. Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Aubrecht, D.M.; Helliker, B.R.; Goulden, M.L.; Roberts, D.A.; Still, C.J.; Richardson, A.D. Continuous, long-term, high-frequency thermal imaging of vegetation: Uncertainties and recommended best practices. Agric. For. Meteorol. 2016, 228, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Brodrick, P.G.; Anderson, C.B.; Vaughn, N.; Knapp, D.E.; Martin, R.E. Progressive forest canopy water loss during the 2012–2015 California drought. Proc. Natl. Acad. Sci. USA 2016, 113, E249–E255. [Google Scholar] [CrossRef] [Green Version]
- Garbulsky, M.F.; Peñuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- Schneider, F.D.; Morsdorf, F.; Schmid, B.; Petchey, O.L.; Hueni, A.; Schimel, D.S.; Schaepman, M.E. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 2017, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
No | Component | Calculation Method | Source |
---|---|---|---|
1 | AGB | Destructive OR Nondestructive Methods | [18] |
2 | BGB | 20% of Above-ground biomass | [24] |
3 | Litters | 10–20% of Above-ground biomass each | [38] |
4 | Debris | ||
5 | SOC | Total combustion method | [39] |
Output Variable | Allometric Equations | Input Variable | Location | Source |
---|---|---|---|---|
AGB of palms (general) | =1.697 × 10−3 × DBH1.754 × H2.151 | DBH and H | Colombia and Venezuela | [61] |
Biomass of palms (general) | =10.0 + 6.4 × H =4.5 + 7.7 × Ht | H and Ht | Tropical forests | [2] |
AGB of Elaeis guineensis | =725 + 197 × H | H | Malaysia | [49] |
AGB of A. inexicanwn | =0.3060 × DBH1.837 × 1.035 | DBH | Mexico | [62] |
Biomass of Elaeis guineensis | =−0.00020823Age4 + 0.000153744Age3 − 0.011636Age2 + 7.3219Age − 6.3934 | Age | Malaysia | [56] |
AGBfresh of Elaeis guineensis | =1.5729 × Ht − 8.2835 | Ht | West Africa | [63] |
AGBdry of Elaeis guineensis | =0.3747 × Ht + 3.6334 | |||
Trunk biomass of E.guineensis | =0.1 × TD × H × (DBH/2)2 | H, TD, DBH, W, D, and Age | Tropical region | [64] |
Frond biomass of E.guineensis | =0.02 × W × D + 0.21 | |||
AGB of Elaeis guineensis | =0.976 × H + 0.0706 | H | Indonesia | [65] |
AGB of Euterpe precatoria | =13.59 × H − 108.8 | H | Amazonia | [66] |
AGB of palm (general) | =0.0950 × (DF × DBH2 × H) | DF, DBH, and H | Amazonia | [66] |
AGB of Euterpe precatoria | =0.167 × (DBH2 × H × TD)0.883 | DBH, H, and TD | Amazonia | [67] |
AGB of Areca catechu | =0.03883 × H × DBH1.2 | DBH and H | Malaysia | [16] |
AGB of Cocos nucifera | =3.7964 × H1.8130 | H | Tanzania | [68] |
Crown biomass of P. dactylifera | =14.034e0.0554 × CA | Crown area | Abu Dhabi, UAE | [58] |
Trunk biomass of P. dactylifera | =40.725 × Ht0.9719 | Ht | Abu Dhabi, UAE | [58] |
Sensor | Type | Bands | Spatial Resolution (m) | Temporal Resolution | Swath (km) | Cost |
---|---|---|---|---|---|---|
AVHRR | Multispectral | 5 bands (Red, IR, and 3 Thermal IR) | 1100 | 12 h | 2500 | Free |
MODIS | Multispectral | 36 bands (from Blue to Thermal IR) | 250, 500 and 1000 | 1–2 days | 2330 | Free |
SPOT VEG | Multispectral | 4 bands (Blue, red, NIR, and SWIR) | 1000 | 1 day | 2250 | Free |
TM | Multispectral | 7 bands (3 VIS, 3 IR and Thermal IR) | 30 and 120 | 16 days | 185 | Free |
ETM+ | Multispectral | 9 bands (3 VIS, 3 IR and 2 Thermal IR and 1 PAN) | 15, 30 and 60 | 16 days | 185 | Free |
SPOT | Multispectral | 4 bands (2 VIS, 1 NIR, and 1 PAN) | 5, 10 and 20 | 26 days | 60 | Commercial |
Landsat 8 OLI | Multispectral | 11 bands (1 Ultra, 3 VIS, 3 IR, 1 Cirrus, 2 Thermal IR, and 1 PAN) | 15, 30 and 100 | 16 days | 185 | Free |
LISS-III (IRS) | Multispectral | 5 bands (2 VIS, 2 IR, and 1 PAN) | 5.3, 23 and 50 | 5–24 days | 142 | Commercial |
Sentinel-2 | Multispectral | 13 bands (4 VIS, 6 NIR and 3 SWIR) | 10, 20, and 60 | 5–10 days | 290 | Free |
IKONOS | Multispectral | 5 bands (3 VIS, 1 IR, and 1 PAN) | 1 and 4 | 3 days | 11 | Commercial |
World View2 | Multispectral | 9 bands (6 VIS, 2 IR, 1 PAN) | 1.84 and 0.46 | 1.1 days | 16 | Commercial |
Quickbird | Multispectral | 5 bands (4 bands and 1 PAN) | 0.61 and 2.44 | 3 days | 16 | Commercial |
HyMap | Hyperspectral | 126 bands | 2–10 | Airborne | 2.3 and 4.6 | Commercial |
AVIRIS | Hyperspectral | 224 bands (from VIS to MIR) | 2.5 to 20 | Airborne | 1.9 and 11 | Commercial |
Sensor Types | Approaches/Resolutions | Limitations | Benefits |
---|---|---|---|
Optical Sensors | Coarse Resolution Spatial (>100 m) Examples: MODIS, AVHRR, NOAA, METEOSAT and SPOT Vegetation | Average R value of 0.58, with average predictive of 42% Saturation of spectral data at high biomass density Mismatch between the size of field plots, field measurements and pixel size (mixed pixels) Cloud cover Limited to discriminating vegetation structure | Availability of data with huge datasets archived Estimation and mapping of AGB at continental and global scale Repetitive, with high temporal frequency increasing the probability of acquiring cloud-free data Provide consistent spatial data |
Medium Spatial Resolution (10–100 m) Examples: TM Landsat, ETM+, OLI and SPOT | Average R value of 0.68 with average predictive error of 32% Single pixel can encompass many tree crown or noncrown features No reliable indicators of biomass in closed canopy structure Not all texture measures can effectively extract biomass information | Provide consistent global data Archived datasets back to 1972 for Landsat Small to large-scale mapping Cost-effective (Free) | |
Fine Spatial Resolution (<5 m) Examples: Quickbird, WorldView-2, and IKONOS | Need large data storage and processing time High cost, and more costly when it applies on large areas | Average R value of 0.75 and average predictive error (27%) Estimate tree crown size Validation at localized scale | |
Hyperspectral Many, very narrow, and contiguous spectral bands Examples: AISA Eagle, HYDICE and ALOS | Cloud cover High cost Suffers from band redundancy and saturation in dense canopy Computationally intensive and technically demanding | Average R value of 0.83 Allows discrimination of subtler differences (species level) Potential for the future of RS-based biomass estimation models Integration with LiDAR can improve results. | |
RADAR Sensors | Approaches involve the use of either backscatter values or interferometry techniques Examples: Microwave/radar i.e., ALOS PALSAR, ERS-1, Envisat and JERS-1. | Not accurate in mountainous region due to spurious relation between AGB and backscatter values. Signal saturation in mature forests at various wavelengths (C, L and P bands) Polarization (e.g., HV and VV) problems Low spatial resolution makes it inaccurate for AGB assessment at the species level. Cannot be applied on any vegetation type without considering stand characteristics and ground conditions. | Measure forest vertical structure Generally free Can be accurate for young and sparse forests Repetitive data Can give an average R value of 0.74, with average predictive error of 25%. Integrating RADAR with multi source data (optical, microwave data and GIS modeling techniques) is a promising approach. |
LiDAR Sensors | Using laser light Spatial Resolution: (0.5 cm–5 m) Examples: Carbon 3D | Repetitive at high cost and logistics deployment Requires extensive field data calibration Highly expensive Technically demanding | Penetrate cloud cover and canopy Among all sensors option, LiDAR is the easiest to use for the extraction of tree attributes for estimating AGB with great accuracy Accurate for estimating forest biomass in all spatial variability (sparse, young or mature forests) - Average R value of 0.89, with average predictive error equal 14% - Potential for satellite-based system to estimate global forest carbon stock |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issa, S.; Dahy, B.; Ksiksi, T.; Saleous, N. A Review of Terrestrial Carbon Assessment Methods Using Geo-Spatial Technologies with Emphasis on Arid Lands. Remote Sens. 2020, 12, 2008. https://doi.org/10.3390/rs12122008
Issa S, Dahy B, Ksiksi T, Saleous N. A Review of Terrestrial Carbon Assessment Methods Using Geo-Spatial Technologies with Emphasis on Arid Lands. Remote Sensing. 2020; 12(12):2008. https://doi.org/10.3390/rs12122008
Chicago/Turabian StyleIssa, Salem, Basam Dahy, Taoufik Ksiksi, and Nazmi Saleous. 2020. "A Review of Terrestrial Carbon Assessment Methods Using Geo-Spatial Technologies with Emphasis on Arid Lands" Remote Sensing 12, no. 12: 2008. https://doi.org/10.3390/rs12122008
APA StyleIssa, S., Dahy, B., Ksiksi, T., & Saleous, N. (2020). A Review of Terrestrial Carbon Assessment Methods Using Geo-Spatial Technologies with Emphasis on Arid Lands. Remote Sensing, 12(12), 2008. https://doi.org/10.3390/rs12122008