Changes in Vegetation Phenology and Productivity in Alaska Over the Past Two Decades
Abstract
:1. Introduction
2. Methods
2.1. MODIS Vegetation Index and Phenology Metrics
2.2. Sub-Regions, Land Cover, and Elevation Map Layers
2.3. Statistical Analysis Methods
3. Results
3.1. Start of the Growing Season Date
3.2. Growing Season Green Vegetation Cover
3.3. Vegetation Growth Stress Index
3.4. Regional Case Study Locations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jia, G.; Epstein, H.; Walker, D. Greening of Arctic Alaska, 1981–2001. Geophys. Res. Lett. 2003, 30, 2067. [Google Scholar] [CrossRef]
- Ju, J.; Masek, J. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens. Environ. 2016, 176, 1–16. [Google Scholar] [CrossRef]
- Swanson, D. Trends in greenness and snow cover in Alaska’s arctic national parks, 2000-2016. Remote Sens. 2017, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Verbyla, D.; Hegel, T.; Nolin, A.; van de Kerk, M.; Kurkowski, T.; Prugh, L. Remote sensing of 2000–2016 alpine spring snowline elevation in Dall sheep mountain ranges of Alaska and western Canada. Remote Sens. 2017, 9, 1157. [Google Scholar] [CrossRef] [Green Version]
- Gustine, D.; Barboza, P.; Adams, L.; Griffith, B.; Cameron, R.; Whitten, K. Advancing the match-mismatch framework for large herbivores in the Arctic: Evaluating the evidence for a trophic mismatch in caribou. PLoS ONE 2017, 12, e0171807. [Google Scholar] [CrossRef] [PubMed]
- Rattenbury, K.L.; Schmidt, J.H.; Swanson, D.K.; Borg, B.L.; Mangipane, B.A.; Sousanes, P.J. Delayed spring onset drives declines in abundance and recruitment in a mountain ungulate. Ecosphere 2018, 9, e02513. [Google Scholar] [CrossRef] [Green Version]
- Boelman, N.T.; Liston, G.E.; Gurarie, E.; Meddens, A.J.; Mahoney, P.J.; Kirchner, P.B.; Bohrer, G.; Brinkman, T.J.; Cosgrove, C.L.; Eitel, J.U.; et al. Integrating snow science and wildlife ecology in Arctic-boreal North America. Environ. Res. Lett. 2019, 14, 010401. [Google Scholar] [CrossRef]
- Potter, C.S.; Alexander, O. Changes in vegetation cover and snowmelt timing in the Noatak National Preserve of Northwestern Alaska estimated from MODIS and Landsat satellite image analysis. Eur. J. Remote Sens. 2019, 52, 542–556. [Google Scholar] [CrossRef] [Green Version]
- Overpeck, J.; Hughen, K.; Hardy, D.; Bradley, R.; Case, R.; Douglas, M.; Finney, B.; Gajewski, K.; Jacoby, G.; Jennings, A.; et al. Arctic environmental change of the last four centuries. Science 1997, 278, 1251–1256. [Google Scholar] [CrossRef] [Green Version]
- Tape, K.; Sturm, M.; Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 2006, 12, 686–702. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Hik, D. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 2011, 6, 045509. [Google Scholar] [CrossRef] [Green Version]
- Elmendorf, S.C.; Henry, G.H.R.; Hollister, R.D.; Björk, R.G.; Boulanger-Lapointe, N.; Cooper, E.P.; Wipf, S. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang. 2012, 2, 453–457. [Google Scholar] [CrossRef]
- Wang, J.; Sulla-Menashe, D.; Woodcock, C.; Sonnentag, O.; Keeling, R.; Friedl, M. Extensive land cover change across Arctic–Boreal Northwestern North America from disturbance and climate forcing. Glob. Change Biol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Potter, C.S.; Brooks, V. Global analysis of empirical relations between annual climate and seasonality of NDVI. Int. J. Remote Sens. 1998, 19, 2921–2948. [Google Scholar] [CrossRef]
- Meier, G.; Brown, J.; Evelsizer, R.; Vogelmann, J. Phenology and climate relationships in aspen (Populus tremuloides Michx.) forest and woodland communities of southwestern Colorado. Ecol. Indic. 2015, 48, 189–197. [Google Scholar] [CrossRef]
- Parent, M.B.; Verbyla, D. The browning of Alaska’s boreal forest. Remote Sens. 2010, 2, 2729–2747. [Google Scholar] [CrossRef] [Green Version]
- Beck, P.S.; Goetz, S.J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: Ecological variability and regional differences. Environ. Res. Lett. 2011, 6, 045501. [Google Scholar] [CrossRef]
- Rogers, B.M.; Solvik, K.; Hogg, E.; Ju, J.; Masek, J.G.; Michaelian, M.; Berner, L.; Goetz, S. Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. Glob. Change Biol. 2018, 24, 2284–2304. [Google Scholar] [CrossRef]
- Potter, C.; Li, S.; Crabtree, R. Changes in Alaskan tundra ecosystems estimated from MODIS greenness trends, 2000 to 2010. J. Geophys. Remote Sens. 2013, 2, 107. [Google Scholar]
- Potter, C.S. Regional analysis of MODIS satellite greenness trends for ecosystems of interior Alaska. GIScience Remote Sens. 2014. [Google Scholar] [CrossRef]
- Potter, C.S. Changes in vegetation cover of the Arctic National Wildlife Refuge estimated from MODIS greenness trends. Earth Interact. 2019, 23, 1–18. [Google Scholar] [CrossRef]
- Zhu, J.; Miller, A.; Lindsay, C.; Broderson, D.; Heinrichs, T.; Martyn, P. MODIS NDVI Products and Metrics User Manual, Version 1.0; Geographic Information Network of Alaska, University of Alaska: Fairbanks, Alaska, 2013; p. 18. Available online: http://static.gina.alaska.eud (accessed on 9 January 2020).
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.; Price, K.; Kettle, W. Relations between NDVI, grassland production, and crop yield in the central Great Plains. Geocarto Int. 2005, 20, 5–11. [Google Scholar] [CrossRef]
- Campbell, J.; Wynne, R. Introduction to Remote Sensing; The Guilford Press: New York, NY, USA, 2011; p. 662. [Google Scholar]
- Olsen, J.; Miehe, S.; Ceccato, P.; Fensholt, R. Does EO NDVI seasonal metrics capture variations in species composition and biomass due to grazing in semi-arid grassland savannas? Biogeosciences 2015, 12, 4407–4419. [Google Scholar] [CrossRef] [Green Version]
- Berner, L.T.; Jantz, P.; Tape, K.D.; Goetz, S.J. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environ. Res. Lett. 2018, 13, 035002. [Google Scholar] [CrossRef] [Green Version]
- Haibo, L.; Wang, C.; Zhang, L.; Li, X.; Zang, S. Satellite monitoring of boreal forest phenology and its climatic responses in Eurasia. Int. J. Remote Sens. 2017, 38, 5446–5546. [Google Scholar]
- Jeong, S.-J.; Ho, C.-H.; Gim, H.-J.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period,1982–2008. Glob. Change Biol. 2011, 17, 2385–2399. [Google Scholar] [CrossRef]
- Shen, M.; Tang, Y.; Chen, J.; Yang, X.; Wang, C. Earlier-season vegetation has greater temperature sensitivity of spring phenology in Northern Hemisphere. PLoS ONE 2014, 9, e88178. [Google Scholar] [CrossRef]
- Wang, X.; Piao, S.; Xu, X.; Ciais, P.; MacBean, N.; Myneni, R.; Li, L. Has the advancing onset of spring vegetation green-up slowed down or changed abruptly over the last three decades? Glob. Ecol. Biogeogr. 2015, 24, 621–631. [Google Scholar] [CrossRef]
- Monitoring Trends in Burn Severity (MTBS). Fire Level Geospatial Data, MTBS Project, U. S. Department of Agriculture Forest Service/U.S. Geological Survey. 2017. Available online: http://mtbs.gov/direct-download (accessed on 9 January 2020).
- Huete, A.; Didan, K.; Miura, T.; Rodriquez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S.; Wheeler, B.; Iiames, J.S.; Campbell, J.B. An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS NDVI multi-temporal data. Remote Sens. Environ. 2016, 174, 258–265. [Google Scholar] [CrossRef]
- LP-DACC: NASA Land Processes Distributed Active Archive Center. MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG (MOD13C2), Version 005; USGS/Earth Resource s Observation and Science (EROS) Center: Sioux Falls, South Dakota, 2007. [Google Scholar]
- Reed, B.; Budde, M.; Spencer, P.; Miller, A. Satellite-Derived Measures of Landscape Processes: Draft Monitoring Protocol for the Southwest Alaska I&M Network, Version 1.0; National Park Service, Inventory & Monitoring Program, Southwest Alaska Network: Anchorage, Alaska, 2006; p. 30. [Google Scholar]
- Wang, P.; Huang, F.; Kang, S.; Zhao, L.; Sun, N.; Han, Y. Evaluate rice phenological differences under heavy metal stress using NDVI time-series by blending MODIS and Landsat data. In Proceedings of the SPIE 10780, Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VII, Honolulu, HI, USA, 23 October 2018; p. 107800. [Google Scholar] [CrossRef]
- Kautz, D. Land Resource Regions and Major Land Resource Areas of Alaska; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2004. Available online: http://www.ak.nrcs.usda.gov/technical/lrr.html (accessed on 31 January 2020).
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States—Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Selkowitz, D.; Stehman, S. Thematic accuracy of the National Land Cover Database (NLCD) 2001 land cover for Alaska. Remote Sens. Environ. 2011, 115, 1401–1407. [Google Scholar] [CrossRef]
- Seaber, P.R.; Kapinos, F.P.; Knapp, G.L. Hydrologic Unit Maps: U.S. Geological Survey Water-Supply Paper 2294; ASCE Press: Reston, Virginia, 1987; p. 63. [Google Scholar]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.; Neigh, C.; Reichstein, M. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Forkel, M.; Wutzler, T. Green-brown—Land surface phenology and trend analysis. A package for the R software. Version 2.2. 2015-04-15. 2015. Available online: http://greenbrown.r-forge.r-project.org/ (accessed on 9 January 2020).
- Naito, A.T.; Cairns, D.M. Patterns of shrub expansion in Alaskan arctic river corridors suggest phase transition. Ecol. Evol. 2015, 5, 87–101. [Google Scholar] [CrossRef] [Green Version]
- Tape, K.D.; Gustine, D.D.; Ruess, R.W.; Adams, L.G.; Clark, J.A. Range expansion of moose in Arctic Alaska linked to warming and increased shrub habitat. PLoS ONE 2016, 11, e015263. [Google Scholar] [CrossRef]
- Tillotson, M.D.; Quinn, T.P. Beyond correlation in the detection of climate change impacts: Testing a mechanistic hypothesis for climatic influence on Sockeye salmon (Oncorhynchus nerka) productivity. PLoS ONE 2016, 11, e0154356. [Google Scholar] [CrossRef]
- Raynolds, M.; Walker, D.; Verbyla, D.; Munger, C. Patterns of change within a tundra landscape: 22-year Landsat NDVI trends in anArea of the northern foothills of the Brooks Range, Alaska. Arct. Antarct. Alp. Res. 2013, 45, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.; Walker, D.; Welker, J.; Arft, A.; Bardsley, T.; Brooks, P.; Fahnestock, T.; Jones, M.; Losleben, M.; Parsons, A.; et al. Long-term experimental manipulation of winter snow regime and summer temperature in Arctic and alpine tundra. Hydrol. Process. 1999, 13, 2315–2330. [Google Scholar] [CrossRef]
- Wahren CH, A.; Walker, W.D.; Bret-Harte, M.S. Vegetation responses in Alaskan Arctic tundra after 8 years of a summer warming winter snow manipulation experiment. Glob. Change Biol. 2005, 11, 537–552. [Google Scholar] [CrossRef]
- Gonsamo, A.; Ter-Mikaelian, M.T.; Chen, J.M.; Chen, J. Does earlier and increased spring plant growth lead to reduced summer soil moisture and plant growth on landscapes typical of tundra-taiga interface? Remote. Sens. 2019, 11, 1989. [Google Scholar] [CrossRef] [Green Version]
- Potter, C.S. Changes in vegetation cover of Yukon River drainages in Interior Alaska estimated from MODIS greenness trends, 2000 to 2018. Northwest Sci. 2020, in press. [Google Scholar]
- Potter, C.S. Recovery rates of wetland vegetation greenness in severely burned ecosystems of Alaska derived from satellite image analysis. Remote. Sens. 2018, 10, 1456. [Google Scholar] [CrossRef] [Green Version]
- The Nature Conservancy (TNC). Alaska Peninsula and Bristol Bay Basin Ecoregional Assessment; Anchorage, Alaska. 2004. Available online: https://www.conservationgateway.org/ConservationPlanning/SettingPriorities/EcoregionalReports/Documents/Alaska_Peninsula_and_Bristol_Bay_Basin_Ecoregional_Assessment.pdf (accessed on 31 January 2020).
- Pletnikoff, K.; Poe, A.; Murphy, K.; Heffner, L. Promoting Resilience and Adaptation in Coastal Arctic Alaska, Workshop Synthesis; Alaska Landscape Conservation Cooperatives and Aleutian Pribilof Islands Association: Nome, Alaska, 2016; p. 80. Available online: https://adaptalaska.org/wp-content/uploads/2017/10/ak-adaptation-workshop.pdf (accessed on 31 January 2020).
- Berg, E.; Henry, J.; Fastie, C.; de Volder, A.; Matsuoka, S. Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: Relationship to summer temperatures and regional differences in disturbance regimes. For. Ecol. Manag. 2006, 227, 219–232. [Google Scholar] [CrossRef]
- Trammell, E.J.; Boucher, T.; Carlson, M.L.; Fresco, N.; Fulkerson, J.R.; McTeague, M.L.; Reimer, J.; Schmidt, J. (Eds.) Central Yukon Rapid Ecoregional Assessment; Bureau of Land Management, U.S. Department of the Interior: Anchorage, Alaska, 2016; p. 879.
- Berg, E.; Hillman, K.M.; Dial, R.; DeRuwe, A. Recent woody invasion of wetlands on the Kenai Peninsula Lowlands, south-central Alaska: A major regime shift after 18000 years of wet Sphagnum–sedge peat recruitment. Can. J. For. Res. 2009, 39, 2033–2046. [Google Scholar] [CrossRef]
- Dial, R.J.; Smeltz, T.S.; Sullivan, P.; Rinas, C.; Timm, K.; Geck, J.; Tobin, C.; Golden, T.; Berg, E. Shrubline but not treeline advance matches climate velocity in montane ecosystems of south-central Alaska. Glob. Change Biol. 2016, 22, 1841–1856. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Kerby, J.T.; Phoenix, G.K.; Bjerke, J.W.; Epstein, H.E.; Assmann, J.J.; John, C.; Andreu-Hayles, L.; Angers-Blondin, S.; Beck, P.S.; et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 2020, 10, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Pattison, R.R.; Jorgenson, J.C.; Raynolds, M.K.; Welker, J.M. Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009. Ecosystems 2015, 18, 707–719. [Google Scholar] [CrossRef]
- Sekhon, N.S.; Hassan, Q.; Sleep, R. Evaluating potential of MODIS-based indices in determining “snow gone” stage over forest-dominant regions. Remote Sens. 2010, 2, 1348–1363. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Jönsson, A.; Bolmgren, K.; Langvall, O.; Eklundh, L. Disentangling remotely-sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index. Remote Sens. Environ. 2017, 198, 203–212. [Google Scholar] [CrossRef]
- Karkauskaite, P.; Tagesson, T.; Fensholt, R. Evaluation of the plant phenology index (PPI), NDVI and EVI for start-of-season trend analysis of the Northern Hemisphere boreal zone. Remote. Sens. 2017, 9, 485. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potter, C.; Alexander, O. Changes in Vegetation Phenology and Productivity in Alaska Over the Past Two Decades. Remote Sens. 2020, 12, 1546. https://doi.org/10.3390/rs12101546
Potter C, Alexander O. Changes in Vegetation Phenology and Productivity in Alaska Over the Past Two Decades. Remote Sensing. 2020; 12(10):1546. https://doi.org/10.3390/rs12101546
Chicago/Turabian StylePotter, Christopher, and Olivia Alexander. 2020. "Changes in Vegetation Phenology and Productivity in Alaska Over the Past Two Decades" Remote Sensing 12, no. 10: 1546. https://doi.org/10.3390/rs12101546
APA StylePotter, C., & Alexander, O. (2020). Changes in Vegetation Phenology and Productivity in Alaska Over the Past Two Decades. Remote Sensing, 12(10), 1546. https://doi.org/10.3390/rs12101546