A New Set of MODIS Land Products (MCD18): Downward Shortwave Radiation and Photosynthetically Active Radiation
Abstract
1. Background
2. Algorithm Description
3. Data Processing and Product Generation
4. Product Assessment and Validation
4.1. Field Data and Processing
4.2. Validation of Instantaneous Product
4.3. Validation of 3-h and Daily Products
4.4. Comparison with Other DSR Products
4.5. Validation of PAR Product
5. Summary and Future Plans
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liang, S.L.; Wang, D.D.; He, T.; Yu, Y.Y. Remote sensing of earth’s energy budget: Synthesis and review. Int. J. Digit. Earth 2019, 12, 737–780. [Google Scholar] [CrossRef]
- Huang, G.; Li, Z.; Li, X.; Liang, S.; Yang, K.; Wang, D.; Zhang, Y. Estimating surface solar irradiance from satellites: Past, present, and future perspectives. Remote Sens. Environ. 2019, 233, 111371. [Google Scholar] [CrossRef]
- Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.A.; Nobre, C.A.; et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.M.; Zhang, Q.Y.; Saleska, S.; Hutyra, L.; de Camargo, P.; Wofsy, S.; Frolking, S.; Boles, S.; Keller, M.; Moore, B. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sens. Environ. 2005, 94, 105–122. [Google Scholar] [CrossRef]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations-description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef]
- Román, M.O.; Schaaf, C.B.; Lewis, P.; Gao, F.; Anderson, G.P.; Privette, J.L.; Strahler, A.H.; Woodcock, C.E.; Barnsley, M. Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes. Remote Sens. Environ. 2010, 114, 738–760. [Google Scholar] [CrossRef]
- Huang, G.; Liang, S.; Lu, N.; Ma, M.; Wang, D. Toward a Broadband Parameterization Scheme for Estimating Surface Solar Irradiance: Development and Preliminary Results on MODIS Products. J. Geophys. Res. Atmos. 2018, 123, 2180–12193. [Google Scholar] [CrossRef]
- Mueller, R.W.; Dagestad, K.F.; Ineichen, P.; Schroedter-Homscheidt, M.; Cros, S.; Dumortier, D.; Kuhlemann, R.; Olseth, J.A.; Piernavieja, G.; Reise, C.; et al. Rethinking satellite-based solar irradiance modelling—The SOLIS clear-sky module. Remote Sens. Environ. 2004, 91, 160–174. [Google Scholar] [CrossRef]
- Liang, S.; Zheng, T.; Liu, R.; Fang, H.; Tsay, S.C.; Running, S. Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Zhang, Y.; He, T.; Liang, S.L.; Wang, D.D.; Yu, Y.Y. Estimation of all-sky instantaneous surface incident shortwave radiation from Moderate Resolution Imaging Spectroradiometer data using optimization method. Remote Sens. Environ. 2018, 209, 468–479. [Google Scholar] [CrossRef]
- Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review on Estimation of Land Surface Radiation and Energy Budgets from Ground Measurement, Remote Sensing and Model Simulations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 225–240. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Wang, D.; Liang, S.; Liu, R.; Zheng, T. Estimation of daily-integrated PAR from sparse satellite observations: Comparison of temporal scaling methods. Int. J. Remote Sens. 2010, 31, 1661–1677. [Google Scholar] [CrossRef]
- Liu, R.; Liang, S.; He, H.; Liu, J.; Zheng, T. Mapping incident photosynthetically active radiation from MODIS data over China. Remote Sens. Environ. 2008, 112, 998–1009. [Google Scholar] [CrossRef]
- Huang, G.H.; Ma, M.G.; Liang, S.L.; Liu, S.M.; Li, X. A LUT-based approach to estimate surface solar irradiance by combining MODIS and MTSAT data. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, S.; Zhou, G.; Wu, H.; Zhao, X. Generating Global L and Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ. 2014, 152, 318–332. [Google Scholar] [CrossRef]
- Liang, S. Quantitative Remote Sensing of Land Surfaces; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ohmura, A.; Dutton, E.G.; Forgan, B.; Frohlich, C.; Gilgen, H.; Hegner, H.; Heimo, A.; Konig-Langlo, G.; McArthur, B.; Muller, G.; et al. Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Am. Meteorol. Soc. 1998, 79, 2115–2136. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.H.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Dye, D.G. Spectral composition and quanta-to-energy ratio of diffuse photosynthetically active radiation under diverse cloud conditions. J. Geophys. Res. 2004, 109, D10203. [Google Scholar] [CrossRef]
- Gupta, S.K.; Kratz, D.P.; Wilber, A.C.; Nguyen, L.C. Validation of parameterized algorithms used to derive TRMM-CERES surface radiative fluxes. J. Atmos. Ocean. Technol. 2004, 21, 742–752. [Google Scholar] [CrossRef]
- Ryu, Y.; Jiang, C.; Kobayashi, H.; Detto, M. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sens. Environ. 2018, 204, 812–825. [Google Scholar] [CrossRef]
- Kim, H.Y.; Liang, S. Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data. Remote Sens. Environ. 2010, 114, 2393–2402. [Google Scholar] [CrossRef]
- Wang, D.; Liang, S.; He, T.; Shi, Q. Estimation of daily surface shortwave net radiation from the combined MODIS data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5519–5529. [Google Scholar] [CrossRef]
- Kato, S.; Rose, F.G.; Rutan, D.A.; Thorsen, T.J.; Loeb, N.G.; Doelling, D.R.; Huang, X.L.; Smith, W.L.; Su, W.Y.; Ham, S.H. Surface Irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Data Product. J. Clim. 2018, 31, 4501–4527. [Google Scholar] [CrossRef]
- Zhang, X.T.; Wang, D.D.; Liu, Q.; Yao, Y.J.; Jia, K.; He, T.; Jiang, B.; Wei, Y.; Ma, H.; Zhao, X.; et al. An Operational Approach for Generating the Global Land Surface Downward Shortwave Radiation Product from MODIS Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4636–4650. [Google Scholar] [CrossRef]
Name | Variable | Spatial Resolution | Temporal Resolution | Map Projection |
---|---|---|---|---|
MODIS TOA reflectance | TOA reflectance | 1 km | Instantaneous | MODIS swath |
MODIS geolocation | View geometry, latitude, longitude | 1 km | Instantaneous | MODIS swath |
MCD43A3 | Surface albedo | 500 m | Daily | MODIS Sinusoidal tile |
MERRA2 | Total column water vapor | 0.5° × 0.625° | Hourly | Latitude/longitude |
GTOPO30 DEM | Surface elevation | 30 arc seconds | Static | Latitude/longitude |
Surface reflectance climatology | Surface reflectance | 1 km | Static, available daily | MODIS Sinusoidal tile |
Variable | Unit | Value |
---|---|---|
Soar zenith angle | Degree (°) | 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 |
View zenith angle | Degree (°) | 0, 20, 40, 60, 80 |
Relative azimuth angle | Degree (°) | 0, 30, 60, 90, 120, 150, 180 |
Elevation | km | 0, 1, 2, 4, 6, 8 |
Total precipitable water | g/cm2 | 0, 1.5, 3.0, 4.5, 6.0, 7.5, 9.0, 10.5 |
Optical depth | Unitless | 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 5, 10, 30, 40, 50, 60, 70, 80, 100 |
Site | Latitude | Longitude | Instantaneous DSR | Daily DSR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | Bias (W/m2) | RMSE (W/m2) | Relative RMSE | R2 | Bias (W/m2) | RMSE (W/m2) | Relative RMSE | |||
ASP | −23.80 | 133.89 | 0.888 | 3.2 | 66.7 | 8.9% | 0.877 | −3.9 | 24.4 | 9.3% |
BON | 40.06 | −88.37 | 0.902 | −18.1 | 94.1 | 18.4% | 0.924 | −8.3 | 30.4 | 18.2% |
BOS | 40.13 | −105.24 | 0.826 | −5.4 | 116.5 | 20.2% | 0.910 | 1.3 | 31.9 | 16.8% |
CAB | 51.97 | 4.93 | 0.934 | −8.7 | 70.0 | 17.9% | 0.952 | −7.8 | 23.3 | 17.5% |
CAR | 44.08 | 5.06 | 0.932 | −1.8 | 74.9 | 14.4% | 0.946 | −2.9 | 22.7 | 15.4% |
CNR | 42.82 | −1.60 | 0.902 | −12.8 | 89.5 | 18.3% | 0.947 | −4.7 | 24.4 | 15.0% |
COC | −12.19 | 96.84 | 0.770 | −1.3 | 107.3 | 15.7% | 0.780 | −8.2 | 33.7 | 14.5% |
DAA | −30.67 | 23.99 | 0.935 | 1.7 | 61.9 | 8.9% | 0.940 | −1.9 | 22.9 | 9.0% |
DRA | 36.63 | −116.02 | 0.904 | −3.4 | 75.9 | 10.6% | 0.928 | −2.0 | 25.9 | 11.0% |
DWN | −12.42 | 130.89 | 0.675 | 6.4 | 113.8 | 16.5% | 0.758 | −6.6 | 27.8 | 11.8% |
FLO | −27.53 | −48.52 | 0.879 | −30.0 | 94.0 | 17.6% | 0.897 | −12.1 | 30.0 | 16.1% |
FPE | 48.31 | −105.10 | 0.874 | −28.6 | 108.8 | 22.5% | 0.924 | −9.8 | 34.2 | 20.8% |
FUA | 33.58 | 130.38 | 0.909 | −15.1 | 90.3 | 18.1% | 0.922 | −9.3 | 29.6 | 17.9% |
GAN | 23.11 | 72.63 | 0.586 | 129.3 | 200.7 | 40.4% | 0.571 | 47.2 | 67.7 | 43.0% |
GCR | 34.25 | −89.87 | 0.944 | −2.4 | 68.3 | 12.5% | 0.940 | −2.6 | 24.4 | 14.1% |
GOB | −23.56 | 15.04 | 0.910 | −1.2 | 53.9 | 6.8% | 0.908 | 0.1 | 21.2 | 7.6% |
GUR | 28.43 | 77.16 | 0.849 | 72.5 | 107.8 | 18.0% | 0.890 | 25.8 | 36.0 | 19.5% |
HOW | 22.55 | 88.31 | 0.794 | 68.6 | 103.9 | 19.9% | 0.804 | 20.1 | 28.9 | 18.0% |
ISH | 24.34 | 124.16 | 0.856 | −42.1 | 114.2 | 20.3% | 0.915 | −19.4 | 32.4 | 17.5% |
IZA | 28.50 | −16.30 | 0.506 | −120.9 | 211.4 | 25.0% | 0.673 | −53.8 | 74.7 | 25.9% |
LAU | −45.05 | 169.69 | 0.859 | −35.0 | 104.2 | 25.0% | 0.895 | −15.7 | 34.8 | 21.3% |
LRC | 37.10 | −76.39 | 0.908 | −4.2 | 84.3 | 15.6% | 0.953 | −6.3 | 22.4 | 12.5% |
NEW | −32.88 | 151.73 | 0.831 | −60.6 | 116.9 | 17.1% | 0.844 | −22.1 | 39.4 | 15.4% |
NYA | 78.93 | 11.95 | 0.689 | −0.8 | 72.4 | 39.6% | 0.734 | −35.6 | 54.6 | 38.7% |
PAL | 48.71 | 2.21 | 0.946 | −12.2 | 67.7 | 15.9% | 0.966 | −7.7 | 20.8 | 14.4% |
PAY | 46.82 | 6.94 | 0.930 | −16.6 | 80.3 | 17.5% | 0.955 | −6.3 | 24.4 | 16.0% |
SAP | 43.06 | 141.33 | 0.778 | −53.2 | 136.6 | 31.9% | 0.862 | −18.4 | 40.1 | 28.5% |
SON | 47.05 | 12.96 | 0.549 | −108.6 | 199.7 | 42.8% | 0.782 | −26.1 | 48.4 | 32.2% |
TAM | 22.79 | 5.53 | 0.871 | −10.5 | 77.1 | 9.4% | 0.867 | 0.0 | 26.4 | 10.1% |
TAT | 36.06 | 140.13 | 0.913 | −2.6 | 79.2 | 15.5% | 0.918 | −5.2 | 27.7 | 16.7% |
TIK | 71.59 | 128.92 | 0.535 | −44.9 | 77.6 | 40.7% | 0.831 | −39.5 | 43.4 | 63.5% |
TIR | 13.09 | 79.97 | 0.724 | 28.4 | 106.3 | 15.7% | 0.852 | 2.7 | 23.9 | 10.6% |
TOR | 58.25 | 26.46 | 0.946 | −15.1 | 64.3 | 20.1% | 0.960 | −10.9 | 23.5 | 19.7% |
Months | R2 | Bias (W/m2) | RMSE (W/m2) | Relative RMSE |
---|---|---|---|---|
DJF | 0.884 | −7.7 | 25.3 | 25.2% |
MAM | 0.853 | −11.5 | 40.9 | 19.3% |
JJA | 0.827 | −8.1 | 37.4 | 14.9% |
SON | 0.884 | −4.7 | 27.3 | 19.2% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Liang, S.; Zhang, Y.; Gao, X.; Brown, M.G.L.; Jia, A. A New Set of MODIS Land Products (MCD18): Downward Shortwave Radiation and Photosynthetically Active Radiation. Remote Sens. 2020, 12, 168. https://doi.org/10.3390/rs12010168
Wang D, Liang S, Zhang Y, Gao X, Brown MGL, Jia A. A New Set of MODIS Land Products (MCD18): Downward Shortwave Radiation and Photosynthetically Active Radiation. Remote Sensing. 2020; 12(1):168. https://doi.org/10.3390/rs12010168
Chicago/Turabian StyleWang, Dongdong, Shunlin Liang, Yi Zhang, Xueyuan Gao, Meredith G. L. Brown, and Aolin Jia. 2020. "A New Set of MODIS Land Products (MCD18): Downward Shortwave Radiation and Photosynthetically Active Radiation" Remote Sensing 12, no. 1: 168. https://doi.org/10.3390/rs12010168
APA StyleWang, D., Liang, S., Zhang, Y., Gao, X., Brown, M. G. L., & Jia, A. (2020). A New Set of MODIS Land Products (MCD18): Downward Shortwave Radiation and Photosynthetically Active Radiation. Remote Sensing, 12(1), 168. https://doi.org/10.3390/rs12010168